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On designing data-sampling for Rasch model calibrating an achievement test 
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Abstract 
In correspondence with pertinent statistical tests, it is of practical importance to design data-

sampling when the Rasch model is used for calibrating an achievement test. That is, determining the 
sample size according to a given type-I- and type-II-risk, and according to a certain effect of model 
misfit which is of practical relevance is of interest. However, pertinent Rasch model tests use chi-
squared distributed test-statistics, whose degrees of freedom do not depend on the sample size or the 
number of testees, but only on the number of estimated parameters. We therefore suggest a new ap-
proach using an F-distributed statistic as applied within analysis of variance, where the sample size 
directly affects the degrees of freedom. The Rasch model’s quality of specific objective measurement is 
in accordance with no interaction effect in a specific analysis of variance design. In analogy to Ander-
sen’s approach in his Likelihood-Ratio test, the testees must be divided into at least two groups accord-
ing to some criterion suspected of causing differential item functioning (DIF). Then a three-way analy-
sis of variance design ( )A B C×  with mixed classification is the result: There is a (fixed) group 
factor A, a (random) factor B of testees within A, and a (fixed) factor C of items cross-classified with 
A B ; obviously the factor B is nested within A. Yet the data are dichotomous (a testee either solves 

an item or fails to solve it) and only one observation per cell exists. The latter is not assumed to do 
harm, though the design is a mixed classification. But the former suggests the need to perform a simula-
tion study in order to test whether the type-I-risk holds for the A×C interaction F-test – this interaction 
effect corresponds to Rasch model’s specific objectivity. If so, the critical number of testees is of inter-
est for fulfilling the pertinent precision parameters. The simulation study (100 000 runs for each of 
several special cases) proved that the nominal type-I-risk holds as long as there is no significant group 
effect. Analysing a certain DIF, this F-test has fair power, consistently higher than Andersen’s test. 
Hence, we advise researchers to apply our approach as long as there is no significant group effect, and 
only to use other Rasch model tests if it is significant. Keep in mind that this is true only for some 
special cases and needs to be generalized in further research. Then a formula needs to be provided 
which will allow explicit calculation of the number of testees, given a type-I-, a type-II-risk, and a 
relevant effect as concerns Rasch model misfit.  
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Introduction 
 
There is no doubt that the well-known Rasch model, nowadays often called 1-PL model, 

is applied world-wide for test calibration. Though originally intended to measure different 
psychological aptitudes (cf. Rasch, 1960/1980; see also Fischer, 1974), in the last decades it 
has captured the market via large scale assessments within educational frameworks. This is 
primarily because of the advantage of using different test-booklets with partially different 
items to nevertheless achieve fair comparisons of the testees’ test scores – an advantage 
shared by most Item Response Theory (IRT) models, though the Rasch model (as well as its 
generalizations) is the only one that provides “specific objective” measuring and therefore 
fulfils the basic requirements of measurement theory (cf. e. g. Scheiblechner, 2009). As a 
matter of fact, some Rasch model generalizations applied in large scale assessments, above 
all the well-known PISA study (OECD, 2007), have finally led to the Rasch model’s popu-
larity. Googling “Rasch model” now leads to about 647.000 initial hits.  

Since the early 70’s, several statistical approaches have been taken for testing the Rasch 
model. The most established test is Andersen’s Likelihood-Ratio test (LRT; Andersen, 
1973). Furthermore, see Glas and Verhelst (1995) for a current review of Rasch model tests4. 
However, if a researcher calibrates an achievement test using such tests, there is always the 
problem of designing data sampling, i.e. determining the sample size. 

In the first instance, a researcher aims for a sample size as large as economically accept-
able. This is because parameter estimation’s accuracy depends enormously on a proper sam-
ple size; as concerns the Rasch model, usually the data from no less than 200 testees are 
sampled; however, sample sizes up to 1000 testees and even more are common (cf. for in-
stance Kubinger, 2009). In the second instance, however, he/she is aware of the fact that a 
too large sample size would most likely lead to a significant result when testing the model, 
even if this result is based only on a minor effect: the null-hypothesis is rejected though 
model contradiction is hardly of practical relevance. This possibility may mislead the re-
searcher to adopt the strategy of almost ignoring the result of the statistical significance test. 

