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Abstract: 

Organizations are increasingly offering pre-employment assessments on different digital devices 

to evaluate candidates. However, in most cases, it remains untested whether the psychometric 

properties of those assessments are equivalent when different devices are used. Thus, for most 

assessments, it is unclear whether scores of candidates differing in their choice of device can be 

compared fairly. The aim of this study is to investigate whether employing a mobile first based 

cognitive assessment yields equivalent scores of selective attention across different devices. Meas-

urement equivalence across device types was tested using data collected from 296 matched par-

ticipants. Participants completed the assessment on either a desktop computer or a smartphone. 

The equivalence of selective attention test scores was investigated using confirmatory multigroup 

factor analysis. Measurement invariance ensures that test-takers with the same latent trait level 

have equal probabilities of solving each item and achieving the same scores. Employing a mobile 

first design approach resulted in equivalent psychometric properties of the assessment in both 

groups, as indicated by measurement invariance on all levels of investigation. Thus, measurement 

invariance was achieved unconditionally for both test groups. The results of this study provide 

convincing evidence that adhering to mobile first principles can yield a valid and reliable assess-

ment for selective attention that can be used on different devices equivalently. The study highlights 

the importance of considering different devices when designing digital assessments to avoid sys-

tematically disadvantaging candidates due to their choice of device. 
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Introduction 

Organizations are increasingly utilizing remote psychometric assessments for person-

nel selection to facilitate accessible and engaging pre-employment evaluations. There 

are several reasons for the increased interest in conducting assessments online. One 

reason is the candidate-centric job market, and a necessity for organizations to use the 

recruitment and hiring process to attract top talent. A way to accomplish this is to offer 

an efficient and accessible candidate experience using new technologies, such as in-

teractive elements and mobile-delivered assessment (Grelle & Gutierrez, 2019). In an 

age where a company's online presence is more important than ever, an outdated ap-

plication process can potentially have a negative impact on the company's image. An-

other reason for this shift towards remote testing is its simplicity and international 

accessibility. The COVID-19 pandemic necessitated the development of remote test-

ing solutions since on-site testing was not feasible in a lot of selection scenarios. How-

ever, this shift towards remote testing results in applicants taking tests presented as 

part of an online assessment on their personal devices. Thus, organizations are in-

creasingly lacking control over the types of devices applicants use to complete their 

assessments.  

According to recent statistics, there is a wide variability in personal devices used when 

accessing the Internet (Eurostat, 2022a). Even in 2016, before the COVID-19 pan-

demic, cell phones or smartphones were the most common devices and were used by 

more than three-quarters (79%) of Internet users. This was followed by laptops or 

notebooks (64%), desktop computers (54%), and tablet computers (44%). By 2021, 

the proportion of increases remained about the same and even rose to 90% for 

smartphones (for a detailed comparison see Eurostat (2022b), Eurostat (2022c)). No-

tably, most digital psychometric assessments are primarily designed for desktop com-

puters, and in many cases, it remains unclear whether administering a test on a device 

for which it was not specifically designed leads to equivalent test performance across 

candidates. Furthermore, restricting remote pre-employment assessments to desktop 

computers poses a challenge for candidates without larger devices at home. These 

candidates may need to relocate to public spaces offering such devices (e.g., libraries), 

where they are less likely to complete the tests without interruptions. Thus, designing 

psychometric assessments solely for desktop computers inevitably introduces issues 

related to the assessment’s psychometric properties, such as its validity or fairness 

(Arthur et al., 2014).  

Although both companies and candidates are increasingly using a variety of devices 

during the hiring process, there is limited empirical evidence on the comparability of 

test scores obtained from these devices. While previous studies have shown little dif-

ference between non-cognitive measures (e.g., personality) on mobile and non-mobile 

devices (Arthur et al., 2014; Ihsan & Furnham, 2018), studies on cognitive measures 

are inconsistent and scarce. To ensure fairness in the use of assessment results, test 

developers and test users must be certain that results, whether on item level or overall 

test scores, are not impacted by variations introduced using different devices. This is 
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the only way to ensure that the respondents do not have any disadvantage because of 

their choice of device. As highlighted in previous studies (for a review, see Dadey et 

al., 2018), several factors must be considered when comparing devices, including 

screen size, displayed content, and the specific item types used in testing. 

The issue of screen size, combined with the displayed content, introduces significant 

challenges to ensuring comparability across devices. One key concern is the method 

of interaction with the test material. Using a fingertip on a touchscreen instead of a 

mouse can reduce precision, especially when objects are closely spaced, smaller than 

the fingertip, or require intricate interactions such as drag-and-drop. Such tasks are 

more difficult to perform accurately on touchscreens compared to traditional mouse 

input. 

Another challenge arises from the variability in the amount of test content displayed 

at once, which depends on the screen size. Research suggests that screens of 10 inches 

or larger are generally suitable for viewing and interacting with test material, with 

minimal differences in performance at the item level or overall test outcomes (Davis 

et al., 2013; Keng et al., 2011). However, smaller screens may introduce additional 

difficulties. For instance, Davis and Strain-Seymour (2013) observed that features 

such as calculators or on-screen keyboards can obstruct portions of the test content, 

placing additional demands on participants’ working memory. Similarly, Davis et al. 

(2016) found that students who could not simultaneously view tasks and reading pas-

sages reported difficulty retaining the task information while reading. Supporting 

these findings, Sanchez and Branaghan (2011) demonstrated that small screens, which 

often require more scrolling, can impede complex cognitive processing. Switching 

from portrait to landscape mode on smaller screens, however, mitigated some of these 

negative effects, particularly for participants with lower abilities. 

