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Abstract: 

Process models for the joint analysis of responses and response times have been developed to 

disentangle different cognitive processes in experimental paradigms. More recently, they have 

been applied to complex tests of intelligence as well. However, the adequacy of the modelling 

approaches for such task types has been rarely tested. The present study compared two popular 

process models, a race model and a diffusion model, with the purely statistical hierarchical 

model in terms of relative fit to data from typical intelligence tests with varying response for-

mats: a cube rotation test with a binary response format (n = 257), a figural matrix test with a 

distractor format (n = 229), a figural matrix test with a response construction format (n = 185), 

and a knowledge test (n = 3142). Compared to the diffusion model, the race and hierarchical 

models better described the data for all tests but the cube rotation test. Yet neither was able to 

adequately predict response time quantiles for the matrix construction or knowledge test. 

Model-based trait estimates displayed only moderate reliability, suggesting limited utility for 

the assessment of individual differences. This study highlights that process models can be use-

ful for evaluating performance in complex tasks, but emphasizes to carefully consider model 

assumptions and task requirements. 
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Introduction 

Response Times in Cognitive Testing 

“If any broad taxonomic classification of cognitive ability factors were to be formu-

lated, in fact, it might be one based on the distinction between level and speed” (Car-

roll, 1993, p. 644). Most speed abilities are operationalized through tasks that require 

few mental processes to be solved correctly (elementary cognitive tasks) and for 

which response times are therefore the outcome of primary interest (Danthiir et al., 

2005). Level abilities on the other hand are measured by the amount of correct re-

sponses to test items of varying complexity. In this context complexity does not refer 

to empirical item difficulty but is defined by task characteristics such as information 

load, the variety of information and the rate of change of information (Campbell, 

1988). Typical tasks of fluid intelligence (gf), for example, can be considered complex 

due to their compositionality of several individual parts or rules that need to be com-

bined or segmented (Duncan et al., 2017). Speed in the context of complex tasks has 

been studied within different frameworks such as speed of reasoning (Carroll, 1993), 

or time-on-task (Goldhammer et al. 2014). But still, the analysis of response times is 

largely limited to elementary cognitive tasks in ability research. We argue that re-

sponse times in complex cognitive tasks should be considered for three reasons: 

First, from a research perspective, if we are interested in the cognitive processes un-

derlying cognitive abilities, process information is required. The time one needs to 

solve a task may serve as a source of information to identify or to quantify such pro-

cesses (De Boeck & Jeon, 2019). Naturally, multiple process components and their 

flexible assembly may be involved in complex tasks. However, even if response times 

constitute the only available process information, they can help to identify different 

test-taking strategies, such as effortful processing versus rapid guessing (Wright, 

2016) or cheating (van der Linden, 2011).  

Second, when evaluating task performance, speed and level may be confounded due 

to item- or test-level deadlines or because persons apply strategies that favour speed 

over accuracy or the other way around (Goldhammer, 2015; Schweizer, 2025). For 

example, Borter et al. (2023) have shown that the correlation between performance 

on mental speed tests and reasoning tests with time-constraints decreases when con-

trolling for speededness in reasoning. On the other hand, if no or very generous time-

constraints are applied, test takers are free to decide how much time they invest in 

solving a task. In the context of complex tasks, investing more time does not neces-

sarily increase the probability of a correct answer in the sense of a simple speed-ac-

curacy trade-off. Instead, studies with response times as covariates reveal that the re-

lationship of responses and response times varies in strength and direction, depending 

on person as well as item characteristics (Goldhammer et al., 2014; Stadler et al., 

2020; Krämer et al., 2023; Weber et al., 2025). Consequently, it has been suggested 

to control for the effects of response times by calibrating item-level deadlines that 

account for item-time intensity as well as individual differences in speed 
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(Goldhammer, 2015). However, several challenges pertain to this approach (Schmitz 

& Wilhelm, 2015): Estimating item time intensity and person speed requires extensive 

pretesting which is hardly feasible in applied assessment settings. Further, the assump-

tion needs to be made that person speed is temporarily stable and broadly reflected 

across diverse task types. Finally, controlling for speed in such a manner risks elimi-

nating meaningful variance in cognitive ability, as processing speed is theoretically 

and empirically linked to higher-order cognitive ability constructs.  

Third, while the effect of response times on responses can be statistically or experi-

mentally controlled for in research, this is not easily feasible in an assessment context. 

However, specifically for the psychological assessment of cognitive abilities the rel-

evance of complex cognitive tasks is undisputed, due to their high predictive validity 

for a variety of external criteria. For example, fluid intelligence is a good predictor of 

job performance and training, school grades, school achievement, and different life 

outcomes (Kyllonen & Kell, 2017). Crystallized intelligence (gc) has been shown to 

predict some of the aforementioned criteria as well, at times better than gf 

(Postlethwaite, 2011). Complexity in terms of gc depends heavily on the type of task 

in question. Reading comprehension, for example, can be considered complex be-

cause it requires the integration of phonological, orthographic, and semantic infor-

mation (Kendeou et al., 2016). And even though the cognitive processes involved in 

solving gc tasks are presumably fundamentally different from those involved in a rea-

soning task, response times may still be worth looking upon. For example they could 

be used to distinguish knowledge retrieval processes from back-up strategies, in case 

the relevant information is not known (Chen et al., 2018).  

In summary, abilities that feature complex tasks have a high relevance in psycholog-

ical assessment. However, observed performance in such tasks is to some extent re-

lated to the time invested in solving the test items. Taking response times into consid-

eration may therefore improve reliability (precision) and validity (predictive power) 

of the assessed ability estimate. This requires performance models that integrate both 

responses and response times. 

 

Joint Models for Responses and Response Times 

Statistical Models 

Statistical models describe observable behaviour through parameters that are expected 

to reflect the latent value of an unobservable variable (e.g., ability or speed) and are 

subject to measurement error (Frischkorn & Schubert, 2018). Statistical models can 

integrate responses and response times either through distinct unrelated models, dis-

tinct but related models or through one joint model that accounts simultaneously for 

both variables (van der Linden, 2009). It has been shown that statistical models with 

related ability and speed fit mathematical test data better than approaches with unre-

lated traits (Hohensinn & Kubinger, 2017). Assuming that both traits are indeed 
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related, the estimation of ability is necessarily improved by additionally incorporating 

response times (Bolsinova & Tijmstra, 2018).  The most prominent statistical model for 

the joint analysis of responses and response times in ability tests is the hierarchical model 

by van der Linden (2007). It was developed with the goal of explaining the distributions 

of both observable variables through separate models with distinct latent person and item 

parameters. The level-one measurement model for responses is an IRT model, originally 

the three-parameter normal-ogive model (3PNO). Based on the 3PNO, responses are de-

termined by latent person ability as well as item discrimination, item difficulty and a guess-

ing parameter. However, any model that fits the response (accuracy) data may be chosen 

instead, for example the 1PL or 2PL (van Rijn & Ali, 2017). The response times in the 

hierarchical model are assumed to be lognormally distributed, with the reciprocal standard 

deviation interpreted as discrimination. The expectation of the distribution is the difference 

score of latent person speed and item time-intensity. The response time model can also be 

flexibly replaced, for example with a Cox proportional hazards model (H.-A. Kang, 2017). 

Importantly, person parameters of both measurement models are considered constant 

across test items and only related on a second level, assuming a multivariate normal dis-

tribution in the population. Likewise, values of item parameters are drawn from a multi-

variate normal distribution, the so-called item domain.  

The hierarchical model is a valuable approach for the joint analysis of responses and re-

sponse times, because separate and easily interchangeable measurement models are used. 

