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Abstract 
This paper presents a new continuous calibration strategy for using computerized adaptive testing in 
application areas where it is not feasible to conduct a separate calibration study and/or to construct 
the complete item pool before the operational phase of the test. This method enables a step-by-step 
build-up of the item pool across several test cycles. A combination of equating and linking is used to 
maintaining the scale across these cycles. A simulation study was carried out to investigate the per-
formance of the strategy regarding the precision of the ability estimates. The simulation study is 
based on a full factorial design with the factors IRT model, sample size and number of new uncali-
brated items added to the item pool per test cycle. Precision of the ability estimates increased over 
the test cycles in all conditions. For the 2PL model, a better performance was reached when using a 
lower number of new uncalibrated items. The results support the application of the new method es-
pecially in small sample sizes. 
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Computerized adaptive testing (CAT) is a testing mode in which the selection of the item 
to be presented next to the test taker depends upon the responses given to previously ad-
ministered items (Frey, 2012). Extensive prior research shows that CAT typically yields 
more precise ability estimates and/or a shorter test length compared to traditional non-
adaptive testing (e.g., Segall, 2005). In addition, CAT has a great potential to overcome 
some limitations of traditional nonadaptive tests, which could explain its growing popu-
larity in many different fields, such as psychological and educational testing, large-scale 
assessments, admission testing, health outcome assessments and others (for a list of oper-
ational CAT programs see http://www.iacat.org/content/operational-cat-programs). In par-
ticular, CAT can be designed so that test takers are measured with a comparable level of 
precision across the complete ability range (Frey & Ehmke, 2007). In contrast, traditional 
nonadaptive tests typically provide the highest precision for test takers of medium ability, 
while the precision decreases for test takers with test scores in the extremes (Dolan & 
Burling, 2012).  
An essential building block in the development of a computerized adaptive test is a cali-
brated item pool (e.g., He & Reckase, 2014; Thompson & Weiss, 2011). Traditionally, one 
single calibration study is carried out, in which a large number of test takers respond to a 
large number of candidate items. Based on the responses gathered in the calibration study, 
item parameters are estimated by means of item response theory (IRT; e.g., van der Linden, 
2016) methods. In the subsequent operational phase of a computerized adaptive test, the 
estimated item parameters are considered to be known and are used for item selection and 
ability estimation. Therefore, the quality of a computerized adaptive test depends, inter 
alia, on the precision of the item parameter estimates, which will, in turn, be determined 
mainly by the number of responses per item (i.e., the calibration sample size and the test 
length). For the frequently used two-parameter logistic (2PL) test model, for example, a 
minimum of 500 responses per item is recommended (de Ayala, 2009). Unfortunately, in 
various potential application areas of CAT, constructing large numbers of items prior to 
the initial use of the test (see Spoden, Frey and Bernhardt, in press, for a special case where 
using already field tested items was an option) and/or carrying out a calibration study with 
a large sample is not feasible, due to a lack of resources available for test development. 
Correspondingly, for applications such as written exams, psychological tests used in per-
sonnel selection, for clinical diagnosis or in research, CAT is typically not used, even 
though it would be advantageous here as well. In addition, test developers often access test 
takers from low-stakes samples for the calibration study, even if the intended population 
of test takers comes from another context. This procedure comes with a limitation. There 
is evidence that motivational differences exist between the low-stakes calibration samples 
and the intended high-stakes population of test takers (e.g., Sundre & Kitsantas, 2004; 
Wise & DeMars, 2005). These motivational differences may result in biased item param-
eter estimations in the calibration phase, which can jeopardize the interpretation of the test 
scores.  
A possible solution to overcome these problems is the method of online calibration (e.g., 
Stocking, 1988; Kingsbury, 2009; Chen, 2017). Originally, online calibration methods 
were developed to pretest and calibrate new items on the fly during the administration of 
a computerized adaptive test. Most of the existing online calibration methods are, however, 
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based on the assumption that an operational computerized adaptive test already exists and 
online calibration is only used to add new items to the item pool. Until now, the paper of 
Makransky and Glas (2010) is the only available study that uses online calibration designs 
to calibrate an item pool without having any information about the item parameters at the 
beginning of the operational CAT phase. Makransky and Glas (2010) presented a contin-
uous updating calibration strategy, in which item parameters are re-estimated after each 
item administration using all previous responses. Therefore, the precision of the item and 
thus the precision of the ability estimates are continuously improved. 
This strategy can be problematic for two major reasons. First, especially for high-stakes 
testing situations, re-estimating item parameters after each item administration leads to 
legal problems because ability measures are estimated from different item parameters and 
cannot be compared on the same established scale. This strategy is sound from a psycho-
metric point of view but would be hard to defend in the court in case of a lawsuit. Second, 
in some cases the scales have to be linked across test cycles in order to make it possible to 
directly compare the test results across test cycles.  
Against this background, a calibration strategy is necessary that allows for a simultaneous 
item and ability estimation and ensures a fair comparison of measures across test takers 
from different test cycles. The aim of the present study is thus to propose and examine a 
new strategy to calibrate items continuously across several test cycles without a separate 
calibration study, increasing the item pool across test cycles and maintaining the scale in 
each of these cycles. 

