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The impact of ignoring the partially 
compensatory relation between ability 
dimensions on norm-referenced test scores 
Janine Buchholz1 & Johannes Hartig2 

Abstract 
The IRT models most commonly employed to estimate within-item multidimensionality are com-
pensatory and suggest that some dimensions (e.g., traits or abilities) can make up for a lack in others. 
However, many assessment frameworks in educational large-scale assessments suggest partially 
compensatory relations among dimensions. In two Monte-Carlo simulation studies we varied the 
loading pattern, the latent correlation between dimensions and the ability distribution to evaluate the 
impact on test scores when a compensatory model is incorrectly applied onto partially compensatory 
data. Findings imply only negligible effects when true abilities are bivariate normal. Assuming a 
uniform distribution, however, analyses of differences in test scores demonstrated systematic effects 
for specific patterns of true ability: High abilities are largely underestimated when the other ability 
required to solve some of the items was low. These findings highlight the necessity of applying the 
partially compensatory model under data conditions likely to occur in educational large-scale assess-
ments. 
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Educational large-scale assessments (LSAs) such as the Programme for International Stu-
dent Assessment (PISA), Trends in International Mathematics and Science Study 
(TIMSS), and Progress in International Reading Literacy Study (PIRLS) play an im-
portant role in the national and international research and policy landscape (Rutkowski, 
Rutkowski & von Davier, 2014), and their number is expected to be yet increasing (Ka-
mens & McNeely, 2010). For analyzing data from such assessments, item response theory 
(IRT) has become the primary tool. The individual assessment programs differ in the 
choice of the particular IRT model depending on the number of observed response cate-
gories and item parameters to be estimated (Berezner & Adams, 2017). Another criterion 
for model choice is the dimensionality of the latent construct. For example, in PISA 2009 
in which reading represented the major domain of the assessment, items were developed 
to measure subscales representing three aspects of reading competence (‘access and re-
trieve’, ‘integrate and interpret’, and ‘reflect and evaluate’; OECD, 2010). In addition to 
such multidimensionality on the test level (or ‘between-item multidimensionality’: Adams, 
Wilson, & Wang, 1997), multidimensionality may also occur on the item level (‘within-
item multidimensionality’). In fact, most items in ability and achievement tests can be 
considered to be multidimensional in nature (Embretson & Yang, 2006). For example, the 
items of the German Educational Standards in Mathematics (KMK, 2004) are each indic-
ative of both a content-related (e.g., ‘numbers’, ‘space and shape’) and a process-related 
view (e.g., ‘modeling’, ‘communicating’) of mathematical competence (Mikolajetz, 
2017). For such multidimensional items, the question arises on how to integrate the mul-
tiple dimensions in order to predict the probability of success on such an item. Two re-
spective classes of multidimensional IRT (MIRT) models can be distinguished: linear 
compensatory (eq. 1, in the following ‘M2PL’) and multiplicative partially compensatory 
models (eq. 2, in the following ‘PC2PL’; Reckase, 2009; Sympson, 1978; Whitely, 1980). 
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In both equations, 𝑃"𝑋$% = 1( represents the probability of success for person j on item i 
in the two-dimensional case, i.e., for an item that measures two dimensions simulta- 
neously. In equation 1, every combination of 𝜃%8 and 𝜃%9 that yields the same sum will lead 
to an identical prediction. For example, both the combinations of 𝜃%8 = 0, 𝜃%9 = 0 and 
𝜃%8 = +3,𝜃%9 = −3 lead to equal sums when discriminations are held constant. In the lat-
ter example, the high value of 𝜃%8 makes up for the low value of 𝜃%9, thus illustrating the 
M2PL’s compensatory nature. In the PC2PL (eq. 2), in contrast, the item is decomposed 
into components and a unidimensional model is applied to each of them. The overall prob-
ability of a correct response cannot exceed the maximum probability of success on one of 
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its components. In other words, as soon as success on one part (e.g. a cognitive task in a 
test item) is unlikely, success on the item as a whole is modeled to be unlikely. The two 
models are illustrated by the surface plots in Figure 1, with the surface representing the 
predicted probability of success for every combination of ability levels, 𝜃 (theta). The 
models’ predictions differ most in cases with opposing theta levels (e.g. 𝜃8 = +3 and 𝜃9 =
−3), i.e., in the degree to which the models allow for compensation.  
 

