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Abstract

In computerized adaptive testing (CAT), item-selection algorithms generally attempt to maximize
the information provided by each item. However, response times are usually ignored. To improve
time efficiency, we established new time-efficient item-selection algorithms that maximize the
information collected in a given amount of time. Simulations with 2PL data from the Amsterdam
Chess Test (van der Maas & Wagenmakers, 2005) showed that time-efficient item-selection
algorithms are indeed able to collect more information in the same amount of time. However,
the gains in the amount of information turned out to be rather modest and came at the cost of an
increase in measurement bias. For testing practice, our results suggest that item selection based on
maximum information can and should be retained as the gold standard in CAT.
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Recent advancements in computer technology and psychometric testing have steadily
facilitated the application of computerized adaptive testing (CAT). Unlike linear tests
that always present the same fixed set of items to all participants, adaptive tests present
tailored sets of items to each participant to measure his or her latent trait or ability level.
To this end, item sets are assembled in real time in a computerized environment. An
item-selection algorithm chooses items consecutively until a defined stopping criterion is
met. Based on a continuously updated estimate of the test taker’s ability, item-selection
algorithms decide which item will be the best one to present next. Typically, the goal is to
estimate a participant’s ability with a desired precision using as few items as possible, or
as accurately as possible within a given number of items. The superiority of such adaptive
testing procedures over conventional tests with regard to precision and efficiency has
been widely documented in both simulations and practice (Eggen & Straetmans, 2000;
Hornke, 1999).

Item selection and response times

Constructing a tailored test requires a rule for item selection. The most popular method
of selecting items is the maximum information algorithm (MI; Barrada, Olea, Ponsoda,
& Abad, 2009). This algorithm always selects the item providing the largest amount of
information possible at a given ability estimate. When presenting a constant number of
items, any deviation from MI by definition leads to a loss of information and thus, poorer
estimation precision. Alternatives to MI exist, however. In particular, algorithms that
use response times as an additional source of information in the item-selection process
have been suggested. In the following, we discuss algorithms that (a) consider response
times to reduce the total testing time (H&usler, 2006), (b) try to avoid the drawbacks of
speeded testing (Néhrer, 1989; van der Linden, Scrams, & Schnipke, 1999), or (c) try to
improve the precision of the ability estimate (van der Linden, 2008). We then present
new item-selection algorithms that consider response times in addition to the amount of
information gained, and report the results of simulation studies that were designed to test
whether such item-selection algorithms can beat the maximum information algorithm
(MI), the current gold standard for adaptive testing.

Hausler (2006) proposed an algorithm that is based on the observation that employing
MI tends to increase item response times because the accompanying constant success
probability of P;(6) = .5 has negative psychological effects. Participants often perceive
tests employing MI as rather challenging (Tonidandel, Quifiones, & Adams, 2002)
because participants are better acquainted with the gradual increase in item difficulty that
is typical of most tests (e.g., exams given at schools and universities). Consequently, in
CAT, participants who are used to conventional testing tend to require more time to feel
confident about their answer. To reduce testing time, Hausler (2006) therefore suggested
an algorithm that considers the respondent’s working style: Respondents who need more
time to feel confident about their answers are given items with higher probabilities of
success for which shorter response times are to be expected.
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A second group of item-selection algorithms makes use of response times to control
the speededness of a test. When a time limit is set, participants tend to apply different
response strategies to make their individual trade-off between accuracy and speed. Some
but not necessarily all participants decide to emphasize speed over accuracy to meet the
time limit. As a consequence, the ability measurement is confounded with individual
response strategies. To account for diverse response behavior, some item-selection
algorithms therefore aim to avoid time limits while still controlling the total test time.
In this vein, Néahrer (1989) compared speed-adapted testing with conventional ability-
adapted testing. For each participant, he estimated a linear speed-accuracy trade-off
based on an exploratory test phase containing eight items. This individual speed-accuracy
trade-off was then used to select eight further items that would most likely not exceed
a certain limit placed on the total testing time. Van der Linden et al. (1999) employed
a similar procedure that did not rely on an exploratory test phase, but monitored the
participants’ response times throughout the entire test. To choose an item, their algorithm
first selects a complete test that meets a predefined constraint on the total test time and
provides maximum information given the current ability estimate. Finally, the item that
provides the greatest amount of information out of the selected items is administered.