It has been convincingly demonstrated that the hierarchical model can be applied to com-

plex cognitive tasks (van der Linden, 2007; Glas & van der Linden, 2010; Shaw et al., 

2020). It is, however, a purely statistical model with little explanatory value concerning 

the cognitive processes underlying the observable responses. In the present study, the hi-

erarchical model serves mainly as a benchmark for the relative model fit of the tested cog-

nitive process models. 

 

Process Models 

Responses or response times provide little insight into the nature of a cognitive pro-

cess beyond its outcome and duration. Therefore, assumptions regarding the compo-

sition of the task-solving process are usually grounded on experimental research or 

theoretical considerations related to the nature and processing requirements of the 

cognitive task. They may concern the number, sequence, and duration of processes 

involved, or how these processes interact with each other and external variables. Cog-

nitive process models formalize such assumptions through a set of interpretable pa-

rameters that are mathematically linked to observable variables (e.g., responses and 

response times; Frischkorn & Schubert, 2018). This allows the estimation of parame-

ters that reflect the effective ability of a test-taker, adjusted for the influence of work-

ing speed or motivational aspects. 

A prominent class of process models in laboratory research are continuous sampling mod-

els like the diffusion model (Ratcliff, 1978) and the race model (Townsend & Ashby, 

1978), which use the information from responses and response times exhaustively. Both 



 Krämer et al.  

 

94 

models assume an accumulation process, reflecting the accumulation of response evidence 

over time, typically in simple alternative-choice tasks. The speed of accumulation is called 

drift rate 𝜈. When a critical threshold is reached, a response is elicited. The nature of the 

accumulation process is not specified for either model family but is supposed to corre-

spond with task-solving requirements. The diffusion model assumes that the accumulation 

process is subject to random within-trial fluctuations according to a Wiener process. 

Within-trial variation has been considered for race models as well (e.g., Usher & McClel-

land, 2001), but does not seem necessary to replicate typical response time distributions or 

a speed-accuracy trade-off (Brown & Heathcote, 2005). Instead, both types of models fre-

quently incorporate sources of between-trial variation. Specifically, drift rates and the 

starting points of the drift process 𝑧 are allowed to randomly fluctuate across items of a 

cognitive test (Ratcliff & Rouder, 1998; Brown & Heathcote, 2005). 

Figure 1 shows schematic illustrations of the diffusion and the race model versions that 

have been applied in the present study. The fundamental difference between the two mod-

els is that the diffusion model assumes only a single accumulator that represents relative 

preference of one response option over the other. The race model on the other hand as-

sumes one accumulator and a corresponding response threshold for each response option. 

The diffusion model predicts that a correct response is elicited when the accumulator 

reaches the upper threshold, whereas a false response is given when it reaches the lower 

threshold. The higher the drift rate, the higher is the probability of a correct response and 

the faster the response is given. The distance between the thresholds is called boundary 

separation 𝑎 and is interpreted as response caution. When the boundary separation is nar-

rower, responses are given faster but have a higher probability of being incorrect due to 

the stochastic nature of the drift process. The classic diffusion model has been developed 

for binary choice tasks, where each response threshold corresponds with one of two 

choices. However, the model has been expanded to accommodate alternative-choice tasks 

with more response options by recoding all responses as either correct or false (e.g., van 

der Maas et al., 2011).  

In case of the race model, several accumulators compete with each other. Typically, they 

are assumed to represent the acquisition of information or knowledge with respect to one 

of the response options. The accumulator that reaches its threshold first, determines the 

response that is given as well as the response time. While usually the number of accumu-

lators in a race model corresponds with the number of response options, an approach with 

only two accumulators was proposed by Ranger and Kuhn (2014). Here, one accumulator 

is content related whereas the second accumulator is conceived as a tendency to discon-

tinue the task at hand due to frustration. 

Both, diffusion model and race model families allow for the separation of the accumulation 

process from all non-decision processes, summarized as non-decision time 𝑑. What is ac-

tually incorporated in non-decision time remains a matter of discussion, but encoding of 

task requirements and execution of the motor response are typically assumed. Non-deci-

sion time is usually considered for diffusion models but has been added to race models as 

well (e.g., Brown & Heathcote, 2008).  
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Figure 1 

Schematic Illustrations of the Diffusion Model and the Race Model 

Note. Both models are continuous sampling models that postulate decision processes originating from start-

ing point z. Information and noise are assumed to drive the decision process (response accumulator) until 
it reaches a response boundary, upon which the corresponding response is elicited. In the diffusion model, 

the upper and lower boundary correspond with a correct and incorrect response, respectively. The boundary 

separation a determines the amount of evidence that needs to be gathered before a response is elicited and, 
thus, corresponds with response caution in terms of a speed-accuracy setting. The drift rate ν reflects the 

mean slope of the evidence accumulation process, and thus, corresponds with the speed or efficiency of 

task processing. The duration of all processes not directly involved in the evidence accumulation process 
are subsumed by a non-decision parameter d, which may comprise stimulus encoding or the execution of 

the motor response. In the race model, the accumulation process for correct responses (v1) reflects the gath-

ering of task-related knowledge, while the accumulation process for incorrect responses (v0) reflects frus-
tration. The first accumulator that reaches the response threshold b determines the response as well as the 

response time. In this version of the race model, the thresholds for correct and incorrect responses are 

identical. Neither of the two models specified here assumes an initial bias in the starting point z of the 
decision processes (i.e., no shift of z towards any of the of the boundaries). From an assessment perspective, 

the person components of the diffusion model drift rate and the race model drift rate for the correct response 

accumulator, are indicators of effective ability. 

 

Process models have been extended in an IRT framework that allows to decompose person 

and item effects (Tuerlinckx & De Boeck, 2005). This promises to make these models 

better applicable for ability test where item difficulty typically varies a lot. For instance, 

the drift rate can be decomposed into a person parameter reflecting the ability or trait and 

an item parameter reflecting the easiness of the item. Similarly, boundary separation can 

be decomposed into a person’s trait cautiousness and cautiousness triggered by the char-

acteristics of an item.  

 

Applicability of Process Models for Complex Cognitive Tasks 

Only for about a decade have process models been used to model performance in 

complex cognitive tasks. Van der Maas et al. (2011) tested the diffusion model for a 

chess puzzle test, in which chess players had to find the best move for a given position 

on the board. The response data alone could be better explained by a 2PL as compared 

to the diffusion model. However, the drift rates were a slightly stronger predictor of 

chess elo (indicator of chess proficiency based on officially played matches) than the 
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responses. The same items were analysed by Ranger and Kuhn (2014) with their pro-

portional hazards race model, assuming one information accumulator and a second 

accumulator that reflects the tendency to discontinue. The race model could better 

predict elo than the standard hierarchical model or a 2PL for responses only. For a 

figural reasoning test with 12 items, two different tests of model fit showed good fit 

of the race model for 11 and 8 of the items, respectively. Ranger et al. (2015) proposed 

a race model with two accumulators following a bivariate Birnbaum Saunders distri-

bution. The model was applied to 15 items from the chess puzzle test and accounted 

well for the response time distributions in all but one item. The model parameters 

were equally good predictors of elo as compared to joint ability and speed from a 2PL 

for responses and a latent factor model for log response times. Notably, the accumu-

lator for correct responses was also moderately correlated with performance motiva-

tion. For gc (as assessed with a spelling test) van Rijn and Ali (2017) compared dif-

ferent adaptions of the diffusion model. The data were described better by a diffusion 

model with varying versus constant boundary separation across test items and when 

intertrial variation for non-decision time was included. Similarly, for a verbal analo-

gies test in a study by I. Kang et al. (2022), a diffusion model with random variability 

of starting point and drift rate performed best. In case of a matrix reasoning test inter-

trial variability of either starting point or drift rate improved the fit as well. Finally, 

Jin et al. (2023) for a proportional hazards race model and I. Kang et al. (2023) for a 

diffusion model, introduced an approach where residual dependencies between re-

sponses and response times are mapped onto the same latent space. Both reported 

reasonable reproducibility of the chess puzzle data based on model parameters. 