  
Figure 1:  

Response surface plots illustrating the predicted probability of success, 𝑃(𝑥 = 1), as a func-
tion of 𝜃8 and 𝜃9 for the M2PL (left; 𝑎1 = 𝑎2 = 1.3, 𝑏 = 0) and the PC2PL (right; 𝑎1 =

𝑎2 = 1.3, 𝑏1 = 𝑏2 = 0). 
 
Apart from their implications for the relation between abilities and correct responses, the 
models also differ in quantity and meaning of their difficulty parameter: Whereas the 
M2PL’s parameter refers to the location in the theta space where the test item is most 
discriminating (Reckase, 1985), the PC2PL’s parameters refer to the unidimensional dif-
ficulties for each part of the item (e.g., a cognitive task required in the solution process). 
In order to yield validity evidence based on internal structure (AERA, APA, & NCME, 
2014), psychometric models must reflect theoretical assumptions about the model struc-
ture. In case of a MIRT model, this requirement extends to the interplay between the mul-
tiple dimensions. As a result, a partially compensatory model should be employed as soon 
as multiple abilities are required simultaneously in order to solve an item. For example, a 
mathematical word problem requires the examinee to exhibit both numeric ability for solv-
ing the mathematical part and verbal ability for decoding the written text. The probability 
of a correct response declines as soon as one of the abilities (e.g. reading) is low, regardless 
of the level on the other dimension (e.g., mathematical competence). Although there are a 
number of assessment frameworks in educational testing in which the measured dimen-
sions only allow for little or no compensation (e.g. KMK, 2004; NCTM, 2000; OECD, 
2010; Grønmo, Lindquist, Arora, & Mullis, 2013; Jones, Wheeler, & Centurino, 2013), 
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the compensatory M2PL is most commonly employed (Babcock, 2011). One reason might 
be the PC2PL’s computational burden as estimation procedures have been rarely imple-
mented in readily-available software (Babcock, 2011; Bolt & Lall, 2003).  

Research interest 

The two MIRT models for within-item multidimensionality described above differ with 
respect to their assumptions about the interplay between the dimensions of the measured 
constructs. A mismatch between a researcher’s theoretical assumptions and the model’s 
implications is therefore likely to affect the person parameter estimates resulting from the 
selected model and consequently the test scores derived from those estimates. This may 
lead to invalid test score interpretations and inferences. However, it appears that these 
effects have not been investigated yet, and we therefore aim to evaluate the magnitude of 
differences in persons’ test scores when an existing partially compensatory relation among 
dimensions is ignored and a compensatory MIRT model is applied instead. Note that the 
focus of this study is not to investigate the recovery of true ability parameters, but to ex-
amine the differences of the relative position within a norm-referenced distribution of test 
scores derived from MIRT scaling. Such norm-referenced test scores, comparing an indi-
vidual ability estimate to a population distribution, are common in both individual achieve-
ment testing and large-scale assessments. For example, test scores for intelligence are typ-
ically reported on a scale with a mean of 100 and a standard deviation of 15, and PISA 
scores are reported on a scale with a mean of 500 and a standard deviation of 100 across 
OECD countries (e.g. OECD, 2017). 
We conducted two Monte Carlo simulation studies. Study 1 investigates differences in 
persons’ test scores resulting from incorrectly applying the M2PL in an overall sample of 
normally distributed abilities. Study 2, in contrast, focuses on differences in persons’ test 
scores for a specific subpopulation characterized by a certain combination of true abilities 
for which the models are expected to differ most (cf. Figure 1). Throughout both simula-
tion studies, we will illustrate the findings in the context of an assessment of mathematical 
competence. Consider the framework provided by the German Educational Standards in 
Mathematics for Secondary Education (KMK, 2004) introduced above. According to this 
framework, persons can be described along a latent continuum on each of 11 dimensions, 
five dimensions representing the content-related view of mathematical competence and 
six dimensions representing the process-related view. Items were developed to simultane-
ously measure one dimension of the two views each, an example being items aiming to 
measure both ‘space and shape’ (content) and ‘communicating’ (cognitive process). These 
two subdimensions of mathematical competence have been found to correlate on a mod-
erate level only (𝜌 = .39:	Mikolajetz, 2017) which implies that there are examinees with 
one ability being high and one being low. Non-native speakers (English Language Learn-
ers, ‘ELLs’) with low (English) language proficiency (‘ELP’) for example, struggling with 
the test language, may have trouble communicating their mathematical findings despite 
their ability to solve mathematical problems (e.g., Martiniello, 2009). Yet, both abilities 
are required for solving such items, and it cannot be expected that these abilities can 
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compensate for each other. A partially compensatory model (PC2PL) should therefore best 
reflect the theoretical assumptions about success on such items. 

