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Testing a correlation coefficient’s significance:
Using H0: 0 <  is preferable to H0:  = 0

KLAUS D. KUBINGER1, DIETER RASCH2 & MARIE ŠIME KOVA3

Abstract
This paper proposes an alternative approach in correlation analysis to significance testing. It argues 

that testing the null-hypotheses H0:  = 0 versus the H1:  > 0 is not an optimal strategy. This is be-
cause rejecting the null-hypothesis, as traditionally reported in social science papers – i.e. a significant 
correlation coefficient (regardless of how many asterisks it is adorned with) – very often has no practi-
cal meaning. Confirming a population’s correlation coefficient as being merely unequal to zero does 
not entail much gain of content information, unless this correlation coefficient is sufficiently large 
enough; and this in turn means that the correlation explains a relevant amount of variance. The alterna-
tive approach, however, tests the composite null-hypothesis H0: 0 <  for any 0 < < 1 instead of 
the simple null-hypothesis H0:  = 0. At best, the value of is chosen as the square root of the expected 
relative proportion of variance which is explained by a linear regression, the latter being the so-called 
coefficient of determination, 2. The respective test statistic is only asymptotically normally distributed: 
in this paper a simulation study is used to prove that the factual risk is hardly larger than the nominal 
risk with regard to the type-I-risk. An SPSS-syntax is given for this test, in order to fill the respective 
gap in the existing SPSS-menu. Furthermore it is demonstrated, how to calculate the sample size ac-
cording to certain demands for precision. By applying the approach given here, no “use of asterisks” 
would lead a researcher astray – that is to say, would cause him/her to misinterpret the type-I-risk or, 
even worse, to overestimate the importance of a study because he/she has misjudged the content rele-
vance of a given correlation coefficient > 0. 
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1. Introduction 

The problem we will discuss in the following, with regard to the correlation coefficient is 
principally a matter of every other parameter of a distribution. Although many other authors 
have dealt with the given topic of other parameters in the past – even touching on some 
aspects of practice in psychology – it was not deliberately taken into consideration for the 
correlation coefficient, as it will be in this paper. Nevertheless, it is worthwhile to read the 
discussion of the principle of statistically testing the null-hypothesis in particular by Ballu-
erka, Gomez and Hidalgo (2005), where more important references can be found. Additionally 
see Marks (2006) and the comment by Rasch and Kubinger (2007). Furthermore, the presen-
tation of the Neyman-Pearson test theory by Lehmann (1986) is recommended reading. 

Although even applied textbooks offer a statistical test for testing the null-hypothesis, 
that an interesting (product moment) correlation coefficient  differs from a given 0  0, 
this is seldom applied within empirical psychological research. Instead, H0: = 0 is almost 
always tested against the alternative hypothesis H1:  0. Thereby the convention has been 
established of calling a correlation coefficient “significant” if this null-hypothesis is rejected, 
or “not significant” if the null-hypothesis is not rejected. Of course, this meaning of a sig-
nificant correlation coefficient is that the correlation coefficient is (absolutely) larger than 
zero within the given population. Our argument is that merely confirming a population’s 
correlation coefficient as unequal to zero does not entail much gain of content information, 
unless this correlation coefficient explains a relevant amount of the variance of the variables. 
Many psychological researchers – as well as other social science researchers and medical 
researchers – confound this question of a relevant effect with the level of type-I-risk ( );
they practice the so-called “use of asterisks”. We will show that in doing so the importance 
of a significant correlation coefficient with respect to its content does not increase at all. 
Consequently, we suggest designing any study, which aims to calculate the (product mo-
ment) correlation coefficient, according to pertinent statistical planning conceptualization.  

For this we firstly need to call into remembrance the well-known relation of the correla-
tion coefficient and the so-called coefficient of determination, in order to suggest a more 
proper null-hypothesis and a truly relevant effect – that is some distance from the null-
hypothesis which is of practical interest. In doing so we, however, have the problem that the 
resulting statistical test is based on a test statistics of which the distribution is known only 
asymptotically. Therefore, we did a simulation study investigating the behavior of this test 
within small sample sizes: the question is whether or not the rate of type-I-errors fits with the 
nominal value of type-I-risk . Finally we show how to determine the sample size which is 
needed in order to detect a given relevant effect.

