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CML based estimation of extended Rasch models with the eRm package in R 
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Abstract 
This paper presents an open source tool for computing extended Rasch models. It is realized in R 

(R Development Core Team, 2006) and available as package eRm. In addition to ordinary Rasch mod-
els extended models such as linear logistic test models, (linear) rating scale models and (linear) partial 
credit models can be estimated. A striking feature of this package is the implementation of conditional 
maximum likelihood estimation techniques which relate directly to Rasch's original concept of specific 
objectivity. The mathematical and epistemological benefits of this estimation method are discussed. 
Moreover, the capabilities of the eRm routine with respect to structural item response designs are dem-
onstrated.  
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1. Introduction 
 
Item response theory (IRT) models have a long tradition in psychological testing. The 

most prominent model is the Rasch model formulated by Rasch in 1960. In the aftermath, 
various generalizations have been developed such as the linear logistic test model (LLTM; 
Scheiblechner, 1972; Fischer, 1973), the rating scale model (RSM; Andrich, 1978), the 
linear rating scale model (LRSM; Fischer & Parzer, 1991), the partial credit model (PCM; 
Masters, 1982), and the linear rating scale model (LPCM; Fischer & Ponocny, 1994). These 
models will be presented briefly in Section 2. A more detailed overview can be found in 
Fischer and Molenaar (1995), Mair and Hatzinger (2007), Rost (1988), and Rost and Straß 
(1992). Additional IRT models are presented in Embreston and Reise (2000), and Baker and 
Kim (2004). 

A common feature of the listed model family is that all of them can be estimated using 
conditional maximum likelihood (CML) methods. As will be described in Section 3, in addi-
tion to its persuasive mathematical properties this estimation technique is well founded from 
an epistemological point of view. 

A general problem in IRT modeling is the computational implementation in terms of 
software packages. Most of the packages are commercially distributed and thus the general 
availability is restricted. Additionally, the usability and the handling of some programs are 
not very transparent. Other programs are too restricted onto simple models and do not pro-
vide flexible issues like polytomous or longitudinal IRT models with possible treatment 
effects. The motivation for developing the eRm package (Mair & Hatzinger, 2006) was to 
provide an open source software which allows for the computation of various CML-based 
IRT models and to provide a flexible and usable interface to compute polytomous Rasch 
models with time and treatment effect. More features will be described in Section 4. 

 
 

2. Extended Rasch models 
 
The family of Rasch models implemented in the eRm package have the following com-

mon properties: Unidimensionality of the latent trait, sufficiency of the raw scores, parallel 
item characteristic curves (ICC), and local independence. For these models we introduced 
the terminus „extended Rasch models" as an umbrella term. 

Let X  be a data matrix made up by the responses of = 1, ,v n…  subjects to = 1, ,i k…  
items. Accordingly, the response of subject v  on item i  is denoted as vix . The basic model 
developed by Rasch (1960, 1980) is 
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where iβ  is the item parameter and vθ  the subject parameter. In the context of psychologi-
cal testing, iβ  is usually considered as item difficulty and vθ  as a person's ability. Basically, 
each item parameter can be reformulated by the linear combination  
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where jη  represents the so called "basic parameter". The corresponding weights ijw  have to 
be fixed a priori and form the design matrix W of dimension ( )k p× . Thus, the general form 
of Equation 2 is β = Wη . Equation 2 can be seen from two different angles: On the one 
hand this expression can be considered as a more parsimonious reparameterization of Equa-
tion 1 whereas on the other hand it can be regarded as a generalization of the basic Rasch 
model. For example, Scheiblechner (1972) used the (resulting) LLTM as a more parsimoni-
ous Rasch model to analyze a test on a set operation skills, i.e., >k p , such that each item 
parameter iβ  was composed by some other parameters describing "cognitive operations" jη  
(e.g., negation, disjunction, conjunction etc.). If <k p , the LLTM can be used as a linearly 
extended Rasch model by introducing the concept of virtual items in terms of time and 
treatment effects as given in Fischer (1995b). 

The Rasch model in its original form is limited to dichotomous items. For polytomous 
items with the same number = 0, ,h m…  of response categories per item, Andrich (1978) 
proposed the RSM 
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where the category parameters 0 , , mω ω…  describe the scoring which is considered to be the 
same for all items. 