Goals and Motivation of this Study 

In conclusion, there is evidence that process models can be applied to complex cog-

nitive tasks and that the additional integration of response times may increase the pre-

dictive power of latent trait estimates. However, several challenges pertain to the pre-

viously presented studies. Firstly, all but three studies used the same data set to eval-

uate their model (van der Maas & Wagenmakers, 2005), since it contains the elo rat-

ings as an external criterion variable. And while undoubtedly complex, chess puzzling 

is not a typical test of intelligence and strongly dependent on training and experience. 

Secondly, there is a lack of clarity whether or how process models can be applied to 

tasks with different response formats. Previous research indicates that the response 

format of a cognitive test has no influence on the measured trait, however, this does 

not exclude the possibility of conceptually different problem-solving strategies as 

manifestations of the same underlying construct (Hohensinn & Kubinger, 2011, 

2016). Process models make theoretical assumptions concerning the cognitive pro-

cesses involved in solving a task that may or may not align with these different strat-

egies. For instance, van Rijn and Ali (2017) did not fit a diffusion model for tasks with 

multiple choice options or an open response format as they did not consider the ap-

proach suitable. In other studies, diffusions models or race models with two accumu-

lators have been applied to such tasks without discussing or testing their suitability. 

To cope with multiple choice options, van der Maas et al. (2011) suggested a 
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correction of the diffusion model that decreases drift rate estimates as the number of 

response options increases. This appears plausible only when test-takers employ pri-

marily response elimination strategies or when response alternatives are equally plau-

sible. Thirdly, both diffusion models and race models have been used for dissimilar 

test contents without much consideration regarding the cognitive processes involved. 

For instance, an information accumulation process seems appropriate for gf tests 

where a set of rules is inferred one-by-one. By contrast, gc tests require the retrieval 

of information from declarative long-term memory, and it is less certain that this also 

follows a sequential accumulation of evidence.  

Both gf and gc feature complex tasks and represent comprehensive cognitive abilities 

with a high predictive validity for diverse life and job outcomes. Process model ac-

counts of these abilities are particularly valuable from an assessment perspective, as 

they provide ability estimates that consider the influence of work pace and, to some 

extent, motivational factors. However, the applicability of process models for applied 

assessment purposes requires on the one hand that the models can describe the data 

sufficiently well, and on the other hand, that model-based traits are estimated reliably. 

Consequently, the first goal of the present study is to evaluate the adequacy of process 

models for describing data from different complex tasks. Based on the result, we give 

practical recommendations as to which type of model or parametrizations might be 

applied with reference to task characteristics. For this purpose, a diffusion model and 

a race model are compared to the purely statistical hierarchical model in terms of 

model fit. These model families have been the most popular approaches for the joint 

analysis of responses and response times in recent decades. They are applied to three 

tests of fluid intelligence and one knowledge test as a measure of crystallized intelli-

gence. While most gc measures focus on verbal abilities, it has been argued that tests 

of declarative knowledge are better suited indicators, because they can be more clearly 

distinguished from gf and general intelligence g (Schipolowski et al., 2014). Fluid 

intelligence was assessed with two figural matrix tests and a cube rotation test, both 

task types representing highly established measures of gf (Kyllonen & Kell, 2017; 

Lohman, 1996). Moreover, tests with figural task content exhibit the strongest corre-

lations with general fluid intelligence (Wilhelm & Schroeders, 2019). As the assump-

tions of process models are closely linked to the response format of the presented 

tasks, tests were selected that vary systematically in this respect. Specifically, one gf  

test applied a binary response format, one a multiple-choice format, and the last one 

an open response format. The models are evaluated with respect to fit to the intelli-

gence test data and with respect to the plausibility of the estimated parameters.  

The second goal of the present study is the analysis of psychometric properties of 

latent person parameters from the investigated process models. To this end, we esti-

mate and compare the person parameters and their respective standard errors for each 

model and intelligence test. Finally, the person parameters for two of the intelligence 

tests are related to self-reports of personality, working pace, and motivational factors. 
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Methods 

Intelligence Tests 

Exemplary items for each of the fluid intelligence tests are shown in Figure 2. Two 

tests are figural matrix tests featuring items from the open matrices item bank (OMIB, 

Koch et al., 2022). Test-takers are presented with a 3x3 Raven-type matrix, where 

each cell displays one or several simple geometric shapes. The shapes are arranged so 

that each row follows the same set of 6 possible rules, specifically addition, subtrac-

tion, disjunctive union, intersection, rotation, and completeness. Up to five rules per 

item are applied simultaneously. The last cell in the bottom row remains empty and 

must be filled according to the set of rules inferred from the previous rows. In the 

response construction format test-takers must assemble the missing cell using 20 con-

struction elements, each consisting of one geometric shape in a specific position. In 

the more conventional distractor format, test takers must choose from eight different 

response options: six display combinations of the geometric shapes in specific loca-

tions, one indicates that none of the six displayed solutions is correct, and another one 

indicates that the correct response is unknown to the test-taker. Distractors use the 

same geometric shapes that are depicted in the matrix but do not apply the rules cor-

rectly. All in all, 28 items had to be solved in the response construction format and 40 

items in the distractor format. 

The third gf test is a cube rotation test based on the cube construction test (Thissen et 

al., 2018). Test-takers are presented with three 3D images of the same cube from dif-

ferent perspectives. Each image shows three sides of the cube. One pair of images has 

two overlapping sides, one pair has one overlapping side, and the last pair has no 

overlap. Each side of the cube shows a simple geometric shape. The shape may be in 

the middle of the surface or in one of the four corners. Below the three 3D cube images 

an unfolded cube shows all six sides in one plane. Some sides of the unfolded cube 

surface may be blank and therefore non-informative. Test-takers are asked to decide 

whether the unfolded cube surface matches the 3D cube shown above or not. Test-

takers had to solve a total of 42 cube rotation items. 

Finally, the gc test is a knowledge test with questions from biology, chemistry, phys-

ics, and mathematics at the level of high school graduation. Test-takers are asked to 

choose one out of five response options by checking the adjacent box. An example is: 

“A peptide bond is a bond between an (A) ester bond, (B) C-C bond with unrestricted 

rotatability, (C) C-C double bond, (D) amide bond, (E) anhydride bond”. Test-takers 

were presented with 20 items.  
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Figure 2 

Exemplary Items for the Fluid Intelligence Tests 

 

Procedure 

Data for the present study stems from two independent samples. The first data set was 

available and deemed well-suited to test the models, the second was specifically col-

lected to complement this study. The first data set comprised the matrix construction 

test and the knowledge test and was collected as part of an online training session for 

the admission tests for German medical schools. Participation in the training was vol-

untary and not compensated. While the same items were presented to the whole 
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sample in case of the knowledge test, the matrix construction test was split into ten 

equally difficult subsets of 28 items each and randomly assigned to test-takers. For 

our analyses, only the subset with the largest sample size was analysed. The second 

data set comprised the matrix distractor test and the cube rotation test and was col-

lected in an unrelated online study conducted at a German university. During this 

study, participants also filled out a number of questionnaires. Specifically the HEX-