2. The coefficient of determination

There is merely one helpful rule on how to interpret a concrete value of a population cor-
relation coefficient , between two linearly dependent random variables x and y. Although it 
is well-known that this value depends on the angle between both given regression lines (i.e. 
the line of the regression of x on y and the line of the regression of y on x) this has not led to 
any measure of practical importance for interpretation. Of course, the sign of is to be un-
equivocally interpreted as to whether the variables show a negative or a positive dependency. 
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However, the magnitude of this dependency can best be interpreted by using the coefficient
of determination. That results formally in the squared correlation coefficient, 2. This is 
because the coefficient of determination, , is plausibly defined as the ratio of the variance of 
one variable, say y, that can be explained by the linear regression on the other variable, say 
x, to the total variance of y. The following gives proof of  = 2.

The basic regression equation is (e an error term; and x and y may be interchange): 
0 1y x e  = y(x) + e, with the condition that cov , 0x e . Then the coefficient of 

determination is 0 1var var
var var

y x x
y y

. Let us denote var(e) = 2, 2var xx ,
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Analogously the squared sample correlation coefficient r2 can be written as the ratio of 
the sum of squares, due to linear regression and the total sum of squares of the dependent 
variable. If multiplied by 100, we have the most informative interpretation of the square of 
the correlation coefficient, as the percentage of the variance of one of two random variables 
which can be explained by a linear regression on the other variable – this is true as well for 
the population as for a sample. 

Therefore the interpretation of the linear dependency of two variables must focus on or
r concerning the direction, and on 2 or r2 concerning the magnitude. For instance, a correla-
tion coefficient with a medium valued numerical result, for instance  = .5, does not indicate 
a medium degree of dependency at all, but merely a weak one, as only 25 % of the variances 
is mutually explained. Even  = .9 does not indicate a very high dependency as only 81 % of 
the variances is mutually explained. In this case almost a fifth remains unexplained; i.e. a 
fifth of the variances is determined by other variables or by chance.  

A significant correlation coefficient in the sense of  > 0, is thus rather arbitrary. Since 
rejecting H0: = 0 is compatible for instance with = .1 (and of course with even lower 
values), nothing can be concluded from significance per se; = .1 means a coefficient of 
determination of .01 and, respectively, only 1 % of the variance or almost no variance is 
explained by the linear relationship. We do not think that there are many cases within the 
social sciences where a coefficient of determination of 1 %, or say lower than 10 %, really 
entails content relevant consequences. 

3. The (mis-)”use of asterisks” 

The problem is that if we only took a sufficiently large number of observed data pairs 
into consideration, any arbitrarily small value of r could be significant. We will illustrate this 
briefly in the following. Given a bivariate normal distribution with  = 0 then the sample 
correlation coefficient calculated from a sample of size n is centrally t-distributed  with df = 
n – 2. Using the formula   
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(cf. Rasch, Herrendörfer, Bock, Victor & Guiard, 2007) the sample size n can iteratively be 
calculated with t(n – 2; P) as the P-quantile of the central t-distribution. For instance, a sam-
ple size of n = 27 057 always results in a significant correlation coefficient (  = .05) if r is 
.01 or larger. For r = .1 even a sample size of n = 272 will lead to significance (see for more 
examples Table 1).  

What follows is: “Tell me the number of asterisks or the level of type-I-risk, respec-
tively, that you would like and I will tell you the sample size you need to obtain significance 
even for the case that  = .01”. There is however hardly any content relevance for a coeffi-
cient of determination < .1, that is  < .3162. 