The choice of task or item type also plays a significant role. Eberhart (2015) found 

that while students generally performed slightly better on desktops than tablets for 

math and English tests, this effect was task-dependent. Multiple-choice tasks favored 

desktops, but technology-enhanced items (e.g., selecting text templates) showed no 

such difference. Davis et al. (2015) observed little impact of device type on tasks re-

quiring simple interactions, such as multiple-choice or hot spot items. Further research 

by Davis et al. (2016) on seven task types, including drag-and-drop, multiple-choice 

or hot spot revealed no significant performance differences across devices for most 

task types. These findings highlight the complex interplay of devices, tasks, and test 

performance, emphasizing the need for careful test design to ensure device independ-

ence. 

 

Mobile first responsive web design  

One way to proactively address the issues outlined above is by adhering to mobile-

optimized and mobile first responsive web design practices (Grelle & Gutierrez, 

2019). In mobile first responsive web design, the developmental process starts with 
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the smallest supported device and works up to larger devices to provide a user expe-

rience that is optimized for and consistent across all device types (Ward, 2017). First 

applications of this principle show promising results for certain cognitive abilities. 

For example, mobile-optimized assessments for measures of working memory (Frost 

et al., 2018; Morgan et al., 2018) or general cognitive tests (Gutierrez & Grelle, 2018; 

Schuhfried, 2024) have been shown to be equivalent across device types after apply-

ing mobile first principles. These studies emphasize that optimizing item design for 

the smallest screen size makes it necessary to revise classic item formats. Given the 

available display space, classic cognitive ability tasks designed for paper-pencil or 

desktop applications often feature elaborate graphics or text. For example, tests of 

reasoning or reading comprehension typically present a section of text or information 

in tables or charts, and candidates must read or review this information to select an 

answer option or answer a question (Sanchez & Goolsbee, 2010). Simply reducing 

the size of these tasks would bias the scores because the tasks would no longer be 

clearly visible. Thus, new paradigms and test concepts need to be developed. Alt-

hough past studies have already shown, that adhering to mobile first responsive web 

design when constructing device-independent assessments leads to promising results 

for certain cognitive abilities, the range of assessments is still restricted to a handful 

of cognitive domains. The aim of the current study is to expand the range of tests 

available by designing a device-independent test for measuring selective attention. 

 

Selective Attention    

Selective attention is a core component of human information processing that enables 

individuals to selectively process relevant stimuli while simultaneously inhibiting ir-

relevant or competing information (Duncan & Humphreys, 1989; Lavie, 2005). It 

serves as a filtering mechanism within the broader framework of attentional control, 

allowing the organism to allocate limited cognitive resources efficiently in environ-

ments characterized by high perceptual load (Lavie, 2005). Selective attention differs 

from other attention constructs such as sustained attention — which involves main-

taining focus over prolonged periods — or divided attention, which refers to the sim-

ultaneous monitoring of multiple stimuli or tasks. In contrast, selective attention is 

defined by the dynamic prioritization of task-relevant input and the suppression of 

interference from distractors. 

In this study, selective attention is operationalized as the ability to rapidly and accu-

rately discriminate between highly similar visual stimuli based on abstract rule-based 

criteria. The task paradigm requires participants to identify target configurations 

within a stimulus array under strict time constraints, thereby engaging both stimulus-

driven and goal-directed attentional processes. This construct is particularly relevant 

in applied domains where individuals must make accurate perceptual discriminations 

in the presence of noise or competing information (e.g., driving, aviation, monitoring 

tasks).  
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Measuring selective attention is a critical component of many assessment scenarios, 

as an individual’s ability to concentrate is a prerequisite for performing a wide range 

of tasks. Concentrated work is essential for performance in all activities that require 

conscious perception and information processing (Westhoff & Hagemeister, 2005). 

This fundamental ability is considered a relevant predictor for efficient or safe behav-

ior in various professions, such as pilots (Hunter & Burke, 1994), drivers (Vetter et 

al., 2018), train drivers (Guo et al., 2019), or workers (Goertz et al., 2014). Low scores 

of the skill or permanent (e.g., due to illness) and temporary impairments (e.g., due to 

impairing substances) may have serious consequences (Arthur et al., 1994; Baysari et 

al., 2008). Due to its elementary character, attention is relevant to nearly all practical 

and intellectual activities (Sturm, 2009). Thus, investigating attention is essential for 

a large variety of psychological assessment scenarios. Traditional test paradigms for 

selective attention, such as those used in the FAIR-2 (Moosbrugger & Oehlschlägel, 

2011), COG (Schuhfried, 2019) or d2-R (Brickenkamp et al., 2010), involve identify-

ing and marking or connecting symbols that are visually similar and difficult to dis-

criminate. A closer examination of these paradigms reveals that a 1:1 transfer of pa-

per-pencil or desktop tests to a smartphone is not feasible. Small icons, crowded items, 

and the requirement to mark and connect symbols with a pencil make it exceedingly 

challenging to ensure comparability across different devices.  

 

Main aims of the present study  

As outlined above, selective attention plays a critical role in various assessment con-

texts, yet existing test paradigms often lack adaptability across digital devices. To 

address this limitation, we develop a novel test based on mobile-first design princi-

ples. While previous research demonstrates the potential of mobile-first approaches 

in cognitive ability assessment (Gutierrez & Grelle, 2018; Morgan et al., 2018), their 

application to selective attention remains unexplored. 