ACO-PI-R-100 (Lee & Ashton, 2018), German adaptions of the Short Boredom 

Proneness Scale (SBPS; Struk et al., 2017), the fatigue subscale of the Brunel Mood 

Scale (BRUMS; Terry et al., 2003), the Academic Boredom Scale (ABS-10; Acee et 

al., 2010), and self-constructed items to assess subjective speed-accuracy trade-off 

(e.g., “I tried to solve the tasks as carefully as possible, even if it took a little longer 

to get the result”). Descriptive statistics for the questionnaire data can be found in the 

supplementary materials (Table S1). The cube rotation test was administered before 

the matrix distractor test. After item 11 and item 25 of the matrix distractor test, the 

ABS-10 was presented as a measure of state boredom. Participation in the study was 

compensated with either course credits for Psychology students or 15 euros. For all 

tests response time in seconds was recorded from the presentation of an item until a 

confirmation button was pressed to log the response. Items were presented in a fixed 

order and, in case of the gf tests, with increasing complexity (i.e., number of combined 

rules).  

Data Preparation and Sample 

Two matrix distractor items and one matrix construction item were not displayed cor-

rectly and had to be removed. Furthermore, one knowledge item and four cube rota-

tion items were not considered for further analyses because of negative item-total cor-

relations. Data preparation and analyses were conducted independently for each intel-

ligence test, but according to the same protocol. Participants younger than 18 or older 

than 40 were excluded from the analyses. This is because speed of processing is sub-

ject to major age-related changes in adolescence and old age (e.g., Nettelbeck & 

Burns, 2010). Test-takers who did not respond to all test items were removed as well. 

Further exclusion criteria were log response times above or below 2.5 times the inter-

quartile range from the median for the respective item. However, due to the low-stakes 

setting of both study sessions there were many very fast inaccurate responses that 

were not marked as outliers by the said criterion. Consequently, test-takers that re-

sponded below six seconds for at least half of the items were excluded as well. Re-

maining responses times below six seconds and the respective responses were re-

moved. Six seconds was determined as the minimum amount of time to fully compre-

hend item requirements (e.g., read the question and response options of a knowledge 

item). Responses were coded dichotomously as either correct or incorrect. 

Of 355 persons solving at least one cube rotation item, n = 257 remained after apply-

ing the exclusion criteria listed above. Mean age within the sample was M(SD) = 

24.36(4.64), 67 % of the subjects were female and 72 % were students. In total 322 

test-takers solved at least one matrix distractor item. The final sample size after all 
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exclusions was n = 229 with a mean age of M(SD) = 24.32(4.54), 69 % female subjects 

and 72 % students. In the case of the matrix construction test 488 test-takers got pre-

sented with the subset of items analysed in the present study. After 303 exclusions, 

mostly due to incomplete responses, the sample size was n = 185. The subjects were 

on average M(SD) = 20.09(2.16) years old, and 85 % were female. Since the admis-

sion to medical school requires a high-school degree with excellent grades, the sample 

can be assumed to be well educated. The same applies to the subjects from the 

knowledge test. Here the final sample size after 1385 exclusions was n = 3142, 76 % 

female with a mean age of M(SD) = 20.31(2.44). 

Statistical Analyses 

Details concerning the modelling approaches are provided in the Appendix. All sta-

tistical analyses were conducted in R 4.4.0 (R Core Team, 2024). In a first step the 

three models were fit to responses and response times from the four intelligence tests 

using marginal maximum likelihood estimation (MML). In the MML approach item 

parameters are estimated by maximizing the likelihood function that has been inte-

grated over the latent traits. For details concerning MML with respect to the different 

models see Glas and van der Linden (2010) for the hierarchical model, Ranger et al. 

(2015) for race models, and Molenaar et al. (2015) for the diffusion model. Said stud-

ies also report good recovery of model parameters for sample sizes varying between 

96 and 317 test-takers. As the proportion of missing values was below 8 percent for 

all intelligence tests in the present study, no missing data techniques were applied. In 

a second step model fit was evaluated based on the Akaike Information Criterion 

(AIC; Akaike, 1974), the Bayesian information criterion (BIC, Schwarz, 1978), and 

the AIC corrected for small sample size (AICc; Hurvich & Tsai, 1989). Burnham and 

Anderson (2002) suggest the use of AICc instead of AIC when the ratio of sample 

size and number of parameters is below 40, which was the case for all data sets and 

fitted models. Subsequently, the MML item parameters were used to estimate the la-

tent person parameters in a traditional maximum likelihood approach. To assess ab-

solute model fit, person and item parameters were used to simulate response time dis-

tributions that were compared to the empirical distributions (conceptually similar to 

posterior predictive checks in a Bayesian framework, e.g. Klein Entink et al., 2009). 

As we were primarily interested if the models are suited to recover individual differ-

ences, we calculated the correlations of person-wise observed and predicted response 

time quantiles across items for correct and incorrect responses. Finally, the psycho-

metric properties of the trait estimates were examined. Reliability was evaluated based 

on standard errors. Further, correlations of the trait estimates with the questionnaire 

data were investigated for the data sets that comprised these correlates (i.e., the cube 

rotation and matrix distractor tests). 
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Results 

Table 1 shows the descriptive statistics for the intelligence tests. The difficulty of all 

tests was high with the proportion of correct responses ranging between MAcc(SD) = 

.43(.27) for the Matrix distractor test and MAcc(SD) = .70(.15) for the cube rotation 

test. With the exception of the cube rotation test (MRT(SD) = 27.15(18.28)) the average 

response times were comparable and only slightly below one minute. Internal con-

sistency for responses as well as response times was acceptable to excellent, even in 

the case of the knowledge tests with 19 items only. 

Table 1 

Descriptive Statistics for the Intelligence Tests 

 

Test n Items Responses Response times 

   MAcc (SD) ωAcc MRT (SD) ωRT 

Cube rotation 257 38 .70(.15) .76 27.15(18.28) .97 
Matrix distractor 229 38 .43(.27) .95 48.53(25.87) .96 
Matrix construction 185 27 .68(.25) .92 52.96(11.57) .87 
Knowledge 3142 19 .49(.19) .70 56.91(16.87) .82 

Note. Response time in seconds. Responses are proportion correct. ωAcc = McDonald's omega based on 

observed item mean accuracies . ωRT = McDonald's omega based on observed item mean response times. 

 

The results of the formal model comparison are presented in Table 2. The cube rota-

tion data with the binary response format were best described by the diffusion model. 

For all other tests it was the race model that best fit the data. However, since the race 

model was also the most complex one, the hierarchical model performed better ac-

cording to AICc and BIC in case of the matrix distractor test and according to AICc 

in case of the matrix construction test. The average trial-wise difference between the 

best- and worst-fitting model exceeded 6.82 points for each information criterion and 

intelligence test, providing strong evidence that one model fit the data better (Burn-

ham & Anderson, 2004). 
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Table 2 

Information Criteria for the Models with Respect to Data from the Four Intelligence 

Tests 

 

Test Information  
criterion 

Hierarchical 
model 

Race 
model 

Diffusion 
model 

Cube  
rotation 

AIC 37666 37823 37366 

AICc 38794 41725 38494 

BIC 38344 38636 38044 

−2LL −18642 −18683 −18492 

k 191 229 191 

Matrix 
distractor 

AIC 43514 43511 43773 

AICc 45496 –a 45756 

BIC 44170 44297 44429 

−2LL −21566 −21526 −21696 

k 191 229 191 

Matrix  
construction  

AIC 24382 23698 26429 

AICc 25158 26243 27206 

BIC 24820 24222 26867 

−2LL −12055 −11686 −13079 

k 136 163 136 

Knowledge 

AIC 344399 342311 355616 

AICc 344405 342319 355622 

BIC 344980 343007 356197 

−2LL −172103 −171040 −177712 

k 96 115 96 

Note. AIC = Akaike information criterion; AICc = Akaike information criterion corrected for small sample 
sizes; BIC = Bayesian information criterion. k = number of estimated parameters. aThe number of parame-

ters equals the sample size resulting in a negative value for AICc. 