Study 1 

In this first study, the impact on test scores resulting from incorrectly applying the M2PL 
is investigated under data conditions we consider to be typical for educational assessments. 
As such, we assumed a test measuring two correlated abilities that follow a bivariate nor-
mal distribution and we varied two factors across six conditions.  
 

Method 

Data generation. In a Monte-Carlo simulation study, dichotomous responses to a 45-item 
test were generated under a two-dimensional 2PL model containing both unidimensional 
indicator items for each dimension (eq. 3) and multidimensional partially compensatory 
items (eq. 2). Forty-five items may be regarded as a typical test length for major domains 
in educational LSAs. For example, the 13 booklets in PISA 2012 contained between 11 
and 62 mathematics items. 
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Latent abilities were generated from a multivariate normal distribution 𝜃~𝒩(𝟎,𝚸) with 
variances (diagonal elements of 𝚸) of one and correlations between dimensions (off-diag-
onal elements of 𝚸) depending on the simulation condition (see below).  
For unidimensional items (eq. 3), difficulty parameters (𝑏$) were drawn from a uniform 
distribution in the interval [-3,3], and discrimination parameters (𝑎$) were drawn from a 
log normal distribution with the parameters [ln(1),0.1]. For five multidimensional items 
(eq. 2), difficulty parameters were drawn from a normal distribution with 𝑀 = −1.0 and 
𝑉𝑎𝑟 = 1.5, and discrimination parameters were drawn from a log normal distribution with 
the parameters [ln(1.5),0.1] to represent well-constructed, partially compensatory items 
covering the whole range of abilities. We duplicated this set of five items one, three or five 
times, respectively, depending on the simulation condition (see below). Figure 2 displays 
these item parameters as well as the resulting response surfaces. 
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Item 
Parameter 

surface plot 
b1 a1 b2 a2 

1 -1.357 1.998 -1.649 0.935 

 

2 0.107 1.378 -2.625 1.831 

 

3 -2.971 1.254 -1.089 1.746 

 

4 -0.294 0.951 -0.083 1.100 

 

5 -0.485 1.919 0.446 1.888 

 

Figure 2. 
Item difficulty (𝑎) and discrimination (b) parameters as well as corresponding response 

surface plots for five multidimensional items generated under the PC2PL. This set of items 
was duplicated 1, 3 and 5 times for the simulation conditions with 11, 33 and 56% of items 

being multidimensional, respectively. 
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Simulation factors. We manipulated (a) the magnitude of the correlation between the two 
dimensions, 𝜌, and (b) the proportion of multidimensional items within the test, PMI. For 
(a), we expect the latent correlation to cause differences in test scores because it determines 
the location of cases along the two-dimensional latent space. Under high positive correla-
tions, hardly any cases will be located in the corners of the latent space for which the two 
models make differential predictions (cf. Figure 1). Therefore, we varied the latent corre-
lation to be either low (𝜌 = 0.3) or high (𝜌 = 0.7) and hypothesize that the differences in 
test scores between the two models are most pronounced when the latent correlation is 
low. More specifically, for low correlations, differences occurring under the data-generat-
ing PC2PL should be smaller than when the M2PL is estimated. When the latent correla-
tion is high, we expect no differences between the two models. For (b), we expect that 
differences in test scores increase with an increase in PMI. That is, the more multidimen-
sional items in a test, the higher the effect of the model violation should be. We manipu-
lated PMI on the levels of 11, 33 and 56% (i.e., 5, 15 and 25 items of the 45-item test, 
respectively), in order to represent a wide range and allow for a thorough investigation of 
the pattern in differences associated with this simulation factor. The simulation design, 
thus, contained 2 × 3 = 6 conditions in total. Across conditions, sample size was held 
constant at 𝑁 = 2000, and each condition was replicated 100 times.  
Dependent variables. Using these simulated data, we estimated both the M2PL (eq.1) and 
PC2PL (eq. 2) with the Metropolis–Hastings Robbins–Monro (MH-RM) estimation algo-
rithm (Chalmers & Flora, 2014) in the R package mirt (version 1.26.3; Chalmers, 2012; R 
Core Team, 2018). For an estimate of person ability, 𝜃, we used EAPs with a multivariate 
normal prior distribution. The EAP estimates were standardized (𝑀 = 0, 𝑉𝑎𝑟 = 1) to de-
rive norm-referenced test scores. 
We prepared our findings in terms of (a) model fit and (b) differences in test scores. For 
(a), we calculated the percentage of replications in which the model fit indices AIC and 
BIC, respectively, favor the data-generating PC2PL. For (b), we used the standardized test 
scores and computed the squared difference between the test scores and the latent abilities 
used for data generation. Note that the latent abilities were also generated with 𝑀 = 0 and 
𝑉𝑎𝑟 = 1. Therefore, the squared differences reflect the shift of an examinee’s norm-refer-
enced test score relative to his or her true position in the sample distribution. 