The present study pursues two main objectives. First, we aim to develop and validate 

a selective attention test that adheres to established psychometric quality standards 

while functioning equivalently across devices. Second, we examine whether mobile-

first design supports measurement equivalence by comparing test performance be-

tween desktop and smartphone administration. To this end, we employ a confirmatory 

multigroup factor analysis to evaluate configural, metric, and scalar invariance, en-

suring that individuals with equivalent latent trait levels demonstrate consistent item 

responses and total scores regardless of device. 
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Method 

Materials 

To create a device-equivalent measure of selective attention, item development fo-

cused on two main areas: ensuring comparability across different devices and con-

structing the item material based on theory. First, when designing the test, we put a 

special emphasis on deriving the item content from cognitive theories on selective 

attention. Thus, a major aim of designing the assessment was to ensure content and 

construct validity and a suitable distribution of the item difficulty (Embretson, 1998). 

To this end, we created a cognitive model, outlining the skills and knowledge required 

to process the item material and providing a framework to empirically quantify the 

impact of these factors on correct task performance (Arendasy & Sommer, 2011; 

Gorin, 2006). This approach facilitated the assessment of construct and content valid-

ity at the level of individual items (Gorin, 2006). 

Second, by adopting the mobile-first concept from the field of web design (Ward, 

2017) and adhering to recommendations regarding the comparability of test results on 

different platforms (Dadey et al., 2018), we aimed to ensure outcome equivalence 

across devices. Thus, during development, it was crucial that the type of device used 

for the assessment did not affect the likelihood of a correct response, and that there 

were no overall performance differences between the devices. To this end, particular 

attention was paid to the paradigm used and the display and presentation of the item 

content. In adherence to mobile first principles, we optimized the content in the first 

step for use on a smartphone and then transferred it to larger devices. This ensured 

that the content could be depicted in a comparable manner and that all relevant infor-

mation was available on all devices. As part of regular functionality reviews (see Way 

et al., 2016) during development, the items were checked for whether they could be 

displayed similarly, i.e. that the position or the relative size of the symbols and selec-

tion elements was comparable and that they were not displayed distortedly. In addi-

tion, insights from existing studies were considered when designing the items. For 

example, it was ensured that all content of the items was available at the same time 

and in all orientations of the device (horizontal and vertical) to minimize the impact 

of working memory (e.g., due to scrolling or popups; Sanchez & Branaghan, 2011). 

Furthermore, the presented scope of information was kept constant across all devices 

(Winter, 2010). Finally, we ensured that the input boxes and the selection of the an-

swers were sufficiently sized on all devices and avoided certain answer types (e.g., 

free text input) that could not be implemented in comparable form on all devices.  

Following these principles, we developed a selective attention test. In this test, the 

respondent’s task was to identify and mark stimuli, within a 3x3 grid, that matched 

specific target criteria, while simultaneously ignoring stimuli that did not match these 

criteria (see Figure 1). Each individual stimulus consisted of an unfilled basic shape 

(triangle, circle, or square) and one or multiple filled detail shapes (triangle, circle, or 

square). Target stimuli at the top of the page specified which of the nine stimuli below 
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must be marked for each item. These target stimuli also defined the required basic 

shape and the specific number and type of detailed shapes that needed to appear in a 

stimulus for it to be marked. For example, if the item contained a large, unfilled trian-

gle and two small, filled circles, all stimuli in the 3x3 grid that exactly matched this 

configuration had to be marked. A time limit of 6 seconds per item was set, which 

was in line with both the time limit suggested by Moosbrugger and Oehlschlägel 

(2011) and the general requirement for unambiguous interpretation (Schmidt-Atzert 

et al., 2004), as the working time per item was kept constant for all respondents, thus 

ensuring comparability of accuracy. 

 

Figure 1 

Depiction of a single item of the selective attention test (TACO) on a smartphone (a) 

and on a desktop computer (b) 

a) 

 

b) 

 

 

 

The stimuli and structure of the items were selected according to the recommendations 

for constructing attention tests (Moosbrugger & Oehlschlägel, 2011; Westhoff & 

Hagemeister, 2005), as well as structuring device-independent psychometric tests. 

First, the test included items requiring the discrimination of relatively simple stimuli 

that were clearly perceivable. Second, we selected easily discriminable and culture-

neutral shapes. Third, the stimuli varied across three dimensions: two dimensions (i.e., 

the basic shape and the detailed shape) were relevant to the solution, while the third 

dimension (i.e., the position or arrangement of the detailed shapes), was irrelevant. 

Fourth, the stimuli had to be combined according to a rule that was easy to remember, 

minimizing the potential confounding influence of memory. Fifth, the target stimulus 

switched per test page and thus throughout the test. For the selection of the target 

stimuli, attention was paid to maintaining a balance of the symbols used.  
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To create items with different degrees of complexity, the search stimuli were varied 

in their difficulty. Based on information processing theories and empirical findings, 

four predictors were considered: the density of information per stimulus and test page 

(i.e., the number of individual shapes, including basic and detailed shapes), the num-

ber of target stimuli to be marked, the similarity between distractors and target stimuli, 

and the spatial proximity of the target stimuli. Following previous robust findings, we 

assumed that a higher density of information per test page or individual stimulus re-

quired more serial processing resources (Forster & Lavie, 2007; Hyman, 1953; Jensen 

& Munro, 1979). Thus, we expected lower probabilities of correctly completing an 

item as the amount of information presented increased. In addition, we aimed to vary 

the difficulty by increasing the number of target stimuli to be marked, as we assumed 

that verifying a correct stimulus would require more cognitive resources than falsify-

ing an incorrect stimulus. Furthermore, we expected that a high degree of similarity 

between distractors and target stimuli would increase the difficulty of an item (Becker, 

2011; Duncan & Humphreys, 1989; Lavie, 2005; Pashler, 1987). Finally, we assumed 

that a higher spatial proximity between the target stimuli would favor faster pro-

cessing. To operationalize selective attention the number of correctly worked individ-

ual stimuli was defined as the main outcome variable. It consists of all correctly 

marked target stimuli and all correctly ignored distractors, and describes the ability to 

maintain selective attention for a short period (5 minutes) at a high level.  