Model 

The present study was carried out in the framework of unidimensional logistic response 
models for dichotomous items. This family of models has a long tradition and is widely 
used in the field of educational and psychological testing (van der Linden, 2016). One 
model used in this study is the two-parameter logistic (2PL) model. This model defines 
the probability of a correct response 𝑢"# = 1 of person 𝑗 = 1, … , 𝑁 with the latent ability 
level 𝜃# to an item 𝑖 as: 

𝑃-𝑢"# = 1.𝜃#, 𝑎", 𝑏"1 = 	
exp	[	𝑎"-𝜃# − 𝑏"1]

1 + exp	[	𝑎"-𝜃# − 𝑏"1]
,	 (1) 

where 𝑎" is the discrimination parameter and 𝑏" is the difficulty parameter of item i. Equa-
tion (1) reduces to the one-parameter logistic (1PL) model when the discrimination param-
eter	𝑎" is set to a constant for all items (van der Linden, 2016). It should be noted that 
especially in high-stakes testing situations with closed response formats, the assumption 
of nonguessing, and thus a pseudoguessing parameter equal to zero is rather strict. How-
ever, the 2PL and the 1PL model are viable alternatives to more complex models because 
estimation of additional item parameters (e.g., pseudoguessing parameter) can be trouble-
some in small samples and tends to be less stable across different assessments. Unstable 
item parameter estimates complicate the process of linking across different test cycles, 
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which makes it difficult to compare ability measures across these test cycles. Thus, the 
2PL and the 1PL model are used in this study. 