A common empirical finding is that response time is related to ability such that more
able participants typically answer more quickly. Various models have been proposed to
incorporate response times into ability estimation. Schnipke and Scrams (2002) provide
an overview of some of the most popular approaches. For example, Thissen (1983)
suggested an item response time model based on the usually positive correlation between
ability and speed. The model includes slowness parameters for both participants and
items. Pursuing a similar approach, van der Linden (2007) established a hierarchical
framework for modeling speed and accuracy. His approach allowed for the combination
of different models of responses and response time distributions on a first level, and
different models of the distributions of ability and speed parameters on a second level.
In an application of this framework, van der Linden (2008) was able to substantially
improve the accuracy of the ability estimates by taking response times into account when
selecting the next item for presentation. His procedure determined the current ability
estimate after the presentation of each item, not only from the participant’s responses but
also from the corresponding response times. The usual maximum information algorithm
(MI) was then used to select the next item. In a recent publication, Hohensinn and
Kubinger (2017) investigated whether speed and power unidimensionally measure the
same ability by comparing different modeling approaches. They found that a multi-
dimensional polytomous Rasch model employing a joint measurement approach was
more appropriate than both, a speed-and-power two-steps model assuming speed and
power to be completely independent and a unidimensional Rasch model assuming speed
and power to represent the same ability.
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The present study

Comparisons between adaptive tests using MI and fixed-item tests showed savings in the
number of items ranging from 22 % (Eggen & Straetmans, 2000) up to 50 % (Hornke,
1999) for the adaptive tests. Thus, a considerably smaller number of items are necessary
to achieve the same level of precision when a test is conducted adaptively. Wild (1989)
also found item savings, but surprisingly, there was almost no difference in total test
time between adaptive and conventional testing in her study. She therefore argued that
the economic benefits of CAT may actually vanish when response times are taken into
account. This finding raises the question of whether MI is indeed the universally best
item-selection procedure. In Wild’s (1989) study, high response times for a subset of
items nullified the item savings and, thus, made the economical benefits of CAT disappear.
Her findings revealed a systematic failure from which the present practice of CAT suffers:
For decades, item-selection algorithms have typically been judged only by the amount of
information gained after the presentation of a given number of items. Response latencies
were either disregarded or simply assumed to be equal for each item. However, tests that
are based on the same number of items will rarely result in identical total testing times.
Completely disregarding response times may be considered particularly problematic
with regard to power tests, which do not force the respondents to stay within a given
time limit. Presumably, power tests would allow test administrators to better distinguish
between different levels of ability once response times are taken into account.

In the present paper, we suggest that the efficiency of a test be assessed by determining the
estimation precision achieved in a given amount of time. Accordingly, we implemented a
family of algorithms that maximize the amount of information gained per second, instead
of maximizing the amount of information gained per item. The rationale of all algorithms
is that a larger number of less informative items that are answered more quickly may
provide more information in the same amount of time than a small number of items that
provide maximum information but that consume disproportionate amounts of time. We
investigated whether such algorithms would be able to provide a higher precision of
measurement without extending the testing time or provide shorter testing times without
sacrificing accuracy.