What is needed is the approach usually applied in designing an experiment, particularly 
if Student’s t-test is planned to be used for analysis: Given H0 and H1, a certain type-I-risk α 
and a certain type-II-risk β – that is the probability of rejecting the null-hypothesis though it 
is correct on the one side and the probability of accepting the null-hypothesis though it is 
wrong on the other side – is determined at the very beginning of planning, as well as a cer-
tain effect δ referring to the deviation of the parameter in question from H0 to H1 which is 
supposed to be of practical importance. Using such “precision” requirements, the sample size 
must be calculated so that such an effect or even larger ones lead to a type-II-error with at 
most the probability of the fixed type-II-risk. That is, the sample size is determined in such a 
way that for given α and δ, the type-II-risk is equal to the given β. If the actual effect size 
exceeds δ, the type-II-risk is smaller than β and therefore we are on the safe side insofar as 
we detect each effect equal to or larger than δ with at least the probability 1- β, the power of 
the statistical test.  

                                                                                                                         
4 We strictly distinguish between (Rasch-) “model tests” which test some model implications or are, so to 
speak, performed according to specific objective measurement and “goodness-of-fit tests” which only measure 
the model’s appropriateness.   
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Several attempts have been made to establish at least some statistical effect size parame-
ter as concerns Andersen’s Likelihood-Ratio test (cf. Müller-Philipp & Tarnai, 1989; 
Goethals, 1994; Alexandrowicz, 2002); apart from this, Goethals (1994) provided a rule of 
thumb: Any difference of parameter estimations not greater than a tenth of the range of the 
parameters is hardly of practical relevance (cf. Kubinger, 2005).  

However, currently the problem in designing the data-sampling for Rasch model calibrat-
ing an achievement test is that the pertinent test-statistic is chi-squared distributed – and this 
statistic’s degrees of freedom do not at all depend on the sample size, but only on the number 
of estimated parameters. Consequently, this statistic cannot be used for designing the data-
sampling, that is it does not offer a means for sample size calculation given any precision 
requirements.  

Hence, we try a new approach in this paper. We aim for an F-distributed statistic as ap-
plied within analysis of variance, because then the sample size directly affects the degrees  
of freedom. Therefore it becomes possible to calculate the sample size according to this 
distribution, given a certain type-I- and type-II-risk and some specified alternative hypothe-
sis via δ. 

 
 

Method 
 
Of course, nowadays the Rasch model can be interpreted as a special case of generalized 

linear models (McCullagh & Nelder, 1989); within traditional Rasch model research, 
Kelderman (1984) was the first who used this fact deliberately for a class of model tests. So 
see for instance De Boeck and Wilson (2004) or Raudenbush and Bryk (2002) for details on 
how the Rasch model can be formulated as a generalized linear model for binary data with 
one observation per cell and a logit link function. 

Among all the assumptions and properties of the Rasch model, the one most frequently 
referred to is that item difficulty parameters are statistically independent of the person ability 
parameters, or in other words that specific objectivity is given if the Rasch model holds. As a 
consequence – used in particular by Andersen’s LRT – item parameter estimations do not, 
for instance, depend on which sub-sample of a given population of testees is taken into ac-
count. 

 
 

First attempt 
 
Now, thinking in terms of analysis of variance, if the different items of an item pool 

which shall be calibrated according to the Rasch model are considered as the different levels 
of a first (fixed) factor and the testees as the different levels of a second (random) factor, 
then specific objectivity means: there is no interaction effect between the factors – irrespec-
tive of the probably strong main effects – because the testees will differ with respect to their 
test performance just as the items may differ with respect to their frequencies of being solved 
within the sample. The first factor is a fixed one, because we are interested in just these 
given items; but the second factor is a random one, as we have an almost randomly chosen 
sample of testees who are part of a certain intended population.  
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However, the sketched design of analysis of variance suffers from at least two problems: 
Firstly, this design (see Figure 1) establishes just a single observation within each cell (n = 
1); and hence there is no test-statistic or corresponding distribution function, if, as given, we 
have to deal with a mixed model (i.e. one factor being fixed, the other being random). Sec-
ondly, this design is applied to dichotomous, not interval-scaled – and not remotely normally 
distributed – data.  