Of course, many researchers are aware of this fact. In order to emphasize that a certain 
sample correlation coefficient r is (absolutely) appropriately high, some researchers “up-
grade” (as they think) their significant correlation coefficient by using asterisks: The more 
asterisks used, the lower the significance level (or the resulting p-value) is – “*” for  = .05, 
“**” for  = .01, and “***” for  = .001. Such researchers, as well as SPSS in its default 
setting, imply that a result with many asterisks is of more importance, as the correlation 
coefficient needs to be higher to result in significance, for instance, in the case of  = .01 
rather than in the case of  = .05. However, as already indicated this is only a question of 
sample size, not primarily a question of a relevant coefficient of determination, or of a rele-
vant effect. Hence, the “use of asterisks” does not exempt the researcher from interpreting 
the coefficient of determination. Therefore, we recommend always removing the tick (set by 
default in SPSS) in the box “flag significant correlations”, for then no asterisks and only the 
p-value are produced.

In general, the “use of asterisks” does not recognize the fact that any a-posteriori deter-
mination of an attractive (minimal) type-I-risk – in the sense of a significant result – still 
always means that the highest a-priori tolerable type-I-risk is accepted. Furthermore, given 
an actual relevant effect, a p-value that is too low indicates an uneconomic approach in de-
signing the experiment or survey because n is too large – the researcher is at fault because an 
even smaller sample size would have led to significance (cf. Rasch, Kubinger, Schmidtke & 
Häusler, 2004).

Table 1:
Sample sizes n needed to make a given sample correlation coefficient r and coefficient of 

determination r2 (in brackets) significant – for three levels of type-I-risk (one-sided alternative 
hypothesis).  

 type-I-risk 
r [r2] .001 .01 .05 

.005 [.000025] 381 980 216 476 108 223

.01 [.0001] 95 494 54 119 27 057

.05 [.0025] 3 818 2 165 1 084

.1 [.01] 953 541 272
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4. An alternative approach 

Rather than suggesting a new test we suggest an alternative approach to formulating the 
null-hypothesis.

The main problem herewith is that testing the null-hypothesis H0: = 0 against the alter-
native hypothesis H1:  0 (or one-sided for instance H1: > 0) does not correspond to any 
aspect of relevance. However, a state of the art statistical approach would be to design an 
empirical study, experiment or survey, as follows (cf. for example Rasch & Kubinger, 2006):  

fix , the type-I-risk 
fix , the type-II-risk  
fix , the minimal effect of relevance.  

Now the problem is only one of content: The researcher has to decide in advance which 
empirical result would entail any consequences of substantial importance. Yet researchers 
often fail to anticipate such content relevant effects. But at the very latest after the data has 
been analysed, he/she has to decide on the relevance or irrelevance. In the case of the corre-
lation coefficient, obviously few researchers would think of fixing the effect of relevance as
discussed above, that is = .1, even though it is possible to empirically reject H0:  = 0
because of an actual = .1. In other words, designing a study as indicated would mean that 
has to be fixed on a well reflected basis.

However, in doing so it seems proper to discuss the given null-hypothesis as well. As in-
dicated above, within the social sciences a  .3 and therefore a 2  .09 is seldom of any 
relevance. Hence, an alternative approach would be to test the pair of hypotheses H0: 0 < 

against H1: >  instead of H0: = 0 against H1: > 0. That is to use a composite null-
hypothesis instead of a simple one. Using this as an example we could for instance define the 
minimal effect of relevance in terms of the coefficient of determination  as follows: All 
values of  < .09 shall belong to that part of the region of parameters according to the given 
null-hypothesis H0; taking into account the risk that we will accept the null-hypothesis H0

erroneously we may decide that this happens only with a probability of .2 (the type-II-risk )
if  > .25. Consequently, the minimal effect of relevance amounts to ( = 2) = .25 – .09 = 
.16 and ( ) = .5 – .3 = .2. Having decided on this, we can now calculate the sample size 
needed.

There is only a technical statistical problem when using the null-hypothesis H0: 0 < 
. While an exact test for 0  exists which is based on a test-statistic with a known distri-

bution, this is not the case for 0 . The respective test-statistic u is only asymptotically 
normally distributed (see R.A. Fisher’s theorem in the Appendix). The test needs to trans-

form  as well as r as follows: 1 1ln
2 1

 and 1 1ln
2 1

rz
r

. Then 3nu z  is 

the respective asymptotically standard normally distributed test statistic. H0 will be rejected 
if 1u u , the 1 -quantile of the one-sided standard normal distribution.  