 

The estimates of item parameters across test-items for all models and tests are pre-

sented in Figures S1 to S12. As expected, the item easiness parameter 𝑏𝑗 of the hier-

archical model decreased with increasing item complexity for all gf tests. However, 

only in case of the matrix construction test and to a smaller extent in the cube rotation 

test this was also associated with increasing item time-intensity β𝑗. For both measure-

ment models the discrimination parameters 𝑎𝑗 and α𝑗 increased across items of either 

gf test, the only exception being constant discrimination for the speed factor in the 

cube rotation test.  



 Krämer et al.  

 

104 

For the race model, fixed item drift rates for incorrect responses α0𝑗 increased across 

the cube rotation and matrix distractor tests. Not surprisingly, the fixed item drift rates 

for the content related accumulator β0𝑗 decreased with increasing complexity of items 

in all gf tests. In case of the knowledge test, drift rates for both accumulators were 

very heterogeneous but strongly related. For both matrix tests, a growing impact of 

the latent trait for the correct response accumulator α1𝑗 could be observed across 

items. The extent of random variation for both drift rates 𝑠𝜈1𝑗  and 𝑠𝜈0𝑗 as well as the 

effect of the latent trait for the incorrect accumulator β1𝑗 was of comparable magni-

tude for all tests. 

For the gf tests the fixed item drift rates of the diffusion model β0𝑗 decreased across 

items as well as the boundary separation parameter α0𝑗. Only for the matrix construc-

tion test, an increase of response caution with increasing complexity could be ob-

served. The other parameters of the diffusion model remained largely comparable 

across items in all tests. The response boundary parameter in the case of the 

knowledge test was very heterogeneous, but no trend emerged here either. 

The predictive checks are presented in Table 3. There were only small differences in 

the reproducibility of the response time distributions between correct and incorrect 

responses. And while generally predictions were more accurate around the median of 

the distributions, correlations of observed and predicted 0.1 and 0.9 quantiles did not 

deviate strongly. However, there were considerable differences between the models 

and intelligence tests. The diffusion model only made accurate predictions for the re-

sponse time distributions in the cube rotation test (.54 ≤ r ≤ .92). The hierarchical 

model and the race model revealed comparable fits, but the race model performed 

slightly better for all but the matrix construction test. Both models adequately repro-

duced the response time distributions for the cube rotation and matrix distractor test 

(.74 ≤ r ≤ .98) but did only moderately so in case of the matrix construction and 

knowledge test (.01 ≤ r ≤ .59). In particular fast correct responses in the matrix con-

struction test were not adequately predicted by either model.  
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Table 3 

Correlations of the Quantiles of Observed and Predicted Response Times  

Note. HM = Hierarchical Model, RM = Race Model, DM = Diffusion Model. Responses and response times 

were predicted based on the trait estimates for the actual test-takers. Quantiles were calculated person-wise 

across items. 

 

Table 4 shows the mean standard errors of the trait estimates on a standard normal 

scale. The difference score between the two race model trait estimates is also included, 

as it should directly relate to the proportion of correct responses in the tests and, con-

sequently, ability in a traditional sense. Generally, the reliability of trait estimates in 

this study was limited to a minimum of SE = 0.15. The estimates for the knowledge 

test were the least reliable (0.36 ≤ SE ≤ 0.71), corresponding with the smallest number 

of available items. The differences between gf tests were mostly negligible. Only for 

the cube rotation test, the ability parameter of the hierarchical model (SE = 0.52) and 

drift rate of the diffusion model (SE = 0.62) had particularly large standard errors. 

Likewise, differences between parameters were comparably small.  
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Table 4 

Mean Standard Errors of Estimated Trait Parameters  

 

Note. Trait estimates are on a standard normal distribution scale. θHM = hierarchical model ability, ωHM = 
hierarchical model speed, θRM = race model accumulator for correct responses, ωRM = race model accumu-

lator for false responses, θDM = diffusion model drift rate, ωDM = diffusion model response caution. 

 

Finally, we inspected the correlations of trait estimates for the cube rotation and ma-

trix distractor tests with questionnaire data (Table 5). While most correlations were 

negligible, state boredom and fatigue were weakly related to several trait estimates. 

In case of the cube rotation test this includes negative correlations with ability in the 

hierarchical model, drift rate in the diffusion model and the difference score in the 

race model. For the matrix distractor test, the correlation between state boredom and 

all trait parameters was consistently negative (−.35 ≤ r ≤ −.11), with the exception of 

the accumulator of false responses in the race model (r = .18). The subjective speed-

accuracy trade-off was not reflected in the response caution estimates. For both tests 

there were several weak correlations between trait estimates and personality factors. 

Notably, in case of the cube rotation test, there were associations of extraversion with 

latent speed (r = −.26), both traits in the race model (r = .26; r = .24), and response 

caution in the diffusion model (r = −.29). The same effects were observed to a lesser 

extent for the matrix distractor test. Here, neuroticism was negatively related to ability 

in the hierarchical model (r = −.20), and the difference score in the race model (r = 

−.16). 

 

 

 

 

 

 

Task Hierarchical model Race model Diffusion model 

 θHM ωHM θRM ωRM θRM-ωRM θDM ωDM 

Cube rotation 0.52 0.16 0.23 0.21 0.31 0.62 0.16 

Matrix distractor 0.32 0.16 0.36 0.15 0.40 0.27 0.19 

Matrix construction 0.32 0.20 0.32 0.28 0.41 0.22 0.34 

Knowledge 0.70 0.36 0.59 0.39 0.71 0.58 0.52 
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Table 5 

Correlations of Trait Estimates with Questionnaire Data 

 

Note. Mental fatigue was measured after the cube rotation1 and the matrix distractor2 tests, respectively. 
State boredom was aggregated across three measurement points during the matrix distractor task. Subjec-

tive SATO = self-reported speed-accuracy trade-off. θHM = hierarchical model ability, ωHM = hierarchical 

model speed, θRM = race model accumulator for correct responses, ωRM = race model accumulator for false 
responses, θDM = diffusion model drift rate, ωDM = diffusion model response caution. Correlations are cor-

rected for attenuation due to unreliability of the trait estimates using their mean standard errors.  