 
 

 A     Items     
B  1 2 …   i …    a 
 1 y11 y21    yi1     ya1 
 2 y12 y22    yi2     ya2 
Testees …            
 j y1j y2j    yij     yaj 
 …            
             
 b y1b y2b    yib     yab 

 
Figure 1: 

Rasch model data-design interpreted as a two-way layout (mixed model). The items as the levels 
of a fixed factor A, the testees as the levels of a random factor B. yij is either 1 or 0, depending on 

whether Testee j has solved Item i or not 
 
 
There are several test-statistics at a researcher’s disposal in order to test the hypothesis of 

no interaction effect if both the factors are fixed, even when n = 1. The most well-known of 
such additivity tests is based on Tukey (1949). Rasch, Rusch, Šimečkova, Kubinger, Moder, 
and Šimeček (2009) furthermore proved via simulation studies that some modification of the 
latter actually keeps the type-I-risk even for the mixed factor design, given interval-scaled 
data; the power function has been established there as well. Thus, for this case, sample size 
might be calculated with reference to pertinent precision requirements. Unfortunately, the 
same is not at all true if dichotomous data are used (cf. Rasch et al., 2009). There are cases 
where the actual type-I-risk far exceeded .25, instead of the nominal .05; therefore, we must 
state that the two-way analysis of variance approach does not solve our problem. 

 
 

A new attempt 
 
In analogy to Andersen’s approach in his LRT, we now consider grouping the testees. 

We therefore establish a third factor in the analysis of variance design, that is the group 
factor A with a levels, i.e. the groups. These groups need to be defined in advance, as a con-
sequence of which this factor is a fixed one. As above, the two other factors are the testees 
(random factor B) and the items (fixed factor C with c levels). Obviously the factor B is 
nested within A, that is A is a partition of the total set of testees (for instance according to a 
testee’s sex). This leads to a mixed classification ( )A B C× , where C is crossed with 
A B . For simplification, we select a⋅ b testees in such a way that each of the a groups has 
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equal size b (see the design in Figure 2). Again we have the special case n = 1, and the data 
are dichotomous. The model equation of this model is then: 

 
 ( )ijk i ij k ik ijka c acμ= + + + + +y b e 5 (1) 

 
The table of analysis of variance can be found in “Uebersicht 1” in procedure 1-61/3300 

in Rasch, Herrendörfer, Bock, Victor, and Guiard (2007) and the expected mean squares in 
the second column in “Uebersicht 3” of the same procedure6. The consequence of this new 
approach is that now specific objectivity means: there is no interaction effect between groups 
and items, that is between the two fixed factors A and C. From “Uebersicht 3” of the proce-

dure 1-61/3300, we find that the statistic for testing our null-hypothesis is AC

BCwithinA

MSF
MS

= , 

which is F-distributed under the null-hypothesis with (a-1)(c-1) and a(b-1)(c-1) degrees of 
freedom. 

 
 

A  C     Items   
Groups B  1 2 …   k …  c 

  1 y111 y112    y11k   y11c 
1  2 y121 y122    y12k   y12c 
 Testees …          
  j y1j1 y1j2    y1jk   y1jc 
  …          
  b y1b1 y1b2    y1bk   y1bc 

2  b+1 y2(b+1)1 y2(b+1)2    y2(b+1)k   y2(b+1)c 
  …          

…  …          
i  j yij1 yij2    yijk   yijc 

…  …          
a  a·b=b’ yab’1 yab’2    yab’k   yab’c 

 
Figure 2: 

Rasch model data-design interpreted as a three-way analysis of variance design with mixed 
classification ( )A B C× . The items are levels of a fixed factor C and the testees are levels of a 
random factor B, nested within a fixed factor A of different groups. yijk is either 1 or 0, depending 

on whether Testee j from Group i has solved Item k or not 

                                                                                                                         
5 Random variables are printed in bold. 
6 In this column there are two printing errors: In the row of A levels as well as in the row of  B levels within A 

levels the term with 2
)(abcσ  must be deleted. 
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In order to assess the type-I-risk, a simulation study was performed: The question was 
whether this test, applied in our case, keeps the nominal type-I-risk, and – given that it does 
– what its power is? For this study, the number of levels for the fixed factor C (items) was 
established as c = 6 and 20; the number of levels of the random factor B (testees) for each 
level of A was chosen as b = 25, 50, and 100, and  the number of levels of the fixed factor A 
(groups) was restricted to a = 2 for the present. The c levels with parameters ck (matches σk 
within Rasch model terminology – see Formula (2)) of the fixed factor C were set as equally 
spaced within the interval [-2.5, 2.5] for c = 6 and [-3, 3] for c = 20, which basically corre-
sponds to the whole spectrum of item difficulties that arise in practice. The levels of the 
random factor bij (matches ξj within Rasch model terminology – see Formula (2)) were 
drawn randomly from a N(0, 1.5), again corresponding to the values of person parameters 
that are likely to occur in practice. In each step of the simulation – the random number gen-
erator of  was used as implemented in the program package eRm (extended Rasch model-
ling; Mair & Hatzinger, 2006; cf. also Poinstingl, Mair, & Hatzinger, 2007). A data set was 
generated by calculating the probability P that testee j solves (+) item i according to the 
pertinent Rasch model formula:  