 

Participants 

The data was collected in 2019-2020 in the test and research center of SCHUHFRIED 

GmbH according to a representative, randomized, and parallelized design. The partic-

ipants were assigned to one of the two groups (desktop computer or smartphone) using 

stratified randomization. Both groups reflected a representative distribution of the 

German-speaking population and were matched in terms of age (in 5-year categories), 

gender, and education level. A total of 148 (30.8%) participants from the sample com-

pleted the test on a smartphone while the other 331 (69.2%) participants completed 

the test on a computer via the mouse. The sample consisted of 255 (53.2%) women 

and 224 (46.8%) men aged 14 to 90 (𝑥̅ = 48.64; SD = 18.81). In total, 3 (0.6%) par-

ticipants did not have any school-leaving qualification (EU education level 1), 34 

(7.1%) participants completed mandatory school or secondary modern school, but 

without completed vocational training (EU education level 2), 155 (32.4%) partici-

pants had a completed vocational training or a qualification from a college (EU edu-

cation level 3), 182 (38%) participants completed a higher school with general quali-

fication for university entrance (EU education level 4) and 105 (21.9%) participants 

had a university degree (EU education level 5). To test for measurement invariance, a 

subset of the sample was parallelized.  In total, the sample for the measurement invar-

iance testing contained 296 participants. The sample was evenly split between com-

puter and smartphone users (50% each), with a gender distribution of 46% male and 

54% female, an average age of 48.19 years (SD = 19.6), and educational levels ranging 
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from EU Level 1 (1%) to Level 5 (20%), with the majority at Levels 3 (32%) and 4 

(43%). To check whether the collected sample was representative of the population 

of interest, a chi² test considering participants’ gender and age was performed 

(chi²[29]=24.29, p=.71).  

 

Procedure 

All participants completed a standardized test sequence consisting of five computer-

ized assessments: 

1. the new Selective Attention Test, 

2. the Trail-Making Test – Langensteinbach Version S1 (TMT-L; Rodewald et 

al., 2019), 

3. the Simultaneous Capacity/Multitasking Test S2 (SIMKAP; Bratfisch & 

Haman, 2018), 

4. the N-Back Verbal Test S4 (NBV; Schellig & Schuri, 2019), and 

5. the Cognitrone S2 (COG; Schuhfried, 2019). 

 

The entire testing session lasted approximately 60 minutes. The order of the tests was 

fixed across all participants. All tests were administered in a supervised setting using 

the Vienna Test System (VTS) software platform. Participants were randomly as-

signed to one of two experimental conditions, differing only in the device used to 

complete the Selective Attention Test: either a desktop computer or a smartphone. 

The remaining tests in the sequence were completed on a desktop device for all par-

ticipants. 

To reflect the increasingly fluid boundaries between device categories (e.g., 

smartphones, tablets, laptops), we categorized devices based on screen resolution. De-

vices with a screen resolution greater than 767×1023 pixels were classified as desktop 

computers, while devices with screen resolutions equal to or below this threshold were 

classified as smartphones. Smartphone content was optimized using a mobile-first de-

sign approach, including responsive scaling and touch-based input, while the desktop 

version maintained a fixed layout optimized for mouse and keyboard interaction. 

However, the core test content — including stimuli, timing, and scoring — remained 

identical across platforms. 

All participants received standardized on-screen instructions and completed one prac-

tice trial before beginning the actual task. The Selective Attention Test consisted of 

30 trials, each comprising a 3×3 matrix of stimuli with a target template displayed at 

the top. Each matrix was shown for 3.5 seconds followed by a 1.5-second response 

interval. This structure was identical for both device groups. 
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Statistical Analyses 

To examine device independence, a two-step analysis procedure was employed. First, 

several quality indicators were assessed, including the plausibility of the construction 

rationale, factorial and construct validity, and internal consistency of the test. These 

analyses provided a foundation for evaluating the overall quality of the test and its 

suitability for further comparison across devices. In the second step, measurement 

invariance analysis was performed to assess the comparability of the test outcome 

(Vandenberg & Lance, 2000) between desktop and smartphone conditions. This en-

sured that the test outcomes were equivalent across device types, confirming that the 

selective attention test was independent of the device used. 

For the empirical investigation of the construction rationale, a multiple linear regres-

sion analysis was conducted using the full representative sample (n = 479). Four fac-

tors influencing item difficulty — information density, number of target stimuli, sim-

ilarity between distractor and target stimuli, and spatial proximity of target stimuli — 

were selected as predictor variables. These factors were incorporated into the regres-

sion model using the backward method, with the mean number of correctly solved 

symbols per test page (i.e., symbols correctly marked or ignored) as the dependent 

variable. 