 

 

Questionnaire 
Hierarchical 

model 
Race model Diffusion model 

θHM ωHM θRM ωRM θRM-ωRM θDM ωDM 

 Cube Rotation Test 

Trait boredom −.11 −.09 .08 .09 −.02 −.13 −.08 

State boredom −.10 .04 −.07 .02 −.18 −.16 .02 

Subjective 
SATO 

.06 .09 −.09 −.10 .03 .07 .09 

Mental fatigue1 −.15 .00 −.03 .05 −.20 −.24 −.01 

Openness to 
experience 

.07 −.06 .08 .01 .15 .05 −.06 

Conscientious-
ness 

−.15 −.15 .14 .15 −.03 −.07 −.16 

Extraversion −.19 −.26 .26 .24 .05 −.11 −.29 

Agreeableness .03 −.06 .07 .02 .08 .03 −.03 

Neuroticism −.13 −.07 .05 .07 −.07 −.13 −.09 

 Matrix Distractor Test 

Trait boredom .02 −.07 .13 .05 .09 .03 −.05 

State boredom −.27 −.11 −.18 .18 −.35 −.27 −.15 

Subjective 
SATO 

.15 .09 .09 −.13 .22 .13 .13 

Mental fatigue2 −.27 −.14 −.11 .22 −.32 −.23 −.17 

Openness to 
experience 

.02 .00 .06 −.01 .08 .01 −.01 

Conscientious-
ness 

−.08 −.11 .14 .09 .07 −.09 −.11 

Extraversion −.13 −.14 .14 .14 .02 −.10 −.16 

Agreeableness .12 .02 .11 −.06 .17 .14 .02 

Neuroticism −.20 −.12 −.03 .14 −.16 −.14 −.08 
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Discussion 

The present study suggests considerable differences between the three models in terms 

of fit to data from intelligence tests. The diffusion model turned out to possess inferior 

fit when compared to the race model and the hierarchical model for all but the cube 

rotation test. This pattern may not necessarily reflect generally incorrect model as-

sumptions but result from the specific modelling choices in this study. For each of the 

three model families various extensions and alternative approaches of parametrization 

have been proposed. This study only considered the most basic versions of each model 

for several reasons. Firstly, the MML approach of parameter estimation is computa-

tionally intensive, making the subsequent testing of various alternative parameteriza-

tions a serious obstacle. Potentially, a hierarchical model with conditional dependen-

cies (e.g., Bolsinova et al., 2017), a race model with accumulators for each response 

option or a diffusion model with random inter-trial variation might offer better ac-

counts of the data. However, the higher complexity of these approaches also consti-

tutes a hurdle for their integration in applied diagnostic settings. Secondly, we chose 

models that could be fitted to all tasks at hand. For instance, the open response format 

for one of the figural matrix tests does not allow for a race model with more than two 

accumulators. Finally, all models fitted in this study were highly comparable with 

respect to complexity in terms of the number of parameters (five or six parameters for 

each item). Nevertheless, the restriction to specific parameterizations represent a lim-

itation of this study that will be further discussed in the following. 

For instance, no random variation of the parameters across trials was implemented in 

case of the diffusion model. This assumption might be violated in complex tasks 

where the task requirements are more heterogeneous across trials than in experimental 

paradigms. In fact, previous research has shown that allowing for random inter-trial 

variability can increase model fit (I. Kang et al., 2022). Another challenge when fitting 

the diffusion model may have resulted from constraining the non-decision time pa-

rameter to be no smaller than the fastest observed response time for the respective 

item. This makes sense from a theoretical perspective, since even a fast guess requires 

processes subsumed by the non-decision time parameter, like executing a motor re-

sponse. However, in the present study, data was pre-processed in a way that responses 

faster than six seconds were excluded. This artificial lower boundary might bias the 

estimation of non-decision time, and consequently of the other parameters. 

Taking into consideration that the race model revealed better fit in the absence of a 

non-decision time parameter, the relevance of non-decision time for modelling com-

plex tasks can be questioned. Non-decision time is assumed to capture the time for 

encoding and response execution, but both may play a relatively minor role in com-

plex tasks with average response times of 30 seconds and more. Further, the meaning 

of encoding is only vaguely defined. Given that this also comprises semantic or elab-

orative encoding in complex tasks, these processes may be hardly separable from 

those contributing to the information accumulation process. Encoding efficiency has 

been shown to be related to intelligence (for example Cusack et al., (2009), using a 
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change detection task), suggesting that encoding reflects cognitive abilities to some 

extent. Possibly, omitting the non-decision time parameter could help subsume all 

ability-related processes in the drift rate parameter.  

The comparably good fit of the diffusion model to the cube rotation test suggests par-

ticularities of this test that makes it suitable for diffusion model analyses. Specifically, 

this test had a binary response format, whereas all other tests required the binary re-

coding of multiple response alternatives as correct vs. false. This aggregation of (dis-

similar) incorrect response processes may not be warranted in some cases and deteri-

orate model fit. In the present study, negative drift rates were observed for multiple 

items in the matrix distractor and knowledge tests. However, when all incorrect re-

sponse alternatives are associated with the lower boundary, it remains open which 

processes actually result in the false response. Moreover, in the version using an open 

response format, a linear negative drift rate that describes consistent accumulation of 

wrong information is implausible from a theoretical stance. For example, a test-taker 

might infer four of five rules correctly but still respond incorrectly. Accordingly, the 

diffusion model was not suited to account for observed response time data from the 

matrix construction test. 

By contrast, the race model for binary (recoded) responses assumes that the two ac-

cumulation processes are executed simultaneously. Therefore, a high drift rate for the 

content related accumulator and an incorrect response do not mutually exclude each 

other. Importantly, the accumulator associated with incorrect responses has been sug-

gested to capture frustration. Such a process might well follow a linear trajectory if 

frustration continues to increase until the task is either solved or discontinued. This 

might even be the case for a knowledge test, where frustration increases with unsuc-

cessful retrieval of information. Furthermore, the accumulation of frustration is not 

directly related to the number of response options. For open response formats in par-

ticular, a race model with one content unrelated accumulator represents a useful ap-

proach, as accumulators cannot correspond with different response options. This flex-

ibility concerning the interpretation as well as the number of accumulators makes the 

race model more universally applicable as the diffusion model, from a theoretical per-

spective. The hierarchical model served as a reference for model fit in the present 

study. As expected, it fit the data from all four tests comparably well, while very little 

theoretical assumptions needed to be made regarding task processes and response for-

mat. However, the hierarchical model does not yield much benefit for pragmatic as-

sessment purposes, because its model parameters strongly overlap with classical per-

formance scores. 

We tested the capability of the models to reproduce observed data in terms of predic-

tive checks. The response time data from the cube rotation and matrix distractor tests 

could be replicated better than those of the matrix construction and knowledge tests. 

In case of the latter this is presumably due to item heterogeneity rather than charac-

teristics of the fitted models. In fact, the internal consistency of the knowledge test 

was the weakest of the four intelligence tests, likely due to the high content specificity 

of test items in the present study. A principal component analysis of the item responses 
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revealed a three-factor structure, potentially reflecting different knowledge domains. 

However, in case of the hierarchical model the measurement model for response times 

fit the data even worse as compared to the response model. This suggests that item 

response times in knowledge tests are only partially accounted for by a single under-

lying person characteristic. This begs the question to what extent latent trait models 

are suited for tests of content-specific knowledge. Concerning gc in general, van Rijn 

and Ali (2017) reported substantial misfit for a scoring rule model applied to a spelling 

test. However, I. Kang et al. (2022) found that a diffusion model adequately repro-

duced response time distributions in a verbal analogies test. While process models 

may generally offer a plausible account for gf tests that require the uptake, inference, 

and combination of task rules across time, the situation is less clear for gc tests. From 

a theoretical stance, it is not directly evident why search in declarative memory should 

follow a linearly increasing function across invested solving time. In fact, one might 

suspect that knowledge is either relatively early accessible (after minimal retrieval 

processes) or not. In line with this, Chen et al. (2018) consistently demonstrated for 

three knowledge tests that the probability of a correct response follows an inverse U-

shaped function. If process models should be applied to knowledge tests at all, it might 

be indicated to approximate the accumulation functions piecewise until a general pat-

tern (e.g., inverse U-shaped) emerges. 