 

 ( )
v i

v iv i
e,

1+e
P

ξ σ

ξ σξ σ
−

−+ =  (2) 

 
Then a Bernoulli trial was carried out with the probability P, which led to a matrix of 

data based on the Rasch model. 100 000 simulation replications were performed, i.e. 100 000 
data matrices were generated for each combination of j(i) and k. A significance level of α = 
.05 was applied. The main question of interest was whether the F-test for the interaction 
effect A×C holds this nominal type-I-risk. 

If so, then a type-II-risk investigation, i.e. power analyses, should be made. Violations of 
the Rasch model could have been taken into account in a way similar to the approach of 
Suarez-Falcon and Glas (2003), but were intentionally restricted here to the case of DIF 
(differential item functioning) as concerns specific item pairs.  

 
 

Results 
 

We used the program package  (R Development Core Team, 2008) after their prob-
lem-specific routine had been tested by typical applications analysed with SAS and SPSS.  

In preparation, we tested whether the analysis of variance in question actually works for 
n = 1 when normally distributed data are given. Data simulation was based on the null-
hypotheses that there are no main or interactions effects. Using 100 000 simulation replica-
tions each, the largest difference of nominal and actual type-I-risk – that is the relative fre-
quency of wrong rejections of the null-hypothesis – amounted to 0,00178 (α = .05; a = 2, 
now c = 3, 18 ≤ b ≤ 32); and the power with respect to the interaction A×C resulting for a 
given effect of an upper bound [(ac)max - (ac)min] = 0.5 ⋅ σ (e) and [(ac)max - (ac)min] = 0.67 ⋅ σ 
(e) was ~ .70 in both cases, with b = 32 in the former case and b = 18 in the latter case (α = 
.05; a = 2, c = 3). That is, the non-standard application for n = 1 does no harm. 
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Coming then to the simulation study of data based on the Rasch model, the first scenario 
was no main effect as concerns the group factor A; as described above, there are severe main 
effects as concerns the testee factor B(A) and the item factor C. Table 1 gives all the F-tests’ 
results, though only the one concerning the interaction effect A×C is of focussed interest. As 
it turns out, actual type-I-risk of the F-test of the interaction effect A×C is near to the nomi-
nal one. 

 
 

Table 1: 
The F-tests in a three-way analysis of variance design ( )A B C× with mixed classification. A is 

a fixed factor with the a = 2 levels (groups from the same population), B is a random factor 
nested within A with the levels b = 25, 50, and 100 (testees) for each of the a = 2 levels, and C is 

a fixed factor with c = 6 levels (items). Given are the actual type-I-risks of the F-test for the 
interaction effect A×C and of the F-test of the main effect of A, as well as the power of the F-tests 

of the main effects of B(A) and C – estimated using 100 000 simulation replications of Rasch 
model based data. The nominal type-I-risk is 5% 

 
  p (F-test) 

b effect A 
groups 

B(A) 
testees 

C 
items 

A×C 

25  .05024  .99753 1.00000 .05371 
50  .05104 1.00000 1.00000 .05276 

100  .04938 1.00000 1.00000 .05208 
 
 
 
The second scenario again involved Rasch model based data, but now an additional main 

effect, A, was taken into account: While the first group exhibited ξj, drawn randomly from 
N(-0.5, 1.5), the second groups exhibited ξj, drawn randomly from N(0.5, 1.5) – this corre-
sponds in terms of the model equation (1) with a1 + E(b1) = -0.5 and a1 + E(b1) = 0.5. A main 
effect A is likely in practice, as such a group factor due to some critical testees’ attitudes is 
explicitly looked for within Rasch model analyses in order to test the model (cf. in particular 
Andersen’s LRT). Table 2 gives all the F-tests’ results. As a matter of fact, type-I-risk of the 
F-test for the interaction effect A×C is artificially high and comes up to more than 16% in 
the case of b = 100: The actual type-I-risk increases monotonously by an increasing b.7   