To evaluate convergent and discriminant validity for the selective attention test, we 

constructed a nomological network and tested it within the Cattell-Horn-Carroll 

(CHC) model framework (Schneider & McGrew, 2018). Tests included in the analysis 

had to meet four criteria: (1) sufficient reliability (≥ .7) to avoid artificial correlation 

attenuation (Lance et al., 2006), (2) symmetry in generality to ensure adequate com-

parisons, (3) inclusion of only ability tests to avoid validity restrictions due to differ-

ing measurement methods (Bühner, 2011), and (4) representative samples with di-

verse sociodemographic distributions (age, gender, education) to avoid sampling bias. 

Based on these criteria, we selected the following tests: TMT-L Version S1 (Rode-

wald et al., 2019), SIMKAP S2 (Bratfisch & Haman, 2018), NBV S4 (Schellig & 

Schuri, 2019), and COG S2 (Schuhfried, 2019). Construct validity was assessed by 

correlating the main outcome of the selective attention test with external indicators, 

including both convergent and discriminant tests. Convergent validity was demon-

strated through correlations with TMT-L and COG tests, as all three tests align with 

the CHC secondary factors “Reaction & decision speed” (Gt) or “Processing Speed” 

(Gs) under the primary factor “General cognitive speed.” 

Additionally, we inspected the factor structure of the selective attention test using 

confirmatory factor analysis (CFA), which included all 50 test pages. To ensure reli-

able estimation, the items were grouped into ten parcels, maximizing systematic var-

iance and reducing random response effects (Little et al., 2002). Each item parcel rep-

resented the sum of correctly solved symbols across grouped items, and these values 

were incorporated into the model. The MLR estimator from the R package “lavaan” 

(R Core Team, 2022; Rosseel, 2012) was used to estimate the model (Reinecke, 2014). 

Model fit was evaluated using indices CFI (≥ 0.90), SRMR (≤ 0.08), and RMSEA (< 
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0.08), which indicate a strong correlation between the empirical covariance matrix 

and the theoretical factor model (Hu & Bentler, 1999; Yu, 2002).  

Test reliability was assessed using Cronbach’s alpha for both the full representative 

sample and subsamples for each device. Reliability values above .7, .8, and .9 were 

considered adequate, good, and excellent, respectively (EFPA, 2013). Additionally, 

descriptive statistics, including means, standard deviations, test statistics, and effect 

sizes, are presented for each device condition. Cohen’s dp, calculated using the pooled 

standard deviation of both groups as the denominator, was used to determine effect 

sizes, ensuring consistency and comparability between the device groups (Jané et al., 

2024).  

Lastly, we performed a measurement invariance analysis to assess the comparability 

of selective attention test scores between smartphone and desktop presentations using 

confirmatory multigroup factor analysis (CFA; Milfont & Fischer, 2015). Following 

this approach, the dataset was divided into groups (e.g., smartphone vs. desktop), and 

the model fit was assessed for each group separately before conducting multigroup 

comparisons. This allowed us to examine whether respondents interpreted test items 

similarly across devices (Bialosiewicz et al., 2013). The four stages of measurement 

invariance — configural, metric, scalar, and strict — were tested. Configural invari-

ance tested whether the overall factor structure was similar across groups. Metric in-

variance examined whether factor loadings were equivalent, enabling valid compari-

sons of factor variances and covariances. Scalar invariance tested whether item inter-

cepts were consistent across groups, allowing comparisons of factor means. Finally, 

strict invariance, which ensures equal unexplained variance for each item across 

groups, indicates identical measurement at the item level, though it is often considered 

too strict to achieve (Deshon, 2004; Lubke et al., 2003).  

 

Results 

To investigate the construction rationale, we conducted a multiple linear regression 

and included four independent variables into the model to predict the mean number 

of correctly solved symbols. We observed that all predictors, except for the similarity 

of the target stimuli and the distractors (p = .45), as well as spatial proximity of the 

target stimuli (p = .09) showed significant impacts on the outcome variable (see Table 

2). Thus, following the backward method of independent variable integration, the final 

model included four variables - the density of information per stimulus and test page 

(corresponds to the number of individual shapes, i.e., the basic or detailed shapes), the 

number of target stimuli to be marked, the similarity between distractors and target 

stimuli, as well as the spatial proximity of the target stimuli to be marked - which 

collectively explained 84.1% of the variance in the outcome (R = .92, adjusted R2 = 

.83, F = 81.08, p < .01, df=3). 
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Table 1 

Regression model between the previously defined predictor variables of the items 

and their mean number of correctly worked symbols. 

 

   95% CI    

Predictor B SE  LL UL ß T p 

Step 1     

Intercept 10.430 0.459 9.507 11.355  22.738 <.001 

Number of target 

stimuli 

-0.364 0.065 -0.496 -0.233 -0.50 -5.596 <.001 

Density of infor-

mation 

-0.042 0.008 -0.057 -0.027 -0.48 -5.637 <.001 

Similarity distrac-

tor/ target stimulus 

0.019 0.025 -0.032 0.070 0.06 0.763 .450 

Spatial proximity 

target stimuli 

-0.118 0.067 -0.253 0.018 -0.11 -1.743 .088 

Step 2     

Intercept 10.697 0.298 10.098 11.296  35.941 <.001 

Number of target 

stimuli 

-0.385 0.059 -0.504 -0.267 -0.53 -6.554 <.001 

Density of infor-

mation 

-0.044 0.007 -0.058 -0.030 -0.50 -6.151 <.001 

Spatial proximity 

target stimuli 

-0.133 0.067 -0.248 0.021 -0.10 -1.692 .097 

Note: R2 = .843 for step 1 (p < .01), ∆R2 = .002 for step 2 (p = .45).  