First, we established a maximum information per second algorithm (MIPS), which uses
the ratio of item information to response time as a criterion for item selection. In item
response theory, the information an item provides at a given ability level can easily
be calculated using the information function. Like MI, to select the item that is to be
presented next, MIPS determines the amount of information provided by each of the
items that is still left in the pool. However, the time a participant will need to answer one
of these remaining items is unknown. A time-efficient item-selection algorithm must
therefore be able to predict a participant’s response time for each item. In this study,
we therefore implemented three variants of MIPS that differ in how response times are
estimated based on data from previous administrations of the test. The first variant of
MIPS—MIPS-omniscient—simply uses the original response times and thus, perfectly
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predicts the participants’ response times in our simulation. It served as a baseline for
scrutinizing the improvements that would be theoretically possible through time-efficient
item selection for a given set of test data. A related approach—MIPS-average—relies
on the mean response time to an item across all participants. A third variant of MIPS—
MIPS-regression—uses the correlation between ability and response time in a regression
model that predicts the time a participant needs to respond to an item. All variants of
MIPS divide the expected information gain by the predicted response time to derive an
estimate of the information gain per second provided by an item. Each MIPS variant
eventually administers the item that contributes the most information per second. Thus,
our approach is based on the expected response times for items still left in the pool,
whereas van der Linden’s (2008) approach considers only response times for items that
have already been administered and makes no predictions regarding the response times
of future items. Moreover, van der Linden’s (2008) approach considers response times
only in an indirect way. Response times are used to update the current ability estimate,
but the selection of the next item is based on maximizing information without regard to
the expected response time.

The aim of the present study was to investigate whether algorithms that take response
times into account by following the MIPS principle will outperform MI with regard to
how much information can be accumulated in a given amount of time. By definition,
MI is the most informative algorithm on an item basis and is therefore the current gold
standard in CAT. New algorithms have to stand up to a comparison with MI. To this
end, we let the algorithms compete against each other in simulations based on empirical
test data. To create conditions that permitted us to scrutinize differences in testing time,
items from a domain with a known high variability in response latencies were chosen for
the simulations. We therefore used cognitively demanding chess problems characterized
by large and highly variable response latencies. In our simulations, several indices
were calculated after the administration of each item. First, we computed the standard
error and the estimation bias to compare the algorithms with regard to the precision of
their ability estimation. Because the true abilities of the participants were unknown, we
operationalized the bias as the difference between the current ability estimate and the
best possible ability estimate based on the full set of all items. We also determined the
total test time to explore the time efficiency of the competing algorithms. To compute an
index of similarity of the competing algorithms—termed M1 overlap—we calculated the
percentage of items that were chosen not only by the respective algorithm but also by MI.
This index allowed us to quantify the differences in the item sets created by employing
different item-selection algorithms.

By definition, selecting items according to MI gathers the most information per item.
Whether MIPS can outperform MI by collecting more information per second than MI
should depend on the quality of the MIPS response-time predictions. Apart from that, the
magnitude of the difference in performance between MIPS and MI should be influenced
by the variance in the items’ response times. A potential advantage of MIPS over MI
should be large when items differ widely with regard to their response times. A larger
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pool of items is more likely to entail a larger variability in response times and thus, is
more likely to result in the choice of different sets of items when different item-selection
rules are employed. We also expected the potential advantage of MIPS over MI to be
large at the beginning of the test when MIPS has the greatest freedom to present items
that not only collect a lot of information, but that can also be answered more quickly
than the remaining items. At later stages of the test, this freedom should be gradually
diminished because fewer items with desirable characteristics are left in the item pool.

A potential superiority of MIPS over MI would also show itself in a small MI overlap,
i.e., the set of intersecting items selected by both MIPS and MI. The more overlap
there is between the items that are chosen by the two selection rules, the less room
there is for a potential superiority of MIPS over MI because obviously, MI cannot be
outperformed by an algorithm that chooses the same items. In our simulations, we
also addressed a potential drawback of selecting items based on time efficiency. We
investigated whether employing MIPS would result in a larger estimation bias because a
preference for selecting items with short response times may necessarily be accompanied
by a tendency toward the selection of easier items. Given that test bias is calculated as
the difference between the current ability estimate and the ability estimate based on all
items, ability estimates that are mainly based on easier items may potentially be affected
by overestimation bias.