Unfortunately the SPSS menu does not offer this test. Therefore, we have provided the 
SPSS syntax for the calculation of u in Figure 3 of the Appendix to make this test available 
for every SPSS user.  
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In the hardly relevant case of a two-sided alternative hypothesis, that is to 

test 0 :H  against H1:
or

, we would only have to reject H0 if

1
2

u u .

5.  Properties of the test 

As already indicated the distribution of the test given in chapter 4 is only asymptotically 
known. In order to gain knowledge on the quality of approximation of the actual type-I-risk 
by using this distribution for small sample sizes, we carried out a simulation study. That 
disclosed that even for a relatively small n the asymptotic test has a monotonous increasing 
power function, with the maximum of the type-I-risk at  (cf. Fig. 1). The simulation was 
done for  = .05,  = .3 and n = 10, 20, ..., 80 by generating bivariate normal random vari-
ables with given correlation coefficients . The determination of the power function was 
done with arguments  varying in steps of .01 within the interval (0, 1). The result is an 
“empirical” power function which is compared with the theoretical power function of a test, 
based on an exact standard normal distributed test statistic u*. We found that the theoretical 
power is less than the empirical power (see again Fig. 1 for n = 10, 20, ..., 60 and see for n =
10, 20, ..., 1500 in Tab. 2 the empirical power function especially for =  = .3, which there-
fore meets the actual type-I-risk). Even for the relatively small sample size n = 40 the theo-
retical power function comes close to the empirical one, so that both cannot be visually dis-
tinguished.

Figure 1:
The power function of the test 

given in chapter 4. The em-
pirical power function is given 
in black, the theoretical one in 

grey.4
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4 The estimation of the actual type-I-risk is based on 200 000 simulations. 
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Table 2:
Actual values of the type-I-risk, act, of the asymptotic test for  = .3 depending on the sample 

size – the standard deviation included.5

Sample size act Standard deviation of act

10 .0537 .00059 
20 .0531 .00053 
30 .0525 .00054 
40 .0524 .00046 
50 .0520 .00046 
60 .0521 .00053 
70 .0519 .00039 
80 .0515 .00051 
100 .0514 .00032 
150 .0514 .00056 
200 .0511 .00050 
300 .0506 .00056 
400 .0507 .00039 
500 .0506 .00046 
750 .0506 .00043 

1000 .0505 .00036 
1500 .0503 .00061 

The higher power of the asymptotic test compared with the theoretical power means that 
in the region of the null-hypothesis the actual type-I-risk, act, exceeds the nominal type-I-
risk, nom = .05. In order to get an impression of how the given results depend on nom and ,
Table 3 gives act for n = 50.

Table 3:
Actual values of the type-I-risk, act, of the asymptotic test for three different  and three different 

nom (n = 50) – in brackets the standard deviation of act.
6

nom .01 .05 .10 
   

0  .0103 
(.00058)

.0503
(.00150)

.1004
(.00217)

.3  .0117 
(.00083)

.0520
(.00046)

.1025
(.00303)

.7  .0113 
(.00078)

.0545
(.00192)

.1074
(.00309)

                                                                                                                        
5 The estimation of the actual type-I-risk is based on 2 000 000 simulations; the respective standard deviation 

is based on 10 times 200 000 simulations. 
6 The estimation of the actual type-I-risk is based on 200 000 simulations; the respective standard deviation is 

based on 10 times 20 000 simulations. 
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The result is that there is always a higher actual value of the type-I-risk of less than 10 % 
of the nominal type-I-risk. For = .3, we therefore suggest that if one wants to be on the safe 
side with this asymptotic test then nom = .0465 should be used instead of .05, because this 
would lead to an act ~.05. This means we reject H0 if u > u(0.9535) = 1.6798. 