 
 
 
 
 
 
 

                                                                                                                         
7 We also tried Andersen’s original approach of a-posteriori partition of the sample of testees according to 

their score. When doing so, a = 5 as c = 6 (testees with a score of 0 or 6 were deleted); as a result, even for b 
= 25, Rasch model based simulated data led to an artificial type-I-risk of .7920.  
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Table 2: 
The F-tests in a three-way analysis of variance design ( )A B C×  with mixed classification. A 

is a fixed factor with a = 2 levels (groups with different means), B is a random factor nested 
within A with the levels b = 25, 50, and 100 (testees) for each of the a = 2 levels, and C is a fixed 
factor with c = 6 levels (items). Given are the actual type-I-risks of the F-test of the interaction 
effect A×C and the power of the F-tests of the main effects of A, B(A), and C – estimated using 

100 000 simulation replications of Rasch model based data. The nominal type-I-risk is 5% 
 

  p (F-test) 
b effect A 

groups 
B(A) 

testees 
C 

items 
A×C 

25  .45695  .99707 1.00000 .07777 
50  .75257 1.00000 1.00000 .10440 

100  .96232 1.00000 1.00000 .16515 
 
 
For this, our new attempt needs to be restricted on a grouping factor which does not 

plausibly disclose an effect, for the present. This means a random partition into two groups, 
at worst. Nevertheless, the power of this approach is of interest.  

We restricted the simulation study of the first scenario (i.e. there is no main effect A) to 
two cases. The first case refers to parameters ck (matches σi) as [-2.5, -1.5, -0.5, 0.5, 1.5, 2.5] 
for group i = 1 and as [-2.5, -1.5, 0.5, -0.5, 1.5, 2.5] for i = 2 – this corresponds in terms of 
the model equation (1) with ck is [-2.5, -1.5, 0.0, 0.0, 1.5, 2.5], (ac)1k is [0.0, 0.0, -0.5, 0.5, 
0.0, 0.0], and (ac)2k is [0.0, 0.0, 0.5, -0.5, 0.0, 0.0]. That is, there actually is, apart from main 
effects of B(A) and C, only an interaction effect A×C due to Items 3 and 4. This means a DIF 
of both these items with respect to the two groups of testees. The results of the actual type-I-
risk are given in Table 3a. The second case refers to parameters ck (matches σi) as [-2.5; -1.5; 
-0.5; 0.5; 1.5; 2.5] for group i = 1 and as [-2.5; -0.5; -0.5; 0.5; 0.5; 2.5] for i = 2. The differ-
ence between these two cases is that in the latter case not only a two-item DIF, but also a 
difference in the variation of the parameters σi applies – that variation corresponds in terms 
of the model equation (1) with the nominator of the non-centrality parameter of the (ac)ik. 
The respective results are given in Table 3b. It follows that in the case of the same variation 
of parameters σi, the F-test has more power, though the magnitude of DIF is smaller. 

As a given main effect in A disclosed an artificial type-I-risk for the interaction effect 
A×C (i.e. an unacceptable risk of rejecting the null-hypothesis that the data conform to the 
Rasch model) we analogously analysed a second scenario in order to test the influence of 
such a main effect on the power of the A×C interaction F-test. The same group effect was 
applied as above and the case of two-item DIF with differences in the variation of parameters 
σi. The results of this analysis are given in Table 4. Now the artificial effect is almost con-
stant and amounts (cf. Table 3b) “only” to 3 to 5 percent. 
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Table 3a: 
The F-tests in a three-way analysis of variance design ( )A B C×  with mixed classification. A 

is a fixed factor with a = 2 levels (groups with the same mean), B is a random factor nested within 
A with the levels b = 25, 50, and 100 (testees) for each of the a = 2 levels, and C is a fixed factor 
with c = 6 levels (items), having the same mean and the same variation of parameters σi at both 

levels of A. Given are the actual type-I-risks of the F-test of the interaction effect A×C and of the 
F-test of the main effect of A, as well as the power of the F-tests of the main effects of B(A) and 
C – estimated using 100 000 simulation replications of DIF based data: Within the first group, 

Rasch model based data were used with a two-item DIF as compared to the second group’s Rasch 
model based data. The nominal type-I-risk is 5% 

 
  p (F-test) 

b effect A 
groups 

B(A) 
testees 

C 
items 

A×C 

25  .05010  .99771 1.00000 .37736 
50  .04926 1.00000 1.00000 .68144 

100  .05083 1.00000 1.00000 .94896 
 
 