Method

Amsterdam Chess Test

For the simulations, we used previously recorded responses to the choose-a-move tasks
A and B of the Amsterdam Chess Test (ACT; van der Maas & Wagenmakers, 2005). The
ACT data used for our simulations were collected by van der Maas and Wagenmakers
(2005) in a large sample of chess players during an Open Dutch Championship in Dieren.
The two subtests consist of 40 chess problems each for which the participants were asked
to find the best possible move from a given position as quickly as possible. Figure 2
shows two items of the choose-a-move task. The chess positions were presented on
a computer screen, and participants entered their moves using the computer mouse.
Participants were asked to answer each item within 30 s. If no correct solution was
entered within the time limit, the item was scored as wrong. To facilitate the subsequent
simulations and because there was only a very small percentage of missing data, only 249
complete cases were used for analysis. Another 10 participants were excluded from the
analysis because they failed to provide an answer to one or more of the choose-a-move
items.

Item parameters for two dichotomous latent trait models—the 1PL model and the 2PL
model—were estimated from the participants’ response patterns using Bilog-MG 3 (Zi-
mowski, Muraki, Mislevy, & Bock, 2003). The 2PL model yielded a significantly better
fit (x2(80) = 571.59, p < .001) and was therefore used exclusively for the following
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analysis, with the exception of four items that deviated from the model according to x?
item-fit tests provided by Bilog (all p < .05). The four items that mismatched the 2PL
model were the two easiest (items A31 and B31) and the two most difficult items (items
B30 and B40) in the pool. Excluding these four items left 76 items that were used in the
simulations.

Table 1:
Distribution of the participants’ ability 6 and the discriminatory power, difficulty, and response
time for the 76 items.

Parameter M  SD min  max
Participants’ ability 6 —-0.06 1.16 -3.06 3.00
Item discriminatory power a 0.86 0.35 0.30 1.73
Item difficulty b 0.02 177 —453 498
Item response time 7" (s) 13.36  5.13 3.34 2290

The distribution of discriminatory power, difficulty, and response time for the 76 items
are displayed in Table 1. Figure 1 displays the density plot of the mean item response
time. Response time was correlated with ability: Participants achieving a higher test
score answered the items more quickly on average (r = —.43, p <.001).

0 5 10 15 20 25
Mean item response time (s)

Figure 1:
Density plot of mean item response times.
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Simulations

The simulations were carried out using R (R Core Team, 2017a). We used the foreign
package (R Core Team, 2017b) to import data into R. A participant’s ability 6 was
estimated using the expected a posteriori (EAP) algorithm (Bock & Mislevy, 1982). The
distribution of the participants’ ability 6 is displayed in Table 1. In the present study, we
assumed the prior distribution to be standard normal and used K = 100 quadrature points
to achieve a high level of estimation precision. The points and weights were obtained
from the Gauss-Hermite quadrature using the statmod package (Smyth, 1998).

The item pool used in the simulations consisted of the 76 items from the ACT detailed
above. From this pool, the item-selection algorithms—described in more detail in the
following section—chose items successively. To simulate a computerized adaptive test
for each of the 249 participants, we used the respective test taker’s responses that were
recorded when he or she completed the entire item set of the ACT (van der Maas &
Wagenmakers, 2005). Thus, based on real data collected on a complete test, we were
able to simulate the results of hypothetical computerized adaptive tests based on different
item-selection rules. To this end, only the responses to a subset of all items—the subset
of items that was selected by the respective item-selection rule—had to be taken into
account. Due to the diverse item-selection rules, the competing algorithms produced
tests with different item orders that therefore exhibited different psychometric properties.
After each item was presented, the test properties of the items that had been selected up to
that point were determined for comparison. In the simulations, each participant began the
adaptive test with an initial ability estimate of § = 0. Each item cycle was carried out as
follows: A given item-selection rule was applied to choose the next item, which was then
answered according to the participant’s original response pattern from the ACT. Next, the
information gained from the new item was used to update the estimate of the participant’s
ability. This procedure was repeated until all 76 items had been administered. If the
selection criterion of any algorithm yielded ambiguous results—two or more items met
the selection criterion equally well—, the next item was drawn randomly from the items
closest to the criterion.