6. Sample size determination 

When designing an empirical study properly, the researcher is of course in a position to 
calculate the particular sample size that guarantees a certain type-I- and type-II-risk for a 
given effect size  which is fixed in advance. We will illustrate this in the following by using 
a numerical example, with the programme package CADEMO7.

As already discussed we will use = .3 as this gives a coefficient of determination of 
nearly 10 %. Within psychology, for instance, many variables correlate with each other 
around .3 although they are essentially interpreted as being independent – compare several 
personality questionnaire scales correlated with several intelligence subtests. Then we will 
use a type-I-risk  = .05 and a type-II-risk  = .2. Of course, such risks have to be consid-
ered as we do not want to investigate the whole population but only n members sampled 
randomly. Hence, we, for instance, fix = .2 because then an existing > + = .5 will not 
be overlooked with a probability of at least 1-  = .8. This means a coefficient of determina-
tion of 2 > .25 will only lead to accepting the null-hypothesis (H0: 0 < .3) with the prob-
ability of .2 at the most. Of course, a suitable alternative would be = .4 as then at least 
almost half of the variance would be explained.  

We calculate the respective minimal sample size n by using CADEMO and apply the 

One sample problem 
 Correlation Coefficient Test … 

which leads to Figure 4 (in the Appendix), where we confirm as already decided: alpha=
0.05 and beta= 0.20; and we have chosen r0 = 0.3 (= ) and lastly clicked on One-sided
r>r0+d and inserted d = 0.2 (= ). After pressing OK the result of n = 111 is calculated as 
shown in Figure 5 (in the Appendix).

To illustrate the advantage of this approach, we will give an empirical example8. The 
question is, whether or not a specific new intelligence subtest (Verbal Reasoning Test) corre-
lates with an other certain pertinent intelligence subtest (Applied Computing). In answering 
this question, all parameters are chosen as indicated. In fact, n = 111 persons were sampled. 
Figure 2 gives the listings from SPSS. The correlation coefficient is obviously significant in 
the sense that the null-hypothesis H0: = 0 is rejected. The researcher is persuaded that 
his/her type-I-risk is in accordance with .01, although it is only chosen when the result of the 
analysis is already known – this applies even more so if the tick in the box: “flag significant 
correlations” has not been removed, and the correlation coefficient is marked by two aster-
isks. Besides he/she is persuaded to believe in an impressive effect because of significance 

                                                                                                                        
7 a demonstration version of CADEMO which serves for this purpose is available at www.biomath.de (details 

for using CADEMO see at Rasch & Kubinger, 2006). 
8 We thank Karin Placek for making her data available to us (see for details Placek, 2006).
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even at this very low significance level, although may not differ very much from zero. In 
the best of the worst case scenario, the researcher would nevertheless interpret the estimated 
coefficient of determination of .22 (.4732) as about only a fifth of explained variance.  

Correlationen 

Applied
Computing Verbal Reasoning Test 

Pearson Correlation 1 ,473
Sig. (2-tailed) ,000

Applied Computing 

N 111 111
Pearson Correlation ,473 1
Sig. (2-tailed) ,000

Verbal Reasoning Test 

N 111 111

Figure 2:
SPSS listing of the Pearson correlation coefficient  

In comparison, applying the alternative approach, using the SPSS syntax given in Figure 
3, leads to a p = .0168, which is less than  = .05. Now, as we have designed the study and 
calculated the appropriate sample size, we reject H0: 0 <  .3 and accept H1: > .3. We are 
completely confident that each and every researcher will profit far more from this conclu-
sion, than from the mere information that the correlation coefficient is very probably not 
zero.

7. Discussion 

A naïve researcher who is interested in a correlation coefficient, the square of which 
shall explain at least 25% of the total variance, may have the idea of testing H0: 0 < .5
versus H1:  > .5 instead of using the approach suggested above. However, in doing this 
he/she is not taking the type-II-risk into consideration. This means, for instance, for a 
sample size of n = 20 that any sample correlation coefficient r between .5 and .7422 leads, 
with an unacceptably large probability of at least  = .5, to incorrectly accepting the null-
hypothesis – coin tossing would give the same rate of hits. Only the calculation of n accord-
ing to a predetermined , , and  guarantees a decision for one of the two hypotheses at 
known and generally acceptable risks.  