The poorest model fit of all tests was obtained for the matrix construction test. The 

matrix construction test was also the only test where time intensity as well as item 

specific boundary separation increased with test duration. While such an increase in 

response caution due to increasing item complexity could be expected on theoretical 

grounds, it is unlikely that this is the sole cause in the present data. First, no increase 

in response caution was observed in the other two gf tests with forced choice re-

sponses, despite analogically increasing item complexities. Second, current literature 

suggests that response caution is more likely to generally decrease across trials of a 

test (Ranger et al., 2023). We suspect that the particularly pronounced increase in 

response times in the matrix construction test reflects to a large extent the increasingly 

time-intensive response construction due to a higher number of elements that have to 

be assembled for more complex items. In turn, the diffusion model may experience 

difficulty to adequately separate boundary separation and non-decision time, given 

that the latter parameter should subsume the said motor responses. In case of the race 

model, the longer response times presumably translate to lower drift rates of both ac-

cumulators, which showed a more negative trajectory across items as compared to the 

other gf tests. This hypothesis could be tested in future research by using a test with 

an open response format but faster entry of responses (e.g., typing a number). It should 

be noted, that differences in absolute model fit between tests could be related to the 

different samples and testing conditions. Specifically, the low-stakes training setting 

in case of the matrix construction and knowledge tests might have resulted in careless 

responding in some cases, which would deteriorate overall model fit. The same ex-

clusion criteria were applied to both data sets in order to ensure a certain degree of 

comparability. Nevertheless, the possibility of systematic differences in test-taking 

strategies or motivational factors in the two samples cannot be excluded. Varying 
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sample characteristics, for example concerning the age of test-takers, could be another 

factor potentially accounting for test differences.  

Another goal of this study was to evaluate the psychometric properties of the esti-

mated person parameters for diagnostic purposes. For the gf tests there were no sys-

tematic differences between models in terms of mean standard errors of the ability 

estimates θ. The only exception were higher standard errors for the ability parameter 

of the hierarchical model in case of the cube rotation test, most likely due to lower 

item discrimination. For the remaining models and tests the mean standard errors var-

ied around 0.2 to 0.3, which corresponds with confidence intervals of about one stand-

ard deviation on a standard normal scale and therefore a considerable amount of un-

certainty. As the even higher standard errors for the knowledge test with 19 items 

suggest, the reliabilities of all estimates are primarily limited by the low number of 

trials. However, substantially increasing the item numbers for the assessment of a sin-

gle ability is not feasible in diagnostic settings for reasons of time economy. This 

imposes a constraint on the applicability of process models for applied diagnostics.  

It would be desirable to validate the trait estimates using an external ability marker. 

In this study, only questionnaire self-reports of motivational states were available. As 

anticipated, fatigue and boredom were consistently, though weakly, correlated with 

the model parameters. Interestingly, their relationship with the correct response accu-

mulator was weaker than their relationship with the ability parameter in the hierar-

chical model. However, the correlations with the estimates for the incorrect response 

accumulator, that should primarily reflect the effects of frustration and other negative 

states, were barely stronger. In case of the diffusion model mostly the drift rate esti-

mates were related to low boredom and low fatigue. This might plausibly reflect re-

duced speed of information accumulation due to fatigue-induced working memory 

impairment (Ilkowska & Engle, 2010). Similarly, information accumulation may be 

hindered by interruptive non-decision processes, such as mind-wandering (Boehm et 

al., 2021), which is an aspect of boredom. It is of note that also the personality trait 

extraversion was related with generally faster or less cautious responding, potentially 

due to higher risk propensity (Nicholson et al., 2005). Based on the questionnaire data, 

it appears that process models only partially distinguish effective ability from moti-

vational factors. However, the relationships between model parameters and affective 

variables should be interpreted with caution, as they were empirically weak and could 

be reconciled with theory only indirectly. 

 

Conclusion 

This study investigated the relative fit of a hierarchical model, a race model and a 

diffusion model for complex cognitive tasks. It was shown that not all models are 

equally suited to describe data from typical tests of intelligence with different response 

formats. The diffusion model displayed adequate fit only to data from a gf test with a 

binary response format. While the race model and the hierarchical model seemed more 
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universally applicable, both failed to predict response times from a knowledge test 

and a gf test using a response construction format. The reliability of all trait estimates 

was compromised by the moderate number of trials in the intelligence tests. Finally, 

some of the model-based trait estimates displayed plausible relations in magnitude 

and direction to questionnaire data. 

The practical implications of this study are twofold: first, regarding the applicability 

of process models for the joint analysis of responses and response times in complex 

cognitive tasks, and second, regarding the usability of process model trait estimates 

for psychological assessment. Generally, even though the tested process models were 

originally developed for elementary tasks, they can be used to analyse data from tests 

of fluid intelligence. For the analysis of knowledge tests or other tests of crystallized 

intelligence we suggest model versions that do not assume linear accumulation of ev-

idence but curvilinear accumulation or those that approximate the accumulation func-

tions piecewise. Further considerations on the choice of model should be grounded in 

the response format. For a binary response format, diffusion modelling may be ade-

quate, for multiple choice formats a race model with two accumulators or one accu-

mulator per response option might be better suited. Finally, regarding parametrization, 

we suggest to critically review the necessity of a non-decision time parameter. Fur-

thermore, if sufficient unique data points are available, the models might profit from 

allowing drift rate parameters, and potentially boundary separation or starting point 

parameters, to randomly vary across trials. 

In applied diagnostic settings, tests of general intelligence, that include a wide variety 

of task types, are prevalent. For economic reasons the number of trials per task is often 

limited. This poses a challenge for trait estimates derived as parameters from process 

models, as the low number of trials can result in compromised reliability. However, 

for adaptive testing or narrower tests of cognitive ability with few scales of sufficient 

length, process modelling might be a promising approach. Validity of the trait param-

eters could not be conclusively addressed in this study. Further studies should include 

suitable external criteria to this end. 
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Appendix 

We will now briefly present the exact version of each model applied in the present 

study. For none of the four intelligence tests a 3PL model explained the response data 

considerably better than a 2PL model, therefore the latter was chosen for the hierar-

chical model. In the 2PL model, the probability of a correct response of the test-taker 

i with ability θ𝑖 on item j is  

𝑝(𝑥𝑖𝑗 = 1|θ𝑖 , 𝑏𝑗 , 𝛼𝑗) = 𝐿 (𝑎𝑗(θ𝑖 + 𝑏𝑗)). (1) 

The parameters 𝑎𝑗 and 𝑏𝑗 represent item discrimination and easiness, 𝐿 is the logistic 

distribution function. The second measurement model is a log-normal model  

𝑓(𝑡𝑖𝑗|ω𝑖 , α𝑗 , β𝑗) =
1

√2πσ𝑗𝑡𝑖𝑗

exp [−
1

2σ𝑗
2 (log(𝑡𝑖𝑗) − (β𝑗 − α𝑗ω𝑖))

2
], (2) 

where the response times 𝑡𝑖𝑗 of the test-taker are determined by latent person speed 

ω𝑖, a parameter β𝑗 reflecting item time-intensity, and the reciprocal standard deviation 

σ𝑗
−1 of the log response times, reflecting item discrimination. The parameter α𝑗 is the 

regression coefficient for the relationship of item j with the latent speed factor, indi-

cating discrimination as well. On the second level of modelling the joint distribution 

of responses, response times, and latent traits across J items of a test is given by   

𝑓(𝑥, 𝑡, θ, ω) =  ∏ 𝑓(
𝐽
𝑗 = 1 𝑥𝑗|θ)𝑓(𝑡𝑗|ω)𝑓(θ, ω). (3) 

Here, 𝑓(θ, ω) denotes a multivariate normal distribution, 𝑓(𝑥𝑗|θ) and 𝑓(𝑡𝑗|ω) follow 

from equations (1) and (2). 