After the presentation of each item, the following indices were computed as dependent
variables separately for each item-selection algorithm. First, we determined the standard
error as the square root of the reciprocal Fisher information and the bias of the estimation
by subtracting the current ability estimate from the ability estimation based on the
complete set of items. To scrutinize time efficiency, we determined the total test time
of all participants by summing their response times using the response times recorded
during the original ACT administration. The percentage of items selected by both a given
algorithm and MI was computed to form an MI overlap index. All of these indices were
determined on an item level, i.e., every index was updated after the presentation of each
item. However, a common time scale was required to compare item-selection algorithms
with respect to their time efficiency. To this end, rather than as a function of the number
of items presented, all indices were plotted against the total test time.
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Figure 2:

Item B14

For all items, their mean response time across all participants is plotted against their difficulty. For
a participant with an ability of 0.4 (black vertical line), item B14 does not provide significantly
more information than item A38, but these two items differ vastly in their mean response times.

The maximum information algorithm (MI) would select item B14 because it provides slightly
more information, whereas the maximum information per second algorithm (MIPS-average)
would choose the more time-efficient item A38. This would allow MIPS-average to administer
another item (e.g., B6 or B34) and thus to collect additional information using the time saved. The
two chess diagrams display items A38 and B14 of the Amsterdam Chess Test. The best moves in
these positions are 1. ... Rh3 (Philidor defense) and 1. Qb7 (overloading), respectively.
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Item-selection algorithms

In the following, we describe the six item-selection algorithms that we employed in the
simulations.

Maximum information algorithm (MI). As stated above, MI determines the amount of
information provided by an item given the current ability estimate and selects the item
that contributes the most information. The trade-off between proximity to the ability
estimate and discriminatory power is accomplished by maximizing I;(6).

MIPS-omniscient. Like MI, MIPS-omniscient calculates the potential information gain
I;(0) at the present ability estimate. To maximize time efficiency, the algorithm needs
information about the expected time a participant will take to answer an item. Therefore,
the participant’s response time 7; for an item ¢ is additionally taken into account. The
algorithm eventually selects the item providing the largest amount of information per
second: max(I;(0)/T;). MIPS-omniscient is an algorithm that cannot be applied in
real testing situations because the time a participant needs to answer an item is usually
unknown in advance. In the following simulations, however, this missing information was
taken from the previous ACT administration in which every item of the complete test had
already been presented to each participant. MIPS-omniscient was thus made omniscient
by having access to these previously recorded response times prior to the administration
of these item. Thus, MIPS-omniscient quantifies the maximum improvement that can
theoretically be achieved using a time-efficient item-selection rule. Both MI and MIPS-
omniscient served as baselines for comparison with the remaining algorithms, along
with a random selection algorithm (RANDOM) and an algorithm that always picks the
item with the fastest average response time regardless of the amount of information it
provides (FASTEST).

Two additional variants of item-selection algorithms that followed the principle of max-
imizing information per second were also employed. Unlike MIPS-omniscient, these
algorithms can also be applied in situations in which the participant’s presumed response
time is unknown at the time of testing because the algorithms predict the time 7; a
participant takes to answer a given item based on the original ACT data. The algorithms
differed only with respect to how they predicted T3, i.e., with regard to how they used
the original ACT data to provide an estimated response time. Time efficiency can be op-
timized using these algorithms only if the algorithms’ predictions get as close as possible
to the participant’s true response times. Thus, the time efficiency of these item-selection
algorithms can only be as good as their prediction of the participants’ response times.