 

The number of target stimuli [beta = -0.385, SE = 0.059, t= -6.554, p = <.001 two-

tailed, 95% CI = [-0.504, -0.267]]  and the density of information [beta = -0.044, SE 

= 0.007, t= -6.151, p = <.001 two-tailed, 95% CI = [-0.058, -0.030]] showed a similar 

standardized beta that was considerably higher than the influence of the spatial prox-

imity of the target stimuli. The latter variable showed a non-significant effect at the 

conventional alpha level (β = -0.133, SE = 0.067, t = -1.692, p = .097, two-tailed, 95% 

CI = [-0.248, 0.021]), but the direction of the effect was consistent with theoretical 

expectations. In summary, we found that the three predictor variables explained a sig-

nificant proportion of the variance in test performance. This confirms that most of the 

theoretically relevant factors considered in item design were empirically supported, 
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validating the successful construction of the item material based on the construction 

rationale. 

Construct validity was assessed by correlating the main outcome of the test with ex-

ternal indicators, including both construct-related (convergent) and construct-unre-

lated (discriminant) tests. 

 

Table 2 

Correlations between the primary outcome of the selective attention test (TACO) 

and convergent or discriminant tests 

 

Test 1 2 3 4 5 6 

1. TACO        

2. TMT – BTA -.694      

3. TMT – BTB -.716 .693     

4. COG -.630 .439 .597    

5. SIMKAP – SIM .700 -.645 -.655 -.532   

6. SIMKAP – STQ .075 -.149 -.145 .041 .262  

7. NBV .271 -.210 -.306 -.263 .349 .105 

Note: TMT = Trail-Making-Test; COG= Cognitrone; SIMKAP = Simultaneous Capacity/Mul-
titasking; NBV = NBack Verbal 

 

In line with our predefined nomological network we observed high correlations (see 

Table 2) of the selective attention test with TMT-L and COG which can be considered 

as good and adequate (EFPA, 2013). Divergent validity was tested by correlating the 

selective attention test with the SIMKAP, and NBV tests. The SIMKAP is most 

clearly associated with the primary factor Processing speed within the CHC model. 

Consistent with our prediction, the selective attention test showed a high correlation 

with the variable Simultaneous capacity (r = .7) and a weak correlation with the vari-

able Stress tolerance (r = .075). As expected, no correlation with the variable Stress 

tolerance was shown in the SIMKAP. Lastly, as expected, we observed a low corre-

lation between the performance in the selective attention test and the NBV test (r = 

.271). The NBV test measures verbal working memory and is associated with the pri-

mary factor Working memory (Gwm) in the CHC model. In summary, we confirmed 

construct validity through correlations consistent with the expectations derived from 

our nomological network.  

After assessing construct validity, we examined factorial validity by analyzing the 

factor structure of the selective attention test through confirmatory factor analysis (see 
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Figure 2). All test items (i.e., k = 50 test pages) were included in the analysis and 

grouped into ten item parcels. Figure 2 presents the factor structure, factor loadings 

and performance indicators of the model. The theoretically proposed model demon-

strated a very good fit to the data [χ²(35) = 107.039; CFI = 0.984; RMSEA = 0.066 

(90% CI: 0.053; 0.078); SRMR = 0.015] confirming a good factorial validity of the 

test with high loadings ( .85) for each item parcel.  

 

Figure 2 

Confirmatory factor analysis of the mean number of correctly worked symbols 

 

 

 

In a final step, we used data from 296 matched participants to empirically investigate 

measurement equivalence across device types. Descriptive statistics for all primary 

and secondary variables of the test were calculated for each group and are presented 

in Table 3.  

 

 

 

 

 

 

 

 

 

 

Table 3  
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Descriptive statistics for the primary and secondary variables of the selective 

attention test, presented separately by device group 

 

Variables Device n 𝑥̅ SD Test statistic Effect size Cron-
bach’s 
alpha 

Selective 
attention 

Desktop 148 387.3 39.7 t(294) = 0.196,  
p = .845 

d = 0.02 α = .976 

 Smart-
phone 

148 388.3 55.4   α = .972 

Number of 
omissions 

Desktop 148 56.7 35.5 t(294) = -0.319,  
p = .750 

d = 0.04 α = .976 

 Smart-
phone 

148 55.4 36.2   α = .977 

Number of 
false 
alarms 

Desktop 148 6.4 12.3 t(294) = 0.280,  
p = .779 

d = 0.03 α = .951 

Smart-
phone 

148 6.0 11.3   α = .945 

Note: n = sample size, 𝑥̅ = sample mean, SD = standard deviation, d = Cohen’s d 

 

First, we performed a two-sampled t-test comparing both groups to determine if the 

sample means in the outcome variables were equal. We observed no significant mean 

differences in test scores across different devices, with effect sizes (Cohens’ d) rang-

ing from d = 0.02 to d = 0.04, and thus well below the conventional threshold (d = 

0.2) for small effects (Cohen, 1988). Second, we estimated Cronbach’s alpha sepa-

rately for each subgroup and across subgroups. We observed high internal consistency 

for each of the variables in the full sample (α = .973, .976, and .938), as well as in the 

subgroups using desktop computers (α = .976, .976, and .951) or smartphones (α = 

.972, .977, and .945). Notably, the reliability estimates for each subgroup showed sub-

stantial overlap, indicating comparable levels of internal consistency across groups. 