Results 

Model estimation terminated normally across almost all conditions and replications. The 
proportion of replications without convergence (after 5000 iterations) varies across condi-
tions between 0% and 3% for the M2PL, and 0% and 9% for the PC2PL, respectively. The 
highest proportion occurred in the condition with ρ = 0.7 and 𝑃𝑀𝐼 = 33. Subsequent re-
sults are based on successful replications only. Estimation times differed by a factor of up 
to 6.2 in favor of the M2PL, highlighting the computational demands on estimation im-
posed by the PC2PL using the R package mirt.  
Model Fit. Figure 3 illustrates the results for model fit. Across all conditions, the AIC 
indicated superior model fit for the data-generating PC2PL over the M2PL more often than 
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the BIC did. More specifically, the AIC’s ability to identify the correct model was best 
under low correlations (99 to 100%) as opposed to high correlations (60 to 73%). At the 
same time, its performance was rather similar across the different levels of PMI. The BIC’s 
ability to detect the better fitting model, however, appears to be affected by both latent 
correlation and PMI. The BIC never identified the PC2PL over the M2PL when the latent 
correlation was high (0%). Under low correlations, it only detected the correct model when 
PMI was low (81%) or medium (25%) but never when PMI was high (0%). The weak 
performance of the BIC can be explained by the fact that the penalty term for the number 
of model parameters is larger for BIC than AIC. The more multidimensional items, the 
more parameters have to be estimated in the PC2PL and as a result, the better the data must 
be described by the model in order for the BIC to indicate superior model fit. Especially 
when both the latent correlation and the proportion of multidimensional items were high, 
the differences between the models become negligible so that the additional model param-
eters in the PC2PL were not necessary to better represent the data.  
 

 
Figure 3: 

Results for model fit as the percentage of replications in which AIC (left) and BIC (right), re-
spectively, favor the PC2PL. 

 
Differences in test scores. Table 1 shows the average squared differences between test 
score and true ability for both dimensions conditional on the model used and the simulation 
condition. Across conditions, differences resulting from the application of the data-gener-
ating PC2PL are similar or smaller than those resulting from application of the M2PL. As 
expected, the differences are most pronounced when either the latent correlation was low 
and/or the proportion of multidimensional items was high. For example, with 𝜌 = .3 and 
𝑃𝑀𝐼	 = 	56%, the mean squared difference on dimension 1 is 0.293 under the M2PL and 
only 0.278 under the PC2PL. When both the correlation was high (𝜌 = .7) and the propor-
tion of multidimensional items was low (𝑃𝑀𝐼 = 11%), the mean squared differences are 
about the same (0.202 on dimension 1 for both the M2PL and PC2PL).  
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Table 1: 
Squared difference between test score θU and true ability θ: Mean and SE for both models 

and both dimensions conditional on the simulation condition. 