Continuous calibration strategy 

The proposed continuous calibration strategy is divided into two phases, the initial phase 
and the continuous phase. The initial phase describes the first test cycle. During the initial 
phase, the same set of items is administered to every test taker. In fact, there is no differ-
ence between the initial phase of this procedure and a traditional nonadaptive test. Based 
on the item responses, item parameters and person parameters are estimated.  
All test cycles following the initial phase are subsumed under the continuous phase. The 
major difference between the two phases is the type of item administration, which is non-
adaptive in the initial phase and partly adaptive in the continuous phase. Tests in the con-
tinuous phase consist of three item clusters named adaptive cluster, calibration cluster, 
and linking cluster. The adaptive cluster contains items that are administered adaptively 
using the item parameter estimates from the previous test cycle. In the calibration cluster, 
items with unknown item parameters are included to enlarge the item pool. These new 
items are administered to every test taker of the current test cycle. Finally, the linking 
cluster comprises items that have already been administered in previous test cycles and 
have the most accurate item parameter estimates, compared to the other items in the item 
pool. These items are used to link consecutive test cycles with each other, using a common-
item nonequivalent group design (Kolen & Brennan, 2014). The linking cluster makes it 
possible to report the results obtained in the various test cycles on the same scale and 
thereby allows direct comparisons of test results across these cycles. As a rule of thumb, 
at least 20 % of the test items should be used for linking, and each cluster of link items 
should be a good representation of the total test, both in content and statistical character-
istics (Kolen & Brennan, 2014). To establish a stable linking between consecutive test 
cycles, it is necessary that the parameters of the link items are invariant across these cycles. 
Therefore, checking the link items for item parameter drift is necessary (IPD; Goldstein, 
1983; Bock, Muraki, & Pfeiffenberger, 1988; Wells, Subkoviak, & Serlin, 2002). IPD oc-
curs when the invariance assumption of the item parameters no longer holds across two or 
more test administrations. Link items showing significant differences in their item param-
eter estimates between two test cycles have to be identified and excluded from the linking 
procedure. 
Each test cycle in the continuous phase can be divided into seven steps that are illustrated 
in Figure 1. First, items for the linking cluster of the current test cycle are selected (step 
1). Subsequently, a test that is composed of an adaptive, a calibration and a linking cluster 
is administered (step 2). To check link items for IPD, item parameters are initially esti-
mated based on the responses of the current test cycle (step 3). Since the examinees of the 
previous and current test cycles are not considered to be equivalent, parameter estimates 
for the two estimations are not on the same scale and therefore not directly comparable. 
Thus, a scale transformation has to be conducted. The link item parameters obtained from 
step 3 are brought onto the same scale as their parameters from the preceding test cycle by 
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means of scale transformation methods (step 4; e.g., Kolen & Brennan, 2014). Thereafter, 
the set of link item parameter estimates is checked for IPD (step 5). Link items showing 
significant drift are excluded from linking and estimated freely in step 6a/6b. The test for 
IPD is accomplished iteratively (iterative purification method; Wells, Hambleton, Kirk-
patrick, & Meng, 2014). After excluding link items showing IPD, the scale transformation 
of the remaining link items (step 4) has to be repeated again. This could lead to different 
results of the test for IPD, and, if necessary, to the exclusion of additional link items. The 
iterative process stops whenever there is no longer a link item showing significant IPD. 
Subsequently, item parameters are estimated using a fixed item parameter calibration 
based on the responses gained from all previous test cycles, whereby the item parameters 
of the remaining link items from step 5 are fixed at their estimates from the preceding test 
cycle (step 6b). Whenever a complete breakdown of the link occurs (i.e., there are not 
enough link items left to establish a stable linking), all item parameters are estimated freely 
based on the responses gained from all previous test cycles (step 6a). This type of estima-
tion is often referred to as concurrent calibration (Wingersky & Lord, 1984). In this case, 
the results are not on the same scale as the results of the previous test cycles anymore, and, 
therefore, the linking procedure has to be started anew. Note that at least two link items 
need to be stable to keep the location and variation of the scale comparable across test 
cycles. However, it should be noted that the fewer the items used for the linking, the more 
prone to sampling errors the linking procedure is (Wingersky & Lord, 1984). Therefore, 
test developers should wisely choose the minimum number of items needed for fixed item 
parameter calibration. Finally, the ability parameters are estimated based on the item pa-
rameters from step 6a/6b (step 7).  
To sum up, by applying the continuous calibration strategy, the item pool size increases 
by adding new items to the item pool, the item parameters are updated continuously while 
maintaining the reporting scale by means of the linking procedure, and the test gains pre-
cision and adaptivity across test cycles. In addition, differentiating between the three item 
clusters adds a lot of flexibility to the algorithm. If increasing the item pool size is not a 
primary interest anymore, the calibration cluster becomes an additional adaptive cluster 
and, therefore, adaptivity is maximized.  
The continuous calibration strategy in its basic form combines different psychometric ap-
proaches and therefore has many tuning parameters (e.g., sample size per test cycle, un-
derlying IRT model, test length, number of items per cluster, link item selection method, 
test for IPD). To find the best configuration of the proposed strategy and to give practical 
recommendations, these tuning parameters should be examined prior its operational use.  
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Figure 1: 

Flowchart of the continuous phase of the proposed continuous calibration strategy. 
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Research questions 

The main aim of the following simulation study is to investigate the performance of the 
strategy regarding the quality of the obtained ability estimates in general and to give prac-
tical recommendations for the configuration of the algorithm. As there are numerous dif-
ferent possible configurations of the continuous calibration strategy, in this study only 
some of the basic tuning parameters are varied while others are kept constant. The first 
one is the sample size per test cycle. As already mentioned above, the number of test takers 
has a strong influence on the precision of the item parameter estimates. However, there are 
different recommendations concerning the required sample size for item calibration (e.g., 
“a few hundred”; de Ayala, 2009, p. 43). As the continuous calibration strategy is supposed 
to be applicable in areas where only small sample sizes are available for calibration pur-
poses, the effect of different, rather small sample sizes on the performance of the continu-
ous calibration is of interest. Therefore, the first research question is as follows:  

1. What is the effect of using different sample sizes per test cycle in the continuous 
calibration strategy on the precision of the ability estimates at a different number 
of test cycles? 