Table 3b: 
The F-tests in a three-way analysis of variance design ( )A B C×  with mixed classification. A 

is a fixed factor with a = 2 levels (groups with the same mean), B is a random factor nested within 
A with the levels b = 25, 50, and 100 (testees) for each of the a = 2 levels, and C is a fixed factor 
with c = 6 levels (items), having the same mean but a different variation of parameters σi at both 
levels of A. Given are the actual type-I-risks of the F-test of the interaction effect A×C and of the 
F-test of the main effect of A, as well as the power of the F-tests of the main effects of B(A) and 
C – estimated using 100 000 simulation replications of DIF based data: Within the first group, 

Rasch model based data were used with a two-item DIF as compared to the second group’s Rasch 
model based data. The nominal type-I-risk is 5% 

 
  p (F-test) 

b effect A 
groups 

B(A) 
testees 

C 
items 

A×C 

25  .04866  .99838 1.00000 .30158 
50  .04971 1.00000 1.00000 .57028 

100  .05007 1.00000 1.00000 .89294 
 



On designing data-sampling for Rasch model calibrating an achievement test 379 

Table 4: 
The F-tests in a three-way analysis of variance design ( )A B C×  with mixed classification.  
A is a fixed factor with a = 2 levels (groups with different means), B is a random factor nested 

within A with the levels b = 25, 50, and 100 (testees) for each of the a = 2 levels, and C is a fixed 
factor with c = 6 levels (items), having the same mean but a different variation of parameters σi at 
both levels of A. Given is the power of the F-tests of all effects, that is of A×C, A, B(A), and C – 
estimated using 100 000 simulation replications of DIF-based data: Within the first group, Rasch 
model based data were used with a two-item DIF as compared to the second group’s Rasch model 

based data. The nominal type-I-risk is 5% 
 

  p (F-test) 
b effect A 

groups 
B(A) 

testees 
C 

items 
A×C 

25  .45878  .99827 1.00000 .33456 
50  .75764 1.00000 1.00000 .62696 

100  .96459 1.00000 1.00000 .92727 

 
Because c = 6 is rather an unusual case, we also investigated the case of c = 20. Table 5a 

gives the results specifically as concerns the type-I-risk of the A×C interaction F-test, and 
Table 5b as concerns its power. Both times no main effect A is assumed. Referring to the 
analysis of the actual type-I-risk, that is when the null-hypothesis is true, the parameters ck (= 
σi) were [-3, -2.5, -2, -1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 
1.75, 2, 2.5, 3]; referring to the analysis of the power, that is when a specific alternative 
hypothesis is true, the parameters ck (= σi) were [-3, -2.5, -2, -1.75, -1.5, -1.25, -1, -0.75, -
0.5, -0.25, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3] for group i = 1 and -3, -2.5, -2, -1.75, -
1.5, -1.25, -1, -0.75, 0.5, -0.25, 0.25, -0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3] for i = 2. As a 
result, type-I-risk holds as well but the power of the interaction F-test is reduced in compari-
son to the case of c = 6 (cf. Table 3a). 

 
Table 5a: 

The F-tests in a three-way analysis of variance design ( )A B C×  with mixed classification. A 
is a fixed factor with a = 2 levels (groups from the same population), B is a random factor nested 
within A with the levels b = 25, 50, and 100 (testees) for each of the a = 2 levels, and C is a fixed 
factor with c = 20 levels (items). Given are the actual type-I-risks of the F-test of the interaction 
effect A×C and of the F-test of the main effect A, as well as the power of the F-tests of the main 
effects of B(A) and C – estimated using 100 000 simulation replications of Rasch model based 

data. The nominal type-I-risk is 5% 
 

  p (F-test) 
b effect A 

groups 
B(A) 

testees 
C 

items 
A×C 

25  .04904  1,00000 1.00000 .05514 
50  .05116 1.00000 1.00000 .05463 

100  .05044 1.00000 1.00000 .05318 
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Table 5b: 
The F-tests in a three-way analysis of variance design ( )A B C×  with mixed classification. A 

is a fixed factor with a = 2 levels (groups with the same mean), B is a random factor nested within 
A with the levels b = 25, 50, and 100 (testees) for each of the a = 2 levels, and C is a fixed factor 
with c = 20 levels (items), having the same mean and the same variation of parameters σi at both 
levels of A. Given are the power of the F-test of the interaction effect A×C and of the F-tests of 

the main effects of B(A) and C, as well as the actual type-I-risk of the F-test of the main effect of 
A – estimated using 100 000 simulation replications of DIF based data: Within the first group, 