ρ PMI dimension 1 dimension 2 
M2PL PC2PL M2PL PC2PL 

.3 11% 0.249 
(0.001) 

0.244 
(0.001) 

0.265 
(0.001) 

0.260 
(0.001) 

 33% 0.194 
(0.001) 

0.194 
(0.001) 

0.202 
(0.001) 

0.202 
(0.001) 

 56% 0.204 
(0.001) 

0.194 
(0.001) 

0.273 
(0.001) 

0.261 
(0.001) 

.7 11% 0.161 
(0.001) 

0.162 
(0.001) 

0.198 
(0.001) 

0.202 
(0.001) 

 33% 0.204 
(0.001) 

0.192 
(0.001) 

0.293 
(0.001) 

0.278 
(0.001) 

 56% 0.140 
(0.000) 

0.141 
(0.000) 

0.212 
(0.001) 

0.215 
(0.001) 

Note. ρ = latent correlation between dimensions, PMI = proportion of multidimensional items. Standard 
errors (SE) are reported in brackets. Both 𝜃U and 𝜃 were z-standardized. 

 
Taken together, only small differences with respect to model fit and test scores between 
the models existed when true abilities were distributed bivariate normal, and the effect 
becomes even negligible when dimensions correlate highly, regardless of the proportion 
of multidimensional items. In the example of the mathematics assessment introduced 
above, the dimensions ‘space and shape’ and ‘communicate’ correlated on a moderate 
level (𝜌 = .39, Mikolajetz, 2017). The biasing effect of model choice on scores for math-
ematical competence would not have been too strong overall, even when more than half 
of the items had been word problems. Since correlations in educational LSAs are often 
times found to be even higher than that, the study implies negligible impact of model vio-
lations on persons’ test scores.  

Study 2 

Study 1 demonstrated the overall impact of applying the simpler, yet incorrect compensa-
tory model on test scores to be small to negligible. However, findings suggest a larger 
impact with an increase in the number of multidimensional items as well as with a decrease 
in the latent correlation. Under small correlations, some of the examinees are located in 
the corners of opposing theta levels (e.g. 𝜃8 = +3 and 𝜃9 = −3), for example ELLs that 
are highly able in mathematics. The objective of Study 2, therefore, is to evaluate the dif-
ferences in test scores that result from incorrectly applying the M2PL specifically for those 
examinees in the corners of the latent space (cf. Figure 1). Again, we will frame our find-
ings by using the example of ELLs with low ELP but high mathematical competence tak-
ing a mathematics assessment with items that require both of these two abilities simulta-
neously.  



J. Buchholz & J. Hartig 378 

Method 

In contrast to Study 1, our primary research interest in Study 2 is in the score differences 
for specific subgroups, conditional on their true ability level. We therefore refrained from 
manipulating data conditions but generated a larger sample instead. In particular, we had 
to make sure to generate a sufficient set of cases with high levels on one and low levels on 
the other dimension. 
Procedure. The Monte-Carlo simulation study consists of two steps: We first analyzed 
response data based on bivariate normal abilities with both PC2PL (eq. 1) and M2PL (eq. 
2) in order to obtain item parameters for each of the two models; we then used these item 
parameters to analyze the response data based on uniformly distributed abilities with both 
PC2PL and M2PL. 
In the first step, dichotomous responses for 𝑁 = 100,000 simulees taking a 45-item test 
were generated under the PC2PL. Figure 4 gives a schematic representation of the simu-
lated loading pattern: Ten items each were unidimensional indicators for the two dimen-
sions (‘M’ for items that measure mathematical competence, ‘E’ for items that measure 
ELP; eq. 3), and twenty-five of the items were within-item multidimensional and pursued 
a partially compensatory relationship among their dimensions (i.e., mathematical word 
problems that measure both dimensions simultaneously; ‘ME’; eq. 2), thus corresponding 
to a PMI of 56%. We therefore used the item parameters of the corresponding simulation 
conditions in Study 1 (cf. Figure 2). Latent abilities were generated from a multivariate 
normal distribution 𝜃~𝒩(𝟎,𝚸) with variances (diagonal elements of 𝚸) of one and corre-
lations between dimensions (off-diagonal elements of 𝚸) of 0.3. Study 2, therefore, corre-
sponds to the simulation condition with 𝑃𝑀𝐼	 = 	56% and 𝜌 =	 .3 in Study 1, i.e., the 
condition for which the largest impact on test scores was found. These data were then 
analyzed under both the PC2PL (eq. 2) and the M2PL (eq. 1) using the MH-RM estimation 
algorithm, i.e., assuming an underlying normal distribution of thetas.  
 