Third, we used a measurement invariance analysis to investigate the equivalence of 

the selective attention test scores on different devices (Byrne, 2001; Kline, 1998). We 

tested measurement invariance between the two groups for all levels of invariance (i.e. 

metric, scalar, or strict). We used changes in 2 values, CFI, and RMSEA for the 

nested models as indicators of measurement invariance (Putnick & Bornstein, 2016). 

Following this approach, measurement invariance was indicated if there was no sig-

nificant change in the 2 value (Byrne et al., 1989), and if changes in the CFI and 

RMSEA did not exceed value of |0.01| and |0.015|, respectively (Rutkowski & Svetina, 

2014; Chen, 2007). The results for the measurement invariance analysis for selective 

attention compared for smartphone versus desktop presentation are presented in Table 

4. 

Table 4  
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Measurement invariance analysis comparing selective attention performance for 

smartphone and desktop presentation 

 
Model  2 df CFI RSMEA Δ² p ΔCFI ΔRSMEA 

Smartphone 55.539 35 0.987 0.063      

Desktop 65.533 35 0.980 0.077     

Configural  
invariance 

141.08 70 0.984  0.070  -- -- -- -- 

Metric  
invariance 

154.90 79 0.983  0.067  10.938 .28  0.001  0.003 

Scalar  
invariance 

165.65 88 0.982  0.065  10.777 .29  0.001  0.002 

Strict invariance 180.44 98 0.983  0.060 9.820 .45  0.001  0.005 

Note: df = degrees of freedom, CFI = comparative fit index, RMSEA = root mean square error 
of approximation 

 

The factor models showed good model fits for both subgroups (see Table 4). Im-

portantly, we observed no significant changes in the 2 value. Furthermore, changes 

in both the CFI or RMSEA for successive measurement models were well below the 

thresholds of |0.01| and |0.015|, respectively. Notably, this was true even at the most 

stringent level of strict invariance. Thus, measurement invariance can be assumed un-

conditionally over both test groups (smartphone vs. desktop), indicating the successful 

development of a test that is equivalent across devices. 

 

Discussion 

The primary aim of this study was to develop a device-independent test for measuring 

selective attention. Given the relevance of selective attention in many assessment con-

texts and the general lack of device-independent measures for this ability, we sought 

to address the growing demand for fair assessments across different platforms by con-

structing a test that is equivalently applicable on desktop computers and smartphones. 

To this end, we developed a new test paradigm grounded in mobile first principles 

and informed by cognitive theories. We assessed quality indicators of the test – in-

cluding the construction rationale, internal consistency, construct validity, and facto-

rial validity – and examined device independence by comparing test performance on 

desktop computers and smartphones, while also investigating measurement invariance 

across both device types.  

We found that the test performed well across all quality indicators. First, we demon-

strated that the hypothesized predictor variables for item difficulty significantly ac-

counted for the observed variance in the main outcome variable. Second, we obtained 
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excellent internal consistency estimates in both the full sample and the subsamples, 

further supported by a factor model that showed a good fit to the data and high factor 

loadings for all item parcels. Third, we found evidence for both convergent and diver-

gent validity, with correlational patterns aligning with expectations for tests assessing 

related and unrelated ability domains. Additionally, we showed that test performance 

was comparable across participants using smartphones or desktop computers. Im-

portantly, we also demonstrated measurement invariance across both devices at all 

levels of invariance, including the most stringent form of strict invariance. Thus, by 

applying mobile first principles and grounding item development in cognitive theo-

ries, we successfully created a test for selective attention that can be fairly and com-

parably used on both smartphones and desktop computers. 

Demonstrating that adherence to these principles results in device-equivalent meas-

urement is important, as it shows that tests can be successfully designed and imple-

mented across various devices. This not only facilitates fair comparisons but also of-

fers flexibility in test administration, which is often desired by both companies and 

test takers. Simply transferring the same measurement to other devices without prior 

evidence of equivalence may severely disadvantage certain test takers, resulting in 

unfair and inefficient assessment outcomes. While it has been successfully demon-

strated that non-cognitive (Arthur et al., 2014; Ihsan & Furnham, 2018) and cognitive 

measures (Frost et al., 2018; Gutierrez & Grelle, 2018; Morgan et al., 2018) can be 

constructed by following these principles, evidence regarding selective attention is 

scarce. Notably, expanding this evidence to include a measure of selective attention 

is not only practically relevant but also underscores that a broad range of measure-

ments can be developed without discriminating against participants based on their 

choice of device.  

To show that the newly developed test was truly comparable across different devices, 

a confirmatory multigroup factor analysis was conducted on a parallelized sample of 

296 participants. Measurement invariance was tested in four stages (configural, met-

ric, scalar and strict or residual invariance), all of which were well supported by the 

data. Configural invariance showed that the relationships between each item in the 

test and the latent factor it was intended to measure, were consistent across both 

groups. Achieving metric invariance demonstrated that differences in factor variances 

and covariances were not due to group-based differences in the properties of the test 

itself. Scalar invariance assessed whether the item intercepts were equivalent across 

groups, and the multigroup model fit indicated no significant mean differences be-

tween the groups tested. Lastly, strict invariance revealed that the unexplained vari-

ance for each item was equal across groups, indicating identical measurement at the 

item level of the construct for both groups.  Notably, the result of strict invariance 

testing should be interpreted with caution, as we parceled the items rather than inte-

grating them individually in the model. 