The second tuning parameter to be varied in this study is the number of items in the cali-
bration cluster (which in turn means the number of test cycles necessary to obtain an initial 
estimation for each item in an item pool of a prespecified size), labeled calibration speed. 
This tuning parameter is supposed to strongly influence the performance of the continuous 
calibration strategy. Given a predefined test length, a higher number of items in the cali-
bration cluster limits the number of items in the adaptive cluster. In addition, this leads to 
a faster increase in the number of items the selection algorithm can choose from. Thus, the 
level of calibration speed determines the level of adaptivity in each test cycle. In contrast, 
enlarging the item pool slowly leads to a more uniform item administration, which leads 
to a higher number of responses per item, and this in turn leads to more precise parameter 
estimates. The effect of using different levels of calibration speed is thus not easily pre-
dictable. Consequently, the second research question is: 

2. What is the effect of using different levels of calibration speed in the continuous 
calibration strategy on the precision of the ability estimates at a different number 
of test cycles in the calibration process? 

The last tuning parameter to be varied in this study is the underlying IRT model. As already 
mentioned above, in this study the 1PL and the 2PL model are used. Since the discrimina-
tion parameters in the 2PL model tend to be less stable than the difficulty parameters, a 
larger number of responses per item is recommended for calibration compared to the 1PL 
model. Bearing in mind that the number of responses per item in this study depends on the 
sample size and the calibration speed, it can be expected that there are differences in the 
results regarding research questions 1 and 2 when using different IRT models. Therefore, 
the last research question is: 

3. To what extent does the chosen IRT model in the continuous calibration strategy 
affect the results for research questions 1 and 2?  
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Method 

A study design with three independent variables was used. With the first independent var-
iable, Sample Size, the number of test takers per test cycle (N = 50, N = 100, N = 300) was 
varied. The second independent variable, Calibration Speed (t = 3, t = 5, t = 9), compares 
the number of test cycles t necessary to obtain an initial estimation for each item in the 
item pool. Please note that concerning the calibration speed, the size of the item pool to be 
calibrated was 130 items, the test length for one test cycle was set to 50 items, and the 
number of items in the linking cluster for one test cycle was set to 10 items. For t = 9, 
every test in the continuous phase comprised 30 items in the adaptive cluster and 10 items 
in the calibration cluster. Since the item pool increased by 10 items in each test cycle, the 
complete item pool was calibrated after nine test cycles. This condition represents the 
slowest calibration procedure used in this study and determines the number of test cycles 
the continuous calibration was running in each condition. Thus, in order to keep the overall 
number of responses constant across conditions, the number of test cycles was set to nine 
for each condition. For t = 5, the tests in the continuous phase contained 20 items in the 
adaptive cluster and 20 items in the calibration cluster. Thus, after five test cycles every 
item had an initial estimation. From test cycle six to nine the calibration cluster became an 
additional adaptive cluster. For t = 3, the tests in the continuous phase comprised 10 items 
in the linking cluster and 40 items in the calibration cluster. No items were administered 
adaptively until test cycle four. From test cycle four to nine, the calibration cluster became 
the adaptive cluster. This condition represents the fastest possible calibration procedure, 
given the test specifications. The third independent variable, IRT Model (1PL, 2PL), rep-
resents the underlying IRT model used for calibration. 
The fully crossed design had 2 x 3 x 3 = 18 conditions. For each of the conditions, 200 
replications were analyzed with regard to the measurement precision as subsequently de-
fined. 
The simulation was carried out in R (R Core Team, 2017) using the “mirtCAT” package 
(Chalmers, 2016) for simulating the adaptive tests and the “mirt” package (Chalmers, 
2012) for item and person parameter estimation. These functions were called from R-code 
that was written anew to carry out the continuous calibration strategy.  