MIPS-average. MIPS-average uses the average response time of all participants exclud-
ing the participant currently being tested to predict the response time 7; for an item, with
the aim of maximizing I;(0)/T;. The potential advantage of MIPS-average over MI can
be demonstrated by the following example: For a participant with 8 = 0.4, item A38 (a
=1.03, b=0.43) and item B14 (a = 1.03, b = 0.37; see Figure 2) offer nearly the same
amount of information (0.264 and 0.265, respectively) in that they have equal discrimi-
natory power, and their difficulties are equally distant from the current ability estimate.
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Item B14 can only be solved after a tactical calculation involving all possible reactions to
a queen sacrifice that is difficult to spot and that has to be identified from a large number
of candidate moves, whereas item A38 essentially tests whether or not a participant
knows the so-called “Philidor defense” in rook and pawn versus rook endgames (de la
Villa, 2015). For strong players, this knowledge is readily available from long-term
memory and therefore does not require extensive calculations. From among these two
items, MI would select item B14 because it provides slightly more information than
item A38. However, with a mean response time of 11.46 s, item A38 is answered much
faster than item B14, which takes 18.72 s to complete on average. According to these
average response times, item A38 gathers almost twice as much information per second
as item B14. Unlike MI, MIPS-average takes advantage of this discrepancy and decides
in favor of item A38 in spite of the slightly inferior expected gain in information. The
expected time savings of 7.26 s allows MIPS-average to administer an additional item
(e.g., item B6 or B34). In this example, MIPS-average therefore provides considerably
more information than MI within the same period of time.

MIPS-regression. An item’s response time often depends on the participant’s ability:
The higher the ability level, the faster the participant’s response. For the ACT, both a
linear regression, T; = by + byx + € (by = —1.28, £(247) = —7.62, p < .001) and a
quadratic regression, T; = by +byx+box?+¢, (b = —1.35,¢(246) = —8.00,p < .001;
by = —.29, t(246) = —2.48, p < .05), showed that the participants’ abilities predicted
their mean response times. The linear regression (R? = .19, F(1,247) = 58.10,
p < .001) as well as the quadratic regression (R? = .20, F'(2,246) = 32.74, p < .001)
explained a significant proportion of variance in mean response times (R? was adjusted
for the number of variables in the regression according to Faraway, 2004, p. 136). Ina
direct comparison, the quadratic regression turned out to fit the data significantly better
(F(1,246) = 6.18, p < .05). An analysis at the item level confirmed that the relation
between ability and response time could be modeled using a quadratic regression. For
65 of the 76 items, the quadratic regression was significant. To maximize the collected
information per second (max(I;(6)/T;)), MIPS-regression therefore used quadratic
regressions to predict the participants’ response times 7. In the simulated adaptive test,
the response time for each item was predicted using the data of all participants excluding
the participant currently being tested.

Results

In Figure 3, the mean number of items that were presented by the algorithms during
the first 500 s of the test is displayed. As expected, the algorithm that always selected
the fastest item (FASTEST) administered the most items in the first 500 s, followed by
MIPS-omniscient, MIPS-regression, MIPS-average, and RANDOM. Of all algorithms,
MI administered the least number of items during the first 500 s of the test. Figure 4
shows the mean cumulative testing time for the competing algorithms as a function of
the number of items presented and confirms this pattern; whereas no algorithm needs
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less time to present the first 15 items than FASTEST, MI needs more time for the first 15
items than any of the more time-efficient MIPS alternatives.
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In general, all algorithms exhibited smaller standard errors when more items had already
been selected. As expected, a random item selection (RANDOM) led to the largest
standard error at the beginning of the test, followed by FASTEST (Figure 5). MI
yielded considerably lower standard errors than RANDOM and FASTEST. However,
all algorithms following the MIPS principle were able to reduce uncertainty even faster
than MI. The advantage of the MIPS algorithms was greatest at the beginning of the
test but declined toward the end because the steadily decreasing number of items that
were left available for selection reduced item choice and thus enforced a convergence of
all algorithms toward the end of the test. As can be seen in Figure 5, MIPS-regression
turned out to be even slightly more time-efficient than MIPS-average. Beyond a testing
time of 200 s, it was no longer possible to differentiate between MIPS-average and
MIPS-regression, however. As expected, MIPS-omniscient provided the fastest decrease
in standard error. The standard error of all algorithms converged at 0.305 at a total test
duration of 1015.61 s after the completion of the entire test consisting of 76 items.
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Figure 5:
The standard error for item-selection algorithms during the first 200 s of testing time. All
algorithms of the maximum information per second algorithm (MIPS) family reduce measurement
error more quickly than the maximum information algorithm (MI).