For cases where the constant scoring property does not hold and/or the number of catego-
ries differs across the items, i.e., im  instead of m , the PCM as proposed by Masters (1982) 
may be appropriate, i.e., 
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where the ihβ 's describe item-category combinations. 

In analogy to the relation between the Rasch model and the LLTM, the linear extension 
of the β -parameters due to Equation 2 can be established for the RSM and the PCM as well. 
The resulting models are the LRSM (Fischer & Parzer, 1991) and the LPCM (Fischer & 
Ponocny, 1994). 
It is obvious that these models are hierarchically nested where the LPCM is the most general 
model and all other models are special cases (see Figure 1). This issue is important since 
once the likelihood expressions for the LPCM are established all other models can be esti-
mated using the same equations. The corresponding likelihood equations and first order 
derivatives as well as some discussion on computational aspects are given in Fischer and 
Ponocny (1994), the second order derivatives can be found in Mair and Hatzinger (2007). A 
general description of the CML estimation method is given in the following section. 
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Figure 1: Model hierarchy 

 
 

3. CML estimation and the relation to specific objectivity 
 
As mentioned in the introduction, the eRm package is limited to the family of extended 

Rasch models where CML estimation is applicable. Very general expressions of such CML-
compatible models are provided by Andersen (1995): 
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and 
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In the above equations, hφ  is the scoring function for category h . For the RSM, the 

LRSM, the PCM, and the LPCM =h hφ  whereas for the remaining models = 1hφ . 
It should be mentioned that already Rasch (1961) presented a polytomous generalization 

where, e.g, the well known 2-PL model (Birnbaum, 1968) fits into. However, for this general 
expression CML estimation is not possible, since the crucial condition for the use of CML is 
not fulfilled, i.e., sufficiency of the raw score. In other words, CML requires a person's raw 
score 

=1
= k

v vii
r x∑  to be a minimal sufficient statistic for vθ . 
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In the following sections we restrict our considerations to the basic Rasch model (except 
for one LLTM example). The reason is that the dichotomous Rasch model and its (dichoto-
mous) extensions such as the LLTM and the LLRA (linear logistic test model with relaxed 
assumptions; Fischer, 1977) are the only models which can be derived directly from the 
assumption of specific objectivity (see Fischer 1987, 1995a). Note that Irtel (1995) provides 
an extension to this concept allowing for additional models such as the 2-PL to be regarded 
within the framework of specific objectivity. However, a thorough treatment is beyond the 
scope of this paper. 

 
 

3.1 Mathematical properties of the CML estimates 
 
A variety of estimation approaches for IRT models in general and for the Rasch model in 

particular are available: the joint maximum likelihood (JML) estimation as proposed by 
Wright and Panchapakesan (1969) which is not recommended since the estimates are not 
consistent (see, e.g., Haberman, 1977). The basic reason for that is that the person parame-
ters θ are nuisance parameters; the larger the sample size, the larger the number of parame-
ters. 

A well-known alternative is the marginal maximum likelihood (MML) estimation (Bock 
& Aitkin, 1981): A distribution ( )g θ  for the person parameters is assumed and the resulting 
situation corresponds to a mixed-effects ANOVA: Item difficulties can be regarded as fixed 
effects and person abilities as random effects. Thus, IRT models fit into the framework of 
generalized linear mixed models (GLMM) as elaborated in de Boeck and Wilson (2004). By 
integrating over the ability distribution the random nuisance parameters can be removed 
from the likelihood equations. This leads to consistent estimates of the item parameters. 
Further discussions of the MML approach with respect to the CML method will follow. 

For the sake of completeness, some other methods for the estimation of the item parame-
ters are the following: Anderson, Li and Vermunt (2007) propose a Pseudo-ML approach, 
Molenaar (1995) and Linacre (2004) give an overview of various (heuristic) non-ML meth-
ods, and Bayesian techniques can be found in Baker and Kim (2004, Chapter 7). 