For the race model, a version with two accumulators was chosen. This means that the 

accumulator for incorrect responses either represents the accumulation of frustration 

(see Ranger & Kuhn, 2014) or the accumulation of evidence for several incorrect re-

sponse options at once. The defective density of response times for correct responses 

in this race model is  

𝑓(𝑥𝑖𝑗 = 1, 𝑡𝑖𝑗|𝜈1𝑖𝑗 , 𝜈0𝑖𝑗 , 𝑠𝜈1𝑗 , 𝑠𝜈0𝑗 , 𝑏) =
1

𝑡𝑖𝑗𝑠𝜈1𝑗
ϕ (log (

𝑡𝑖𝑗

𝑏
) +

𝜈1𝑖𝑗

𝑠𝜈1𝑗
)) 

 [1 − 𝛷 (
𝑙𝑜𝑔(

𝑡𝑖𝑗

𝑏
)+𝜈0𝑖𝑗

𝑠𝜈0𝑗
)]. 

(4) 

The density for incorrect responses follows from equation (4) by exchanging the pa-

rameters of the two accumulators. The parameter Φ is the normal distribution function 

and ϕ its density. The parameters 𝜈1𝑖𝑗  and 𝜈0𝑖𝑗  represent the expected values for the 

drift rates of the correct and incorrect accumulator, which vary randomly across trials 

according to a lognormal distribution 
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log(𝜈1𝑖𝑗) ~ 𝑁(β1𝑗θ𝑖 − β0𝑗 , 𝑠𝜈1𝑗) (5) 

log(𝜈0𝑖𝑗) ~ 𝑁(α1𝑗ω𝑖 − α0𝑗 , 𝑠𝜈0𝑗). (6) 

The drift rates were separated into person and item components. The parameters β0𝑗 

and α0𝑗 determine the drift rates for test-takers with average traits, therefore repre-

senting fixed item effects. The item-specific relationship between the traits and the 

drift rates is captured in the parameters  β1𝑗 and α1𝑗. Similar to the hierarchical model 

we assumed dependencies of responses and response times to be conditional on the 

multivariate normal distribution of the latent traits with the correlation matrix 𝑅θ,ω. 

There is no bias in the starting points of the drift. This is because in non-experimental 

settings featuring complex tasks there is no straightforward interpretation of bias, es-

pecially so when one accumulator represents multiple response options. Therefore, 

the distance either accumulator needs to pass is determined solely by the response 

threshold 𝑏, which has to be fixated on a constant value in the present model. 

The joint density of responses and response times in the diffusion model is given by 

𝑓(𝑥𝑖𝑗 , 𝑡𝑖𝑗|θ𝑖 , ω𝑖 , α𝑗 , β𝑗 , 𝑑𝑗) =
π

𝑎𝑖𝑗

exp [𝑎𝑖𝑗𝑣𝑖𝑗 (𝑥𝑖𝑗 −
1

2
) −

𝜈𝑖𝑗
2

2
(𝑡𝑖𝑗 − 𝑑𝑗)] 

∑ 𝑘 sin (
1

2
π𝑘) exp [−

π2𝑘2

2𝑎𝑖𝑗
2 (𝑡𝑖𝑗 − 𝑑𝑗)]∞

𝑘 = 1 , 

(7) 

where non-decision time 𝑑𝑗 is treated as a fixed item parameter and constraint to be 

no smaller than the smallest observed response time for the respective item. Boundary 

separation 𝑎𝑖𝑗  and drift rate 𝑣𝑖𝑗  were separated into person and item components 

log(𝑎𝑖𝑗) = α1𝑗ω𝑖 − α0𝑗  (8) 

𝜈𝑖𝑗 = β1𝑗θ𝑖 − β0𝑗 (9) 

The logarithm applies a positive constraint for the boundary separation. Considering 

the high complexity of the intelligence tests, no positive constraint was applied to the 

drift rate. This model is also unbiased, meaning there is no shift towards either re-

sponse option for any item. Conditional independence was assumed for the diffusion 

model as well, the latent traits following a multivariate normal distribution with 𝑅θ,ω. 

All in all, five parameters had to be estimated per item in case of the hierarchical 

model(𝑎𝑗 , 𝑏𝑗 , α𝑗 , β𝑗 , σ𝑗) and the diffusion model (α1𝑗, β1𝑗 , α0𝑗 , β0𝑗, 𝑑𝑗), and six in case 

of the race model (α1𝑗 , β1𝑗 , α0𝑗, β0𝑗 , 𝑠𝑣1𝑗 , 𝑠𝑣0𝑗).  
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Supplements 

Table S1 

Descriptive Statistics and Correlations of Questionnaire Data 

Questionnaire M SD Min Max 1. 2. 3. 4. 5. 6. 7. 8. 9. 

1. Trait Boredom 2.93 1.26 1.00 6.88          

2. State Boredom 4.92 1.60 1.00 7.00 .12         

3. Subjective SATO 4.27 1.09 1.40 7.00 −.04 −.27        

4. Mental Fatigue1 4.24 1.45 1.00 7.00 .19 .43 −.14       

5. Mental Fatigue2 5.00 1.80 1.00 7.00 .12 .72 −.22 .65      

6. Openness to Ex-

perience 
4.04 0.66 2.13 6.00 −.03 −.12 .21 −.06 −.08     

7. Conscientious-

ness 
4.21 0.87 2.50 6.69 −.07 −.15 .45 −.06 −.16 .22    

8. Extraversion 4.03 0.66 2.13 5.88 −.27 −.04 .09 −.02 −.06 .19 .31   

9. Agreeableness 3.98 0.63 1.75 5.75 −.03 −.19 .22 −.09 −.15 .17 .25 .21  

10. Neuroticism 4.23 0.73 2.25 6.75 .13 .17 .26 .12 .13 .14 .26 .10 .02 

Note. Mental fatigue was directly assessed after the respective tests, i.e., after the cube rotation1 and matrix 

distractor2 tests. State boredom was aggregated across three measurement points during the matrix distrac-
tor test. The other self-reports were assessed once at the beginning or at the end of the study. Subjective 

SATO = self-reported speed-accuracy trade-off. 

 

Figure S1 

Estimates for the Hierarchical Model Across Items of the Cube Rotation Test 
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Figure S2 

Estimates for the Hierarchical Model Across Items of the Matrix Distractor Test 

 

Figure S3 

Estimates for the Hierarchical Model Across Items of the Matrix Construction Test 
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Figure S4 

Estimates for the Hierarchical Model Across Items of the Knowledge Test 

 

Figure S5 

Estimates for the Race Model Across Items of the Cube Rotation Test 
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Figure S6 

Estimates for the Race Model Across Items of the Matrix Distractor Test 

 

Figure S7 

Estimates for the Race Model Across Items of the Matrix Construction Test 
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Figure S8 

Estimates for the Race Model Across Items of the Knowledge Test 

 

Figure S9 

Estimates for the Diffusion Model Across Items of the Cube Rotation Test 
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Figure S10 

Parameter Estimates for the Diffusion Model Across Items of the Matrix Distractor Test 

 

Figure S11 

Parameter Estimates for the Diffusion Model Across Items of the Matrix Construction Test 
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Figure S12 

Parameter Estimates for the Diffusion Model Across Items of the Knowledge Test 

 

 

 

 

 