A comparison of the total testing time needed to achieve a desired level of precision
revealed the time savings that could be obtained by using different item-selection algo-
rithms. A maximum reduction in the total testing time of 73.40 s (7.2 %) was achieved by
using MIPS-omniscient instead of MI. For MIPS-regression, the maximum time savings
was 48.49 s (4.8 %).
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To compute an index of the magnitude of the improvement due to the use of time-efficient
item-selection procedures over MI, we divided the standard error associated with each
item-selection algorithm by the standard error associated with the use of MI. As Figure 6
shows, at the beginning of the test in particular, MIPS-omniscient was able to outperform
MI by about 8 %; using MIPS-omniscient provided a standard error that amounted to only
92 % of the standard error associated with MI. For MIPS-regression and MIPS-average,
respectively, the maximum reduction in the standard error relative to MI was 4 %. For
each algorithm, Table 2 shows the standard error relative to MI after averaging across all
items.

Table 2:
The standard error of the ability estimates for different algorithms, with MI as the reference
algorithm. Values below 1 indicate a reduced standard error, and values above 1 an increased
standard error as compared to MI.

Algorithm Average standard error relative to MI
MIPS-omniscient 0.961
MIPS-regression 0.982
MIPS-average 0.983
FASTEST 1.130
RANDOM 1.198
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Figure 6:

The standard error relative to the maximum information algorithm (MI) during the first 500 s of
the test.
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For many algorithms, bias increased during the first 100 s of the test (Figure 7). FASTEST
reached the largest bias of 0.43 after 65 s because its propensity to always select the
fastest item led to a particularly strong preference for the easiest items at the beginning
of the test. However, even the bias of FASTEST gradually declined toward zero at the
end of the test. MIPS-omniscient also had a notably large bias. Less bias was shown by
MIPS-regression and MIPS-average. The ability estimates by MI and RANDOM were

least biased.
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Figure 7:

Estimation bias for all algorithms during the first 500 s of the test. The final ability estimate based
on the complete set of 76 items was used as a reference. Therefore, the bias of all algorithms
approaches zero toward the end of the test when all items had been presented.

The MI overlap index was computed as the percentage of items selected by a given
algorithm that were also selected by MI (Figure 8). FASTEST and RANDOM showed

the smallest MI overlap. Due to the exhaustion of the item pool toward the end of the test,
MI overlap gradually increased when items were selected randomly or based exclusively
on their speed. MI overlap was larger for item-selection algorithms that considered both

information gain and response time.
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Figure 8:
MI overlap plotted against the number of items presented. MI overlap is the percentage of items
selected by both a given algorithm and the maximum information algorithm (MI).

Discussion

The aim of the present study was to investigate whether time-efficient item-selection
algorithms could outperform MI with regard to the estimation precision achieved in
a given amount of time. Unlike MI, which maximizes the information gathered per
item, MIPS algorithms maximize the information gained per second. The results of our
computer simulations showed that item-selection algorithms based on the MIPS principle
were indeed able to outperform MI in terms of time efficiency. Standard error reductions
were greatest at the beginning of the test, whereas the largest time savings were achieved
toward the end of the test. Overall, the effects turned out to be relatively small, however.
MIPS-omniscient was most time-efficient with a maximum reduction of 0.06 compared
to MI. Relative to MI, MIPS-omniscient provided a reduction in the standard error of
about 8 % and a maximum time savings of up to 73.40 s (7.2 %).
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It is important to remember that MIPS-omniscient can only be employed in simulation
environments in which the participants’ response times are known in advance. However,
this algorithm provides useful information about the degree to which time efficiency
can optimally be improved for a given set of items. Regarding the two algorithms that
predicted future response times, MIPS-average yielded less information per second than
MIPS-regression. MIPS-regression decreased the standard error by 0.026 relative to MI
and achieved a reduction in the standard error of 4 %. MIPS-regression also provided
a time savings of up to 48.49 s (4.8 %). It is important to note, however, that these
figures represent the maximum possible improvements that were obtained. Under less
optimal circumstances, the improvements turned out to be smaller; however, no MIPS
algorithm ever fell below the efficiency of MI. The results of FASTEST demonstrate
that a strategy that is focused solely on time savings will not be successful in accurately
assessing ability in a time-efficient manner.