 In addition to observing measurement invariance, we found no evidence of perfor-

mance differences or discrepancies in internal consistency across parallelized groups 

further supporting equivalent measurement. When directly comparing test 
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performance across all three outcome variables, we observed non-significant results 

with effect sizes close to zero, indicating that the difference was not only statistically 

insignificant but also practically negligible. The observed mean difference of 387.3 

and 388.3 in the main variable corresponds to a 1% change in percentile rank within 

the representative norm sample of the test, which is negligible in most assessment 

scenarios. Additionally, both subgroups were characterized by excellent Cronbach’s 

alpha values across all three outcome variables. Together with the configural invari-

ance findings from the multigroup factor analysis this provides converging evidence, 

that the internal consistency of the test was not only of high quality but importantly 

comparable across groups. In addition to internal consistency, we also observed prom-

ising results regarding other quality indicators such as factorial, construct, and content 

validity. 

Regarding content validity, we conducted a multiple linear regression analysis to test 

the quality of the construction rationale. In the full sample of 479 participants, we 

found that three predictors (i.e., information density per stimulus and test page, the 

number of target stimuli to be marked, and the spatial proximity of the target stimuli 

to be marked) explained 84.1% of the variance in the number of solved symbols per 

test page. This substantial explanatory power supports the successful construction of 

the item material, confirming that nearly all the theoretical predictors we hypothesized 

based on previous literature (Becker, 2011; Duncan & Humphreys, 1989; Forster & 

Lavie, 2007; Hyman, 1953; Jensen & Munro, 1979; Lavie, 2005; Pashler, 1987; 

Moosbrugger & Oehlschlägel, 2011; Westhoff & Hagemeister, 2005) were also em-

pirically relevant. Notably, we did not find a significant influence of the similarity 

between distractors and target stimuli, suggesting that participants could discriminate 

distractors from targets more easily than expected.  

Regarding construct validity we observed adequate to good (EFPA, 2013) correlations 

with both construct-related tests (i.e., TMT and COG). Additionally, the correlations 

with construct-unrelated tests were in the expected direction and magnitude for the 

SIMKAP and NBV. Lastly, we examined the factor structure of the selective attention 

test using confirmatory factor analysis. We observed a sufficient correlation between 

the empirical covariance matrix and the covariance matrix expected based on the the-

oretically postulated factor model. Thus, in addition to the promising findings for con-

tent and construct validity we also found evidence for the test’s factorial validity. 

In summary, the results of this study provide convincing evidence that a construct-

oriented, mobile first design can yield a valid and reliable test applicable across vari-

ous devices. Our goal was not only to develop a measure that showed equivalence 

across platforms, but also to expand the range of device-independent tests by incor-

porating a cognitive domain highly relevant to job performance. This is important, as 

selective attention is a fundamental skill essential for numerous activities requiring 

conscious perception and processing of information (Westhoff & Hagemeister, 2005). 

Its elementary character makes attention relevant to nearly all practical and intellec-

tual activities (Arthur et al., 1994; Baysari et al., 2008; Guo et al., 2019; Goertz et al., 

2014; Hunter & Burke, 1994; Vetter et al., 2018). Although the demand for device-
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independent tests is substantial - and such tests are already used in the hiring processes 

of several companies - empirical studies on the comparability of cognitive ability as-

sessments across devices remains scarce (e.g. Gutierrez & Grelle, 2018; Morgan et 

al., 2018). Given society’s increasing reliance on smartphones, addressing this gap is 

vital for developing fair and psychometrically sound assessments tailored to mobile 

platforms. Our findings underscore that simply transferring a traditional test paradigm 

designed for paper-pencil or desktop use directly to mobile devices is insufficient. 

Instead adopting a mobile first approach to test development ensures that quality in-

dicators are met while simultaneously enabling device-independent measurement 

equivalence, ultimately leading to fairer testing practices. Bridging this gap in the fu-

ture is critical to establishing equitable assessment practices across devices, ensuring 

fairness for test takers and meeting the demands of modern, technology-driven socie-

ties.  

 

Limitation and Future Directions 

This study demonstrates the successful implementation of a mobile-enabled cognitive 

test with a device independent design. While we aimed to accommodate a wide range 

of device types and sizes, it was not feasible to encompass all variations, particularly 

given the rapid pace of market innovations (e.g., foldable phones, VR/AR glasses). 

Consequently, future studies are needed to evaluate whether test performance remains 

comparable across a wider range of technical implementations. Moreover, the test en-

vironment in our study was standardized, with all participants - whether using a 

smartphone or a desktop computer – completing the test under controlled conditions 

in the laboratory. This standardization is crucial to control environmental factors (e.g., 

brightness and noise) across groups, ensuring a comparison with high experimental 

control and minimizing the influence of potentially confounding variables. However, 

future studies should not only investigate whether the choice of device might system-

atically disadvantage test takers but also explore how environmental conditions, 

which may differ based on the device used, could impact test performance (e.g. Hygge 

& Knez, 2001; Realyvásquez-Vargas et al.2020).  

Given the sustained interest in mobile-enabled cognitive testing within the field of 

personnel selection, there are many opportunities for additional research. A key future 

goal should be to develop mobile first design tests that span various cognitive ability 

domains, enabling the assessment of a broad spectrum of cognitive skills directly on 

smartphone. This would not only offer a more user-friendly approach to cognitive 

tests for personnel selection but could also expand the scope of clinical testing appli-

cations. Finally, as the emphasis on creating engaging, innovative, and brand-enhanc-

ing tests for personnel selection grows, future research should explore the extent to 

which mobile first test designs are perceived as more interesting by candidates and 

whether they enhance the overall candidate experience. This could provide valuable 

insights into how test formats impact candidate engagement and satisfaction, poten-

tially influencing recruitment outcomes and employer branding. 
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