 
Figure 4: 

Loading pattern for the data generating model (Study 2) with M representing items that 
measure mathematical competence, E representing items that measure ELP, and ME repre-

senting mathematics items that require an extensive amount of ELP. 
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In the second step, we simulated response data based on a bivariate uniform distribution 
of thetas in the interval [-3,3] and analyzed them with both PC2PL and M2PL using the 
item parameters obtained in the first step. By doing so, the estimation method did not rely 
on distributional assumptions, allowing for the estimated ability distribution to be non-
normal and cover all “corners” of the latent space. Model estimation in both steps was 
conducted using the R package mirt (version 1.26.3; Chalmers, 2012; R Core Team, 2018).  
Dependent variables. Data were analyzed in terms of (a) model fit and (b) differences in 
test scores conditional on true abilities. For (a), M2PL and PC2PL were compared with 
respect to AIC and BIC indices of model fit. For (b), the difference between test scores 
and true abilities was computed for each of the two models (M2PL, PC2PL). Just as in 
Study 1, these differences are based on the z-standardized EAP estimates of person ability. 
In order to analyze the difference in test scores conditional on the combination of the true 
levels of abilities, three cut points (25th, 50th, and 75th percentile rank, respectively) were 
applied and the results are reported separately for each of the resulting 4 × 4 = 16 groups 
of simulees. Of these, specific focus is placed on the biasing effect for simulees with high 
ability on one (𝜃 ≥ 75%) and low ability on the other dimension (𝜃 < 25%), e.g., exam-
inees with high mathematical competence and low ELP who are working on mathematical 
word problems. Note that these two groups (𝜃8 < 25%,𝜃9 ≥ 75% and 𝜃8 ≥ 75%,𝜃9 <
25%) represent examinees that rarely existed in Study 1 since the underlying true abilities 
were correlated. In contrast to Study 1, we calculated the simple difference between test 
score and true ability (𝜃U − 𝜃), thus indicating whether an under- or overestimation of an 
examinee’s relative position in the ability distribution occurred. 

Results 

The estimation for both steps and both models terminated successfully each. Estimation 
times differed by a factor of 2.3 in favor of the M2PL. 
Model fit. Table 2 shows results for model fit, indicating that the PC2PL represents the 
data better, thus strengthening the tentative findings from Study 1. Both when the true data 
are bivariate normal (step 1) and when true thetas are bivariate uniform (step 2), the two 
indices favor the data generating PC2PL over the simpler M2PL. This is particularly en-
couraging since the PC2PL requires a larger number of parameters to be estimated, and 
the BIC penalizes models for model complexity. The result, therefore, indicates superior 
model fit of the PC2PL despite the model’s complexity. 
Differences in test scores conditional on true abilities. In general, the PC2PL led to 
more similar test scores over the total set of simulees, i.e., the overall span of ability levels. 
The squared differences between z-standardized test scores and true abilities on the first 
dimension are, on average, 0.141 under the M2PL and 0.094 under the PC2PL. The cor-
responding values on the second dimension are 0.198 and 0.142, respectively. 
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Table 2: 
Model fit indices for compensatory (M2PL) and partially compensatory (PC2PL) model. 

 M2PL PC2PL 

Step 1: bivariate normal 
distribution of 𝜃 

log likelihood -2319457.093 -2317633.245 
number of parameters 116 141 

AIC 4639146.187 4635548.490 
BIC 4640249.686 4636889.812 

Step 2: bivariate uniform 
distribution of 𝜃 using item 
parameters from step 1 

log likelihood -2037750.426 -2000081.347 
number of parameters 5 5 

AIC 4075510.852 4000172.695 
BIC 4075558.417 4000220.259 

Note. Since the models are non-nested within each other, chi-square significance testing of the log 
likelihood is not possible. Since item parameters were held constant, the number of estimated parame-

ters under the two models is equal (2 means, 2 variances and 1 covariance each). 
 
Figures 5 and 6 give a graphic representation of differences in test scores on dimensions 1 
(Figure 5) and 2 (Figure 6), respectively, that resulted from estimating either of the two 
models. The respective surfaces indicate the mean difference between estimated test scores 
and true abilities for each combination of true abilities. The PC2PL’s surfaces (right) ap-
pear to be rather flat, indicating a higher degree of similarity over the whole span of ability 
levels whereas the surfaces resulting from the M2PL (left) are systematically skewed to-
wards one corner, depending on the ability under scrutiny: differences in test scores on 
dimension 1 are largest for high levels on dimension 1 and low levels on dimension 2, and 
differences in test scores on dimension 2 are largest for low levels on dimension 1 and 
high levels on dimension 2.  
 