Simulation procedure 

For each replication, the ability parameters were randomly drawn from a standard normal 
distribution, 𝜃~𝑁(0, 1). The 𝑏" parameters for each replication were drawn from a trun-
cated normal distribution 𝑏"~𝑁(0, 1.5), 	𝑏" ∈ (−4.5,4.5). This kind of distribution was 
chosen, because it can be assumed that under real conditions item parameters are usually 
located within this interval. The 𝑎" parameters were drawn from a lognormal distribution, 
𝑎"~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 0.25).	 
Items in the calibration cluster and the linking cluster were administered sequentially; 
items in the adaptive cluster were selected using the maximum information criterion (Lord, 
1980) based on the item parameter estimates obtained in the preceding test cycle.  
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After each test cycle, the items were calibrated under either the 1PL or the 2PL model 
using marginal maximum likelihood (MML, Bock & Aitkin, 1981) estimation and subse-
quently, person parameters were estimated using weighted maximum likelihood estima-
tion (WLE; Warm, 1989). This method was preferred over maximum likelihood estima-
tion, because it is less biased and provides ability estimates for test takers with invariant 
response patterns. 

Selection of link items 

For the selection of link items, previously administered items were categorized based on 
their estimated difficulty parameters. The interval limits of the categories were determined 
as quantiles of the item difficulty distribution: 

Category 1 (very low difficulty): 𝑏" ∈ (𝑏I"J, 𝑏.K]; 
Category 2 (low difficulty): 𝑏" ∈ (𝑏.K, 𝑏.L]; 
Category 3 (medium difficulty):    𝑏" ∈ (𝑏.L, 𝑏.M]; 
Category 4 (high difficulty):          𝑏" ∈ (𝑏.M, 𝑏.N];  
Category 5 (very high difficulty): 𝑏" ∈ (𝑏.N, 𝑏IOP).  

Within each of these five categories, items with the lowest standard error (SE) of the dif-
ficulty parameter estimate were selected as link items. One item from category 1, two items 
from category 2, four items from category 3, two items from category 4 and one item from 
category 5 were selected to serve as potential link items. This procedure ensured that the 
distribution of the link items resembled the distribution of the complete item pool and, 
therefore, the linking cluster was a good representation of the whole test in terms of statis-
tical characteristics. Before using these items for the linking, they were tested for IPD (s. 
Figure 1). For this purpose, item parameter estimates obtained from step 3 of the continu-
ous calibration strategy were brought up to the same scale as their parameter estimates 
from the preceding test cycle. There are several popular transformation methods that can 
be used: mean/mean (Loyd & Hoover, 1980), mean/sigma (Marco, 1977), item character-
istic curves (Haebara, 1980), and test characteristic curves method (Stocking & Lord, 
1983). In this study, the mean/mean method was chosen due to the simple and user-friendly 
implementation of the method in comparison to the characteristic curve methods. In addi-
tion, the mean/mean method was preferred over the mean/sigma method, because means 
are typically more stable than standard deviations, as noted by Baker and Al-Karni (1991), 
and mean/sigma ignores the information from the a-parameters for the 2PL model. It 
should be noted that if the test is suspected to have very atypical item parameter estimates, 
the use of the moment methods (mean/mean, mean/sigma) may be questionable since they 
are highly sensitive to item parameter outliers. For practitioners, Hanson and Béguin 
(2002) suggested that it would be beneficial to apply multiple linking procedures and com-
pare the scaling results. However, for the purpose of this study, it is sufficient to apply 
only one easily implementable transformation method. After scale transformation, it was 
examined whether the item parameter estimates of a link item from the preceding test cycle 
falls into the 95 % confidence interval around the same item’s parameter estimates from 
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the current test cycle. If the difficulty parameter estimate, the discrimination parameter 
estimate or both fell outside the confidence interval, the assumption of item parameter 
invariance was rejected for this item and, consequently, this item was not used for fixed 
item parameter calibration. In addition to this relatively simple and easily implementable 
method, there are also more complex methods for detecting IPD (e.g., mixed distribution 
IRT models; Park, Lee, & Xing, 2016), which, however, set stronger demands on the data, 
especially regarding the required sample size. The test for IPD was done iteratively. 
Drifted link items were excluded from linking and estimated freely without imposing any 
constraints. 