An eager researcher’s question still remains to be discussed: Why should he/she not test 
H0:  = 0 with a = .5 for the sample size determination, instead of testing H0: 0 <  .3 
with = .2 as proposed here? As a matter of fact, having decided for  = .05 and  = .2 only 
the sample size n = 24, instead of n = 111, would be needed. The answer is that in both cases 



Testing a correlation coefficient’s significance:
Using H0: 0 <  is preferable to H0:  = 0 

83

of planning the study we aim for an n that allows for a factually given > .5 to be discov-
ered by the test with at least the probability 1- . That is, if the null-hypothesis is accepted 
then we have to be aware of the fact that it is incorrectly accepted, in the long run, in up to 
20 % of such studies – given > .5 indeed. If, on the other hand, the null-hypothesis is re-
jected, this means that in the one case the data is compatible with > 0, but in the other case 
it is more concretely only compatible with > .3.

Finally, we have to point out that the description of “significant” for the approach given 
here should rather not be used due to the danger of misunderstandings. If indeed the null-
hypothesis is rejected, then it is better to interpret it as follows: “the correlation coefficient is 
significantly greater than ”.

Last but not least: In applying this approach no “use of asterisks” would lead a researcher 
astray, i.e. cause him/her to misinterpret the type-I-risk or even worse to overestimate the 
importance of a study as he/she misjudges the content relevance of a correlation coefficient 
> 0.

8. Final recommendations 

Summarising the suggested approach we recommend the following: 
A coefficient of determination less than  = 2 = .09 and a correlation coefficient less 
than  = .3 is of no considerable content relevance. 
Therefore, the null-hypothesis should be formulated as: H0: 0 < = .3, and the alter-
native hypothesis as H1: > .3. 
The type-I-risk may be fixed at = .05 and the type-II-risk at  = 0.2 for all cases of >

 + = .5. Consequently a sample size of n = 111 is needed. Testing the null-hypothesis 
can then be performed by the SPSS syntax command as it is given in Figure 3 in the Ap-
pendix .

For a few other values of , , , and the minimal sample sizes, according to CA-
DEMO, are given in Table 4 in the Appendix. 
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Appendix

Theorem (R.A. Fisher, 1921)
In the sequel 2;AN means asymptotically (i.e. for n ) normally distributed. 

If

1 1

2 2

n n

x y
x y

x y
 is a random sample from a two-dimensional normal distribution with corre-

lation coefficient then 1

2 2

1 1

n

i i
i

n n

i i
i i

x x y y
r

x x y y
 is a biased estimator of and

AN(

221
;

n
).

It is known that the asymptotic is very slow. The following Corollary gives a slightly 
better asymptotic: 

1 1ln
2 1

rz
r

 is AN 1 1 1ln ;
2 1 2 1 3n n

.

Additional Figures and Tables 

Figure 3:
SPSS syntax for testing H0:
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Figure 4:
Input for CADEMO for the calculation of n in order to test the (product moment) correlation 
coefficient according to given type-I- and type-II-risks and , respectively, and the effect of 

content relevance  (in CADEMO we have = d and = r0). 

Figure 5:
Result from CADEMO for the calculation of n in order to test the (product moment) correlation 

coefficient according to given type-I- and type-II-risks and the effect of content relevance 
(H0, 0 <  , > 0; and a one-sided alternative hypothesis). 



Testing a correlation coefficient’s significance:
Using H0: 0 <  is preferable to H0:  = 0 
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Table 4:
Minimal sample sizes needed for some selected values of , , , and

= .2 = .3 = .4

 = .2  = .4  = .2  = .4  = .2  = .4
.05 327 69 278 54 221 38 .01
.1 270 58 230 45 183 32 
.05 225 48 192 38 153 27 
.1 179 39 152 31 121 22 .05
.2 130 29 111 23 89 17 
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