  
Figure 5: 

Difference between test score θU8 and true ability 𝜃8 under M2PL (left) and PC2PL (right) 
conditional on true abilities 𝜃8 and 𝜃9. 



The impact of ignoring the partially compensatory relation 381 

  
Figure 6: 

Difference between test score θU9 and true ability 𝜃9 under M2PL (left) and PC2PL (right) 
conditional on true abilities 𝜃8 and 𝜃9. 

 
To quantify these results in greater detail, Tables 3 and 4 show the mean differences in test 
scores that resulted from the estimation of the M2PL (Table 3) and PC2PL (Table 4), re-
spectively, for each of the 16 groups of combinations of true abilities. As already indicated 
in the surface plots, test scores obtained from the M2PL show the largest difference when 
the two dimensions differ most, i.e., for simulees such as ELLs highly able in mathematics. 
For example, with dimension 1 being high (e.g., mathematical competence, 𝜃8 ≥ 75% of 
cases) and 2 being low (e.g., ELP, 𝜃9 ≤ 25% of cases), the mean difference between test 
score and true ability (𝜃U8 − 𝜃8) is -0.594. Mathematical competence for ELLs, accord-
ingly, would be underestimated by over .5 units under the standard normal distribution as 
a result of applying the compensatory M2PL.  
 

Table 3: 
Results for M2PL: Mean difference between test score θU and true ability θ on dimensions 1 

(top) and 2 (bottom), conditional on quartiles of true ability θ. 
  Dimension 1 (e.g., mathematical competence) 

  𝜃8 < 25 25 ≤ 𝜃8 < 50 50 ≤ 𝜃8 < 75 𝜃8 ≥ 75 
Differences on dimension 1     
Dimension 2 (e.g., 
ELP) 

𝜃9< 25 0.149 0.028 -0.124 -0.594 
25 ≤ 𝜃9 < 50 0.159 0.165 0.115 -0.255 
50 ≤ 𝜃9< 75 -0.017 0.126 0.192 0.050 
𝜃9 ≥ 75 -0.226 0.012 0.115 0.104 

Differences on dimension 2     
Dimension 2 (e.g., 
ELP) 

𝜃9< 25 0.140 0.187 -0.008 -0.226 
25 ≤ 𝜃9 < 50 0.053 0.278 0.184 0.000 
50 ≤ 𝜃9 < 75 -0.221 0.134 0.248 0.201 
𝜃9 ≥ 75 -0.697 -0.290 -0.044 0.062 

Note. Positive values indicate an overestimation, negative values an underestimation of the test score with 
respect to the true ability. 
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Table 4 shows the respective findings for differences in test scores resulting from applica-
tion of the data-generating PC2PL. The mathematics test scores for simulees such as ELLs 
highly able in mathematics are underestimated by on average -0.145 units under the stand-
ard normal distribution. This difference is smaller compared to the one occurring when the 
M2PL was estimated. 
 

Table 4: 
Results for the PC2PL: Mean difference between test score θU and true ability θ on dimen-

sions 1 (top) and 2 (bottom), conditional on quartiles of true ability θ. 
   Dimension 1 (e.g., mathematical competence) 
   𝜃8 < 25 25 ≤ 𝜃8 < 50 50 ≤ 𝜃8 < 75 𝜃8 ≥ 75 
Differences on dimension 1     

Dimension 2 
(e.g., ELP) 

𝜃9< 25 0.050 -0.071 -0.055 -0.145 
25 ≤ 𝜃9 < 50 0.103 0.010 0.000 -0.117 
50 ≤ 𝜃9 < 75 0.062 0.038 0.045 -0.035 
𝜃9≥ 75 0.029 0.029 0.040 0.019 

Differences on dimension 2     

Dimension 2 
(e.g., ELP) 

𝜃9< 25 0.048 0.071 0.014 -0.015 
25 ≤ 𝜃9< 50 0.008 0.110 0.097 0.086 
50 ≤ 𝜃9 < 75 -0.052 0.029 0.093 0.167 
𝜃9 ≥ 75 -0.236 -0.211 -0.154 -0.057 

Note. Positive values indicate an overestimation, negative values an underestimation of the test score with 
respect to the true ability. 