However, back to CML, the main idea behind this approach is the assumption that the 
raw score vr  is a minimal sufficient statistic for vθ . Starting from the equivalent multiplica-
tive expression of Equation 1 with = exp( )v vξ θ  and = exp( )i iε −β , i.e., 
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the following likelihood for the response pattern vx  for a certain subject v  results: 
 

 =1

=1

=1

( )( | , ) = = .
1 (1 )

k
r xv vi

x v ik vi
v i i

v v k
i v i

v i
i

P
ξ ε

ξ ε
ξ

+ ξ ε + ξ ε

∏
∏

∏
x ε  (8) 

 



CML based estimation of extended Rasch models with the eRm package in R 31 

Using the notation 1= ( , , )ky yy …  for all possible response patterns with 
=1

=k
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y r∑ , 

the probability for a fixed raw score vr  is 
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The crucial term with respect to numerical solutions of the likelihood equations is the 

second term in the numerator:  
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These are the elementary symmetric functions (of order r ). An overview of efficient 

computational algorithms and corresponding simulation studies can be found in Liou (1994). 
The eRm package uses the summation algorithm as proposed by Andersen (1972). 

Finally, by collecting the different raw scores into the vector r the conditional probability 
of observing response pattern vx  with given raw score vr  is  
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By taking the product over the persons (independence assumption), the (conditional) 

likelihood expression for the whole sample becomes 
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With respect to raw score frequencies rn  and by reintroducing the β -parameters, (12) 

can be reformulated as 
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where ix+  are the item raw scores. It is obvious that by conditioning the likelihood on the 
raw scores r, the person parameters completely vanish from the expression. As a conse-
quence, the parameters β̂  can be estimated without knowledge of the subject's abilities. This 
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issue is referred as person-free item assessment and we will discuss this topic within the 
context of specific objectivity in the next section. 

Pertaining to asymptotical issues, it can be shown that under mild regularity conditions 
(Pfanzagl, 1994) the CML estimates are consistent for n →∞  and k  fixed, unbiased,  
asymptotically efficient, and normally distributed (Andersen, 1970). For the computation of 
a Rasch model, comparatively small samples are sufficient to get reliable estimates (Fischer, 
1988). Whether the MML estimates are unbiased depends on the correct specification of the 
ability distribution ( )g θ . In case of an incorrect assumption, the estimates are biased which 
is surely a drawback of this method. If ( )g θ  is specified appropriately, the CML and MML 
estimates are asymptotically equivalent (Pfanzagl, 1994). 

Fischer (1981) elaborates on the conditions for the existence and the uniqueness of the 
CML estimates. The crucial condition for the data matrix is that X  has to be well-
conditioned. To introduce this issue it is convenient to look at a matrix which is ill-
conditioned: A matrix is ill-conditioned if there exists a partition of the items into two non-
empty subsets such that all of a group of subjects responded correctly to items 1, ,i k+ …  
( 2X ) and all of all other subjects failed for items 1, ,i…  ( 3X ), i.e., 
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Thus, following the definition in Fischer (1981): X  will be called well-conditioned if in 

every possible partition of the items into two nonempty subsets some subjects have given 
response "1" on some item in the first set and response "0" on some item in the second set. In 
this case a unique solution for the CML estimates β̂  exists. 

This issue is important for structurally incomplete designs which often occur in practice; 
different subsets of items are presented to different groups of persons = 1, ,g G…  where 
G n≤ . As a consequence, the likelihood values have to be computed for each group sepa-
rately and the joint likelihood is the product over the single group likelihoods. Hence, the 
likelihood in Equation 13 becomes 
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This also implies the necessity to compute the elementary symmetric functions separately 
for each group. The eRm package can handle such structurally incomplete designs. 

From the elaborations above it is obvious that from an asymptotical point of view the 
CML estimates are at least as good as the MML estimates. In the past, computational prob-
lems (speed, numerical accuracy) involved in calculating the elementary symmetric func-
tions limited the practical usage of the CML approach (see, e.g., Gustafsson, 1980). Nowa-
days, these issues are less crucial due to increased computer power. 

In some cases MML estimation has advantages not shared by CML: MML leads to finite 
person parameters even for persons with zero and perfect raw score, and such persons are not 
removed from the estimation process (Molenaar, 1995). On the other hand the consideration 
of such persons does not seem meaningful from a substantial point of view since the person 
parameters are not reliable anymore - for such subjects the test is too difficult or too easy, 
respectively. Thus, due to these covering effects, a corresponding ability estimation is not 
feasible. However, if the research goal is to find ability distributions such persons should be 
regarded and MML can handle this. 