Evaluation criteria 

The mean squared error (𝑀𝑆𝐸) of the ability estimates was used to evaluate the precision 
of the ability estimation after each test cycle for each of the conditions. The global 𝑀𝑆𝐸 
was computed as the average squared difference between the ability estimates 𝜃T#	and the 
true ability 𝜃# for the N test takers in each test cycle and was averaged across the rep = 200 
replications:  

𝑀𝑆𝐸 =
1

𝑟𝑒𝑝 ∗ 𝑁XX(𝜃T# − 𝜃#)Y.
Z

#[K

\]^

\[K

 (2) 

Low 𝑀𝑆𝐸 indicates high measurement precision. In addition to the global 𝑀𝑆𝐸 (Equation 
2), the precision of the ability estimates given a particular ability level was also investi-
gated. This conditional 𝑀𝑆𝐸 was calculated for a specific range of ability measures after 
each test cycle. The seven ability ranges used for this procedure were 𝜃# ∈ (−𝐼𝑛𝑓, −2], 
𝜃# ∈ (−2,−1], 𝜃# ∈ (−1,0.25], 𝜃# 	∈ (−0.25, 0.25], 𝜃# ∈ (0.25, 1], 𝜃# ∈ (1, 2], and 𝜃# ∈
(2, 𝐼𝑛𝑓). 
Furthermore, a lower (L) and an upper baseline (U) were simulated to compare the contin-
uous calibration design to additional criteria. For the lower MSE baseline, 𝜃T# was estimated 
after each test cycle using the real item parameters to simulate the hypothetically best pos-
sible estimation without errors stemming from the estimation of the item parameters. The 
precision of 𝜃T# stemming from item parameters that were fixed after their first estimation 
and thus not updated continuously was set as the upper MSE baseline. 

Results 

Global precision 

To answer the research questions, in a first step the global 𝑀𝑆𝐸 after each test cycle was 
analyzed. Figure 2 shows the 𝑀𝑆𝐸 across test cycles under the 1PL for all sample sizes 
and calibration speeds. As seen, the 𝑀𝑆𝐸 decreased over the test cycles in all conditions. 
Only during the first three test cycles for t = 3 did the 𝑀𝑆𝐸 remain constant. This is caused 
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by the fact that in this condition the first three test cycles are linked nonadaptive tests. For 
t = 3 and t = 5 the 𝑀𝑆𝐸 dropped at the (t + 1)th test cycle, which could be explained by the 
increasing adaptivity stemming from the conversion of the calibration cluster into an ad-
ditional adaptive cluster. Up to the (t + 1)th test cycle the respective slower calibration 
procedure showed a lower 𝑀𝑆𝐸, especially for N = 50. For the ninth test cycle, the differ-
ent levels of calibration speed seem to perform similarly for each sample size with a little 
disadvantage of the t = 9 condition, which could be explained by the fact that there is still 
a calibration cluster in the ninth test cycle and therefore less adaptivity in this condition 
only. 
Over the course of the test cycles, the 𝑀𝑆𝐸 converged to the lower baseline and moved 
away from the upper baseline in all conditions. However, for N = 300 there were nearly 
no differences between the 𝑀𝑆𝐸 stemming from the continuous calibration and the upper 
and the lower baseline. For this sample size, using the initial estimation of the item param-
eters (without updating the parameters) works approximately as well as using the real item 
parameters. The increasing precision is apparently based only on the growth of the item 
pool.  
Figure 3 shows how the 𝑀𝑆𝐸 evolved over the test cycles under the 2PL model. The results 
resemble the results of the 1PL, with the exception that the lowest 𝑀𝑆𝐸 was reached for 
t = 9 over the course of the nine test cycles. In addition, for t = 3, the 𝑀𝑆𝐸 increased from 
test cycle one to test cycle two even for N = 300, which could be interpreted as an effect 
of the linking procedure. 

Conditional precision  

In a second step, the conditional precision of the ability estimates for specific ranges of the 
ability scale was investigated. Figure 4 illustrates the results for the 1PL. For the sake of 
clarity of presentation, the results are only presented for the first, the third, the fifth and 
the ninth test cycles. As seen, in every condition and in all test cycles in the calibration 
process, the precision of ability estimates was highest for medium level ability scores. 
Over the course of the test cycles, the difference in measurement precision between test 
takers with extreme ability scores and test takers with medium ability scores decreased. 
For t = 3, the results of the first and the third test cycles, similar to the results of the fifth 
and the ninth test cycles, were fairly equal. Updating the item parameters in this condition 
had only very small impact on the conditional precision. 
Figure 5 illustrates the results under the 2PL model. These were very similar to those ob-
tained under the 1PL model, but for t = 3, similar to global precision, the conditional pre-
cision decreased from test cycle one to three. Between t = 5 and t = 9 there were nearly no 
differences in the conditional precision over the course of the test cycles. 
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Discussion 