The comparison of MIPS-omniscient and MIPS-regression indicates that there is still
room for a further improvement of time-efficient item-selection algorithms. To tap the
full potential of MIPS, more accurate predictions of the participants’ response times are
necessary. This can be achieved by more advanced response-time estimation methods.
For example, the participants’ response times for previously answered items could
additionally be used to improve response-time predictions (van der Linden, 2008).

As the MI overlap index indicated, there were a sufficient number of items with an
advantageous information-to-time ratio in the pool to allow time-efficient algorithms
to outperform MI by selecting different items. In general, with an increasing number
of available items, a smaller MI overlap and a larger potential gain from employing
time-efficient algorithms may be expected.

Some limitations of the present study must be acknowledged. The generalizability of
the results might be limited to tests that are similar to the ACT, i.e., complex cognitive
tasks with highly variable response times. Furthermore, we used the same data for
both item calibration and the subsequent simulations. In a real-world application, the
populations for calibration and testing will likely deviate, and as a consequence, the
precision of response-time predictions may deteriorate. Considering that the conditions
of our simulations were rather favorable for time-efficient item-selection algorithms,
even the small improvements found in our simulations might be difficult to achieve in
real-world settings.

On the other hand, the ACT employed a time limit of 30 s per item. Possibly, a pure
power test would have created more favorable conditions for the application of algorithms
that consider response times in addition to solution rates. However, it is important to
note that in spite of the time limit that was used, response times in the ACT showed
considerable variation (S'D = 8.52 s), and the time limit ended responses in only 5.6 %
of the trials. The present ACT items therefore met the main requirements for a successful
application of item selection algorithms that consider response times in addition to
solution rates. However, future investigations should scrutinize whether items presented
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without any time limit lead to even larger time savings that make it more worthwhile to
apply time-efficient item selection algorithms.

In our simulations, we were not able to investigate possible motivational effects associated
with the use of time-efficient testing. However, there is reason to expect that employing
MIPS algorithms may have some motivational benefits. This is because item-selection
algorithms that prefer shorter response times also tend to select easier items, and this
helps to improve the participant’s self-confidence (Hausler & Sommer, 2008).

A major drawback associated with the use of time-efficient item-selection algorithms is
an increase in bias. Although MIPS algorithms were able to decrease standard errors
when compared to MI, they also introduced considerably more bias. Thus, the increase in
reliability that can be achieved by using time-efficient item-selection algorithms comes
at the cost of a decrease in validity. This is because a selection of easy items from the
item pool results in higher ability estimates on average than estimations based on the
entire item pool. To further investigate the generalizability of our findings, it would
be interesting to scrutinize additional empirical data sets. This would also allow us to
determine which item response time distributions best facilitate time-efficient testing.

To summarize, we were able to show that under favorable conditions, time-efficient item-
selection algorithms are able to outperform MI. Even under such favorable conditions,
however, the achieved increase in precision was rather modest. Moreover, the reduction
in standard errors by considering response times came at the cost of an increase in
estimation bias. For this reason, the results of the present study do not support the
suspicion that MI might be a suboptimal item-selection algorithm because of its lack of
consideration of response times. Until further notice, MI should be retained as the gold
standard for item selection in computerized adaptive tests.
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