When estimates for the person parameters are of interest some care has to be taken if the 
CML method is used since person parameters cancel from the estimation equations. Usually, 
they are estimated (once having obtained values for the item parameters) by inserting β̂  (or 
equivalently ε̂ ) into Equation 8 and solving with respect to θ. Alternatively, Bayesian pro-
cedures are applicable (Hoijtink, 1995). It is again pointed out that each person in the sample 
gets an own parameter even though limited by the number of different raw scores. From this 
perspective, IRT models in general and the Rasch model in particular fit nicely into the 
framework of person-oriented research proposed by Bergman, Magnusson, and El-Khouri 
(2003). 

 
 

3.2 CML and specific objectivity 
 
In general, the Rasch model can be regarded as a measurement model: Starting from the 

(nominally scaled) 0/1-data matrix X , the person raw scores vr  are on an ordinal level. 
They, in turn, are used to estimate the item parameters β which are on an interval scale pro-
vided that the Rasch model holds. 

Thus, Rasch models allow for comparisons between objects on an interval level. Rasch 
reasoned on requirements to be fulfilled such that a specific proposition within this context 
can be regarded as "scientific". His conclusions were that a basic requirement is the "objec-
tivity" of comparisons (Rasch, 1961). This claim contrasts assumptions met in classical test 
theory (CTT). A major advantage of the Rasch model over CTT models is the sample inde-
pendence of the results. The relevant concepts in CTT are based on a linear model for the 
"true score" leading to some indices, often correlation coefficients, which in turn depend on 
the observed data. This is a major drawback in CTT. According to Fischer (1974), sample 
independence in IRT models has the following implications: 
• The person-specific results (i.e., essentially θ) do not depend on the assignment of a 

person to a certain subject group nor on the selected test items from an item pool Ψ . 
• Changes in the skills of a person on the latent trait can be determined independently from 

its base level and independently from the selected item subset ψ ⊂ Ψ . 
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• From both theoretical and practical perspective the requirement for representativeness of 
the sample is obsolete in terms of a true random selection process. 

 
Based on these requirements for parameter comparisons, Rasch (1977) introduced the 

term specific objectivity: objective because any comparison of a pair of parameters is inde-
pendent of any other parameters or comparisons; specifically objective because the compari-
son made was relative to some specified frame of reference (Andrich, 1988). In other words, 
if specific objectivity holds, two persons v  and w  with corresponding parameters vθ  and 

wθ , are comparable independently from the remaining persons in the sample and independ-
ently from the presented item subset ψ . In turn, for two items i  and j  with parameters iβ  
and jβ , the comparison of these items can be accomplished independently from the remain-
ing items in Ψ  and independently from the persons in the sample. 

The latter is crucial since it reflects completely what is called sample independence. If 
we think not only of comparing iβ  and jβ  but rather to estimate these parameters, we 
achieve a point where specific objectivity requires a procedure which is able to provide 
estimates β̂  that do not depend on the sample. This implies that β̂ should be computable 
without the involvement of θ. From Section 3 it becomes clear that CML estimation fulfills 
this requirement: By conditioning on the sufficient raw score vector r, θ disappears from the 
likelihood equation and ( | )L β r  can be solved without knowledge of θ. This issue is referred 
to as separability of item and person parameters (see, e.g., Wright & Masters, 1982). Fur-
thermore, separability implies that no specific distribution should be assumed neither for the 
person nor for the item parameters (Rost, 2000). MML estimation requires such assumptions. 
At this point it is clear that CML estimation is the only estimation method within the Rasch 
measurement context fulfilling the requirement of person-free item calibration and, thus, it 
maps the epistemological theory of specific objectivity to a statistical maximum likelihood 
framework. Note that strictly speaking any statistical result based on sample observations is 
sample-dependent because any result depends at least on the sample size (Fischer, 1987). 
The estimation of the item parameters is "sample-independent", a term indicating the fact 
that the actually obtained sample of a certain population is not of relevance for the statistical 
inference on these parameters (Kubinger, 1989, p. 23). 

 
 

3.3 CML and Rasch model tests 
Another nice implication of CML estimates is that subsequent test statistics are readily 

obtained and model tests are easy to carry out. Basically, we have to distinguish between 
tests on item level and global model tests. 