Rasch model based data were used with a two-item DIF as compared to the second group’s Rasch 
model based data. The nominal type-I-risk is 5% 

 
  p (F-test) 

b effect A 
groups 

B(A) 
testees 

C 
items 

A×C 

25  .05031  1.00000 1.00000 .21493 
50  .04939 1.00000 1.00000 .42929 

100  .04940 1.00000 1.00000 .79093 
 
 

Discussion 
 
Apart from some side issues as concerns possible group effects, our problem has gener-

ally been solved. The interaction effect testing F-test for the given analysis of variance de-
sign holds its type-I-risk α (bear in mind that within statistics a test is defined as 20%-robust 
if even in the case of a violation of its distribution assumptions the actual type-I-risk does not 
differ from the nominal value by more than 20 percent; cf. for instance Rasch & Guiard, 
2004). And this F-test’s power 1 - β  and type-II-risk β , respectively, depend (monoto-
nously) on the number of testees (b). For instance, as concerns the alternative hypothesis of a 
simple two item DIF with respect to two specific groups dealt with here, we can now design 
the data sampling, i.e. determine the sample size for Rasch model calibrating an achievement 
test: If there are c = 20 items with parameters likely to be equally spaced on the interval [-3, 
3], if there is a nominal significance level of α = .05, an aimed-for power of 1 - β = .80 (as is 
usually the case in designed studies), and a defined relevant effect of parameter difference 
with respect to two interesting groups of at least two times one (-0.5 minus 0.5 and 0.5 minus 
-0.5), if there are good reasons that this relevant DIF does not change the variation of pa-
rameters σi, and finally if there are good reasons that no main effect exists between the two 
interesting groups, then, according to Table 5b, a sample size of 100 testees in each of both 
groups is needed. – We additionally carried out a simulation study in order to achieve an 
exact power of .80 instead of .79093 as given in Table 5b; actually, a b = 101 is needed. 

Obviously, there are many issues to consider in depth. Most of them involve the need for 
additional simulation studies, since we have dealt only with a handful of cases. However, the 
main issue is the artificial results of the type-I-risk of the A×C interaction F-test, given that a 
main effect of A exists.  

Primarily, the question is the cause for this artefact since having no explanation could 
cast doubt on our entire simulation procedure. There is, however, an explanation. If there is a 
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main effect in A – that is a1 ≠ a2 within our designed analysis of variance model’s equation –, 
this is due to the nested bij which match the Rasch model’s ξj, the latter stemming from two 
populations with different means. And this mean difference does not affect yijk additively 
with respect to k, the level of C: Though the items will be solved (yijk = 1) more often in the 
one group than in the other, this does not apply to every item with the same rate. This would 
only be the case if there were no main effect C, i.e. if every item had the same parameter. 
Because the first group has ξj drawn randomly from N(-0.5, 1.5) while the second groups has 
ξj drawn randomly from N(0.5, 1.5), the second group’s testees will, on average, achieve 
more solutions to moderate items than the first group’s testees, but not to easy or difficult 
items, because both group members will tend to solve the easy ones and tend to fail to solve 
the difficult ones. As a consequence, only/primarily in dependence on k, the yijk differ in 
average between the groups i = 1 and i = 2. And that means a significant A×C interaction 
effect, though the Rasch model holds. 

In the first instance, one could conclude that our new approach is of no use, because we 
do not know when to reasonably assume that there is no difference in mean between both the 
groups for which a DIF is suspected. Besides the objection that such cases might yet happen 
– take for instance into account that there is hardly empirical evidence to support the as-
sumption of different intelligence tests scores between different countries but a DIF seems 
plausible –, we may argue as follows: The new approach works as long as no significant 
main effect of A occurs. Then a significant interaction effect leads to the rejection of the 
Rasch model, a non-significant interaction effect to its acceptance. Thereby we can base our 
decision on precision requirements stated in advance, that is a (minimal) relevant magnitude 
of DIF has either to be claimed (risking an error with a percentage of α) or has to be dis-
claimed (risking an error with a percentage of β).  