The general purpose of this study was to propose and examine a new continuous calibra-
tion strategy for the application of CAT in areas, where it is infeasible or difficult to con-
duct a calibration study before the operational phase of a computerized adaptive test and 
it is tolerable that measurement precision and adaptivity increase across test cycles. Such 
a method can be used immediately during everyday testing practice without the need for a 
separate calibration study. The basic ideas of the strategy are (a) constantly updating item 
parameters across several test cycles by using all the information from preceding test cy-
cles, (b) adaptive item administration of calibrated items, (c) online-calibration of new 
items, and (d) maintaining the scale across several test cycles through linking and, there-
fore, allowing comparisons of the ability measures across these test cycles. 
To give some practical recommendations for the configuration of the continuous calibra-
tion strategy, a simulation study was carried out, and basic tuning parameters were varied. 
These were (1) the sample size per test cycle, (2) the level of calibration speed, and (3) the 
underlying IRT model. Regarding the sample size, the results show a promising perfor-
mance of the proposed strategy even for very small samples of N = 50. For N = 300 there 
is nearly no difference between the upper and lower baselines and the precision obtained 
with the continuous calibration strategy. Thus, for sample sizes such as this, it is not nec-
essary to update the item parameters over test cycles. Nonetheless, also in this case, a test 
for IPD should be implemented.  
With respect to the calibration speed, when using the 1PL, there is no clear recommenda-
tion. Test developers have to weigh the costs and the benefits of either a slow or a fast 
initial calibration. If it is tolerable that there is a substantial increase in measurement pre-
cision and if there are enough resources to construct many items for the first few test cy-
cles, it is certainly possible to calibrate many items as fast as possible. In contrast, for the 
2PL model, a slow calibration clearly outperformed a fast calibration regarding global and 
conditional measurement precision and therefore is recommended especially for very 
small samples of N = 50. The differences between the t = 5 and the t = 9 conditions were 
very small. Thus, depending on the resources available for producing new items, test de-
velopers should decide between a medium and a low level of calibration speed. A fast 
calibration under the 2PL model, especially in small samples, is not recommended. The 
selection algorithm in the 2PL model tends to select items with high discrimination pa-
rameters, which is not desired at early stages of the continuous calibration process because 
of larger calibration errors. For example, a good item could receive a small discrimination 
parameter by chance due to only a few inconsistent responses in a small sample. Therefore, 
this item might never get updated sufficiently, as it is simply not administered sufficiently 
often. As shown by van der Linden and Glas (2000), capitalization on calibration errors 
strongly impacts the ability estimation using the 2PL model. Thus, enlarging the item pool 
slowly leads to a more uniform item administration, as in the first few test cycles there are 
only few items the selection algorithm can choose from, which in turn leads to a higher 
number of item responses and more precise ability estimation.  
In addition to the factors considered in this study, the proposed strategy has several inter-
esting operational characteristics and tuning parameters that future research should address 
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to investigate the performance of the proposed strategy in more detail and give practical 
recommendations. Some of them are, for example, the test length, the method used to test 
for IPD, the scale transformation method, the link item selection method, and the propor-
tion of link items. Additionally, this study was carried out under the assumption that all 
items follow the respective model. Future research might also investigate the impact of 
item misfit on the performance of the continuous calibration strategy. Therefore, methods 
for assessing fit in items during the calibration process should be implemented. Finally, 
the implemented cluster structure provides the possibility of considering item position ef-
fects during the calibration process (e.g., Frey, Bernhardt, & Born, 2017). For this purpose, 
the three item clusters could be divided into more fine-grained, equal-sized subclusters and 
presented in a balanced way across different positions.  
The major conclusion that can be drawn from the results is that the continuous calibration 
strategy works reasonably well, even for very small samples of N = 50. The proposed 
strategy offers a practical and less resource-consuming method for test developers from 
application areas with the characteristics mentioned above to take advantage of the benefits 
of CAT.  
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