On item level, sample independence reflects the property that by splitting up the sample 
in, e.g., two parts, the corresponding parameter vectors (1)β̂  and (2)β̂  should be the same. 
Thus, when we want to achieve "Rasch model fit” those items have to be eliminated from the 
test which differ in the subsamples. This important issue in test calibration can be examined, 
e.g., by using a graphical model test (Rasch, 1960) which will be illustrated in Section 4.2. 
Fischer and Scheiblechner (1970) propose a (0,1)N -distributed test statistic which compares 
the item parameters for two subgroups: 
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The variance term in the denominator is based on Fisher's function of "information in the 

sample”. However, as Glas and Verhelst (1995) point out discussing their Wald-type test that 
this term can be extracted directly from the variance-covariance matrix of the CML esti-
mates. In the same article, other item-based tests can be found and corresponding recent 
Mantel-Haenszel approaches are proposed in Verguts and de Boeck (2001). 

The benefit of subsample invariance can also be taken into consideration when develop-
ing model fit statistics. In fact, Andersen (1973) derived his LR-statistic based on the under-
lying principle of subgroup homogeneity in Rasch models: For arbitrary disjoint subgroups 

= 1, ,t T…  the parameter estimates ˆ
tβ  should coincide. Andersen's LR-statistic is given by  
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This statistic is asymptotically 2χ -distributed with df  equal to the number of parame-

ters estimated in the subgroups minus the number of parameters in the total data set. Another 
test statistic is proposed by Martin-Löf (1973) which is equivalent to the 1cR -statistic by 
Glas (1988). These model tests are based on the observed and expected frequencies based on 
the number of subjects belonging to raw score group t  ( = 1, ,t T… ) and giving a positive 
response to item i  ( = 1, ,i k… ). More CML-based tests can be found in Glas and Verhelst 
(1995) and a recent taxonomy is given in Mair (2006). 

Thus, application of CML methods facilitates the testing of specific item fit as well as 
global model fit. Furthermore, additional item-based hypotheses can be examined in a 
straightforward manner. 

 
 

4. The eRm package 
 
4.1 Features of the eRm package 

 
When developing the eRm (extended Rasch modeling) package, the aim has been to pro-

vide a freely available open source tool to compute CML based Rasch models. A natural 
choice was the implementation within the statistical analysis and programming environment 
R (R Development Core Team, 2006), an open source implementation of the powerful statis-
tical programming language S. The basic program can be downloaded from http://CRAN. 
R-project.org). Once R is installed, the eRm package can be downloaded and installed easily 
from the console, and by typing help(eRm) the help files can be examined. An introduc-
tory reference to R is the book by Venables and Smith (2002). 

Embedding eRm into the flexible framework of R is a crucial benefit over existing stand-
alone programs like WINMIRA (von Davier, 1998), LPCM-WIN (Fischer & Ponocny-
Seliger, 1998), and others. The results can be processed towards performing additional cus-
tomized statistical analyses and computations, results tailored to one's specific needs can be 
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exported into various formats. In addition, R provides a very powerful plot engine (see 
Murell, 2005) such that the user can easily produce customized plots. 

Furthermore, the R system is platform independent, i.e., can be used with diverse operat-
ing systems, binary distribution are avalaible for MS Windows (NT, 95 and later),  
MacOS(X), and various Linuxes. Last but not least, R and all installable packages (about 
1000 user contributed and maintained packages, covering most recent statistical technology) 
on CRAN are completely open source. This implies that users have also full access to the 
source code. 

Another important issue in the development phase was that the package should be flexi-
ble enough to allow for CML compatible polytomous generalizations of the basic Rasch 
model such as the RSM and the PCM. In addition, by introducing a design matrix concept 
linear extensions of these basic models should be applicable. This approach resulted in in-
cluding the LLTM, the LRSM and the LPCM as the most general model into the eRm pack-
age. For the latter model the CML estimation was implemented which can be used for the 
remaining models as well (see Section 2). A corresponding graphical representation is given 
in Figure 2. 

An important benefit of the package with respect to linearly extended models is that for 
certain models the design matrix W  can be generated automatically (LPCM-WIN, Fischer 
& Ponocny-Seliger, 1998, also allows for specifying design matrices but in case of more 
complex models this can become a tedious task and the user must have a thorough under-
standing of establishing proper design structures). For repeated measurement models time 
contrasts in the eRm can be simply specified by defining the number of measurement points, 
i.e., mpoints. To regard group contrasts like, e.g., treatment and control groups, a corre-
sponding vector ( groupvec) can be specified that denotes which person belongs to which 
group. However, W  can also be defined by the user. 

 
 

 
 

Figure 2: Bodywork of the eRm routine 
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A recently added feature of the routine is the option to allow for structurally missing val-
ues. This is required, e.g., in situations when different subsets of items are presented to dif-
ferent groups of subjects as described in Section 3.1. These person groups are identified 
automatically: In the data matrix X , those items which are not presented to a certain subject 
are declared as NAs, as usual in R. 

After solving the CML equations by the Newton-Raphson method, the output of the rou-
tine consists of the "basic" parameter estimates η̂ , the corresponding variance-covariance 
matrix, and consequently the vector with the standard errors. Furthermore, the ordinary item 
parameter estimates β̂  are computed by using the linear transformation ˆ ˆβ = Wη  For ordi-
nary Rasch models these basic parameters correspond to the item difficulties. It has to be 
mentioned that the CML equations are solved with the restriction that one item parameter has 
to be fixed to zero (we use 1 = 0β ). For the sake of interpretability, the resulting estimates β̂  
can easily be transformed into "sum-zero" restricted ˆ∗β  by applying *ˆ ˆ ˆ= /i i ii

kβ β − β∑ . This 
transformation is also used for the graphical model test. 

In addition, in eRm several model tests are implemented as well as a likelihood approach 
to estimate the person parameters θ̂ . As Hoijtink (1995) showed in his simulation studies, 
Bayesian approaches provide estimates with higher testing power. It is planned to implement 
such methods in a future version. 

 
 

4.2 Application examples for dichotomous extended Rasch models 
 
The illustrations here are limited to an ordinary Rasch model and a more parsimonious 

LLTM on the same data. Finally, it is pointed out how the goodness-of-fit of the LLTM can 
be evaluated. The corresponding R commands are provided. The artificial data matrix X  
consists of = 15n  persons and = 5k  items. It has the following structure: 

 
> head (lltmdat) 
 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    1    0    0    1    1 
[2,]    0    1    1    0    1 
[3,]    0    1    0    1    1 
[4,]    1    1    1    0    0 
[5,]    1    1    0    1    1 
[6,]    1    0    1    0    0 
        ... 

 
For estimating the item parameters of a Rasch model on these data, type the following 

commands: 
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> resrm <- RM(lltmdat)  
> print(resrm) 
 
log-likelihood:  -31.12782 
 
             eta 1     eta 2      eta 3     eta 4 
Estimate 0.4944233 0.2446510 -0.2486053 0.2446510 
Std.Err  0.7080855 0.7006709  0.7064579 0.7006709 
 

To apply Andersen's LR-test the summary method can be used as follows. 
 
> summary(resrm) 
 
Results of RM fit 
 
number of iterations:  7  
log likelihood:  -31.12782  
df =  4  
 
Item Parameters: 
 
        Estimate Std. Error    z value  Pr(>|z|) 
eta 1  0.4944233  0.7080855  0.6982537 0.4850186 
eta 2  0.2446510  0.7006709  0.3491667 0.7269641 
eta 3 -0.2486053  0.7064579 -0.3519039 0.7249103 
eta 4  0.2446510  0.7006709  0.3491667 0.7269641 
 
 
Model fit (Andersen test): 
 
LR statistic = 4.046001   df = 4  p = 0.399816  
 
Obviously, the Rasch model holds. Coevally, this is a necessary condition for the fit of a 

more parsimonious LLTM.  
The artificial design matrix W for an LLTM may be 
 
     [,1] [,2] 
[1,]    1    2 
[2,]    2    2 
[3,]    1    1 
[4,]    3    1 
[5,]    2    1 
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The parameter estimates for the LLTM are 
 
> reslltm <- LLTM(lltmdat, lltmdes)  
> print(reslltm) 
 
log-likelihood:  -31.65225 
 
               eta 1     eta 2 
Estimate -0.09775528 0.1141153 
Std.Err   0.31296154 0.4779269 
 
To complete the examination of the LLTM model fit, a graphical model test could be 

performed by plotting the sum-zero restricted parameter estimates of the Rasch model �
( )RM
iβ  

against the LLTM estimates �
( )LLTM
iβ  

 
> x <- scale(resrm$betapar, scale = FALSE)  
> y <- scale (reslltm$betapar, scale = FALSE) 
> L <- max(abs(x), abs(y))  
> plot(x, y, main = "Graphical LLTM Model Test", xlab = 

"Beta RM",  
+ ylab = "Beta LLTM", xlim = c(-3, 3), ylim = c(-3, 