We must state that there was no intention of establishing a new statistic to test the Rasch 
model – though, under the given restrictions, our approach would actually work. The inten-
tion was only to allow designing data-sampling for Rasch model calibrating an achievement 
test. And, as illustrated for a typical case, this goal was achieved. It is irrelevant whether 
there actually is no main effect A, given that we might use our new approach only for 
determining the sample size needed to fit our precision requirements. This is necessary, 
above all, to avoid sampling too large samples which results in rejecting the Rasch model 
even when model contradiction is hardly of practical relevance. That is, after determining the 
sample size, we could simply apply Andersen’s LRT. Of course, this advice is good as long 
as the correlation of our A×C interaction F-test approach and the LRT are not known. For 
this see Table 6 which juxtaposes the power of both tests for the same data. As a surprising 
fact, the A×C interaction F-test approach proves throughout to be more powerful. Hence, the 
given advice is rather poor.  

Although there was no intention to evoke objections against Andersen’s LRT besides the 
fact that it does not allow the determination of the sample size according to certain given 
precision requirements, our results show some faults of the LRT. With respect to the very 
restricted case of a two-item DIF between two given groups as analysed here, our approach 
is ultimately to be preferred8. That is, the LRT – or some other pertinent test for the Rasch 
model – should only be applied if the main effect A results in significance. 

 

                                                                                                                         
8 Interested colleagues who prefer to apply R instead of SAS and SPSS might ask the authors for the syntax. 
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Table 6: 
The power of the A×C interaction F-tests in a three-way analysis of variance design ( )A B C×  
with mixed classification as opposed to Andersen’s LRT – F-test’s were estimated using 100 000 

simulation replications, LRT’s using 10 000. There are DIF based data: Within the first group, 
Rasch model based data were used with a two-item DIF as compared to the second group’s Rasch 

model based data. The nominal type-I-risk is 5% 
 

  p (F-test) p (LRT) 
 b A×C  

25 .37736 .3063 
50 .68144 .6207 

c = 6 levels (items) having the same mean and the 
same variation of parameters σi at both levels of A. 

100 .94896 .9196 
    

25 .30158 .2453 
50 .57028 .5172 

c = 6 levels (items) having the same mean but a 
different variation of parameters σi at both levels of 
A. 100 .89294 .8562 

    
25 .21493 .1874 
50 .42929 .3773 

c = 20 levels (items) having the same mean and the 
same variation of parameters σi at both levels of A. 

100 .82285 .7177 
 
 
Given, however, the serious problem that in the presence of a main effect of A, artificial 

results of the type-I-risk of the A×C interaction F-test are observed, further research is 
needed. Maybe applying our approach directly to the simulated probabilities P (that Testee j 
solves Item i) instead of using a Bernoulli trial in order to get yijk = 0/1 data would help. 
Presumably the artefact phenomenon discussed would be of less consequence in this case.   

 
 

Conclusion 
 
For the present, we can advise researchers calibrating a 20 items achievement test 

according to the Rasch model to use 100 testees in each of two groups for which a DIF of 1 
or even more is suspected with respect to at least a pair of items. If our approach of a three-
factorial analysis of variance with an ( )A B C× design with mixed classification is then 
applied and no significant group effect discloses the A×C interaction, the F-test rejects the 
Rasch model with a type-I-risk of .05 and accepts the Rasch model with a type-II-risk of 
approximately .20 – given a DIF of the discussed magnitude; that is, the F-test then has a 
power of .809. In the case of a significant group effect, a Rasch model test like Andersen’s 
LRT has to be applied; but be aware that the power of this LRT is lower.  

 

                                                                                                                         
9 We also have analysed a similar case as given in Table 3a, in order to test Goethals’ (1994) rule of thumb 
(any difference of parameter estimations not greater than a tenth of the range of the parameters is hardly of 
practical relevance): For b = 100 the power of the test amounts just to .37611. 
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Several challenges remain: 
1. investigating many other cases of b and c 
2. investigating many other cases of α and β, for instance α = .01 and β  = .10 or .05    
3. tabulating the needed b for given c, α, β, and a given magnitude of relevant DIF 
4. investigating DIF for a single item only, and for more than a pair of items 
5. investigating other cases of groups’ different variations of item parameters  
6. investigating different variances of ξj between the a = 2 groups10 
7. investigating other violations of the Rasch model than DIF, for instance according to 

Suarez-Falcon and Glas (2003) 
8. providing the formula for calculating b explicitly for given precision requirements and 

developing respective software 
9. considering the case of using different test-booklets with partially different subsets of 

items.  
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