 
These findings generalize to the opposite situation as well: With 𝜃8 being low and 𝜃9 being 
high, the ability on the second dimension is underestimated as a result of applying the 
M2PL: The respective mean difference is -0.697 under the M2PL but only -0.236 under 
the PC2PL. With other words, a high level on the second dimension is underestimated as 
a result of the first dimension being low when the M2PL is applied. 
Taken together, Study 2 showed that the relative position of examinees being high on one 
but low on another dimension is systematically underestimated with respect to the high 
ability as a result of incorrectly applying the compensatory M2PL.  

Discussion 

Many assessment frameworks in educational assessments suggest partially compensatory 
relations among the measured constructs, yet a compensatory model is most commonly 
employed. We therefore evaluated the impact of such model violations on estimates of 
person ability since misclassifications threaten the validity of test score interpretations. 
Although Study 1 only showed small effects overall, Study 2 demonstrated systematic 
effects for subgroups characterized by a specific combination of true abilities. These find-
ings highlight the necessity of applying the partially compensatory model when there is a 
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suspicion that one group of examinees scores low on one dimension, and the respective 
ability is required for some items that measure the other dimension. Otherwise, when ex-
aminees fail to solve such multidimensional items, they are systematically underestimated 
with respect to their (truly) high ability. Since the impact of large-scale assessments on 
educational policy is evident (e.g., Heynemann & Lee, 2014; Wagemaker, 2014), an inap-
propriate model choice may lead to invalid score interpretations about specific subgroups 
such as ELLs.  
In the example of assessing mathematical competence in ELLs, being able to solve word 
problems might be considered construct-relevant. In this case, the researcher needs to 
make this explicit. In all other cases, multidimensional items such as word problems in-
duce construct-irrelevant variance to the measurement of the target ability (e.g. mathemat-
ical competence). Two ways to deal with such a situation are possible: these multidimen-
sional items are omitted from an assessment of (pure) mathematical ability, or they are 
modeled adequately in order to disentangle the two abilities (mathematical competence 
and language proficiency). The latter has been the scope of this article. Although we used 
the example of non-native speakers here, we want to highlight that the issue of adequately 
modeling multidimensional items generalizes to other examples as well. 
Limitations. The two studies made some implicit and some explicit assumptions that need 
to be discussed. First, the PC2PL necessarily requires indicator items for each of the mod-
eled dimensions for identification purposes. In the example of ELLs taking a mathematics 
assessment containing mathematics items and word problems, there also need to be items 
that measure language proficiency alone. Otherwise the multidimensional items cannot be 
modeled appropriately to account for the partially compensatory relation between the 
measured dimensions. In this simulation study the multidimensional items measured only 
two dimensions. However, the problem grows with any additional ability measured by the 
multidimensional items since more sets of unidimensional indicator items need to be as-
sessed for such higher-dimensional items. This requirement might present a major limita-
tion to some operational LSAs. Second, we generated the item discrimination, the item 
difficulties and the number of unidimensional indicator items to be the same for both di-
mensions. We thereby implicitly assumed that both dimensions are measured equally well. 
In operational practice, however, this might not always be the case, especially when items 
were constructed to be unidimensional indicators and the additional multidimensional 
component is more a side effect than the initial goal of the item construction process. Re-
garding the identical number of indicator items, only a short test of language proficiency, 
for example, might be assessed if it is not the actual scope of the test but intended to act as 
a controlling variable. As a result, language proficiency might not be measured well 
enough. The impact of an uneven number of unidimensional items on modeling multidi-
mensional items, therefore, needs further inspection. Third, we generated very well dis-
criminating items which are harder to construct and, thus, may not be as common in oper-
ational testing. However, we chose to do so in order to better investigate the pattern of test 
score differences. Fourth, sample size was held constant to keep the number of simulation 
conditions small. It can be expected that with smaller sample sizes, the pattern we found 
might not be as visible since even less cases would be located where the two models differ 
most with respect to their predicted probability of success on an item.  
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To date, in practically all current LSAs items are developed to be unidimensional, and 
multidimensional scaling models only contain between-item dimensionality. However, 
given the complex multidimensionality inherent in many assessment frameworks, the use 
of complex multidimensional models taking into account the complexity of the items ap-
pears to be a reasonable future development. The results of our studies demonstrate the 
importance of carefully choosing the scaling model in those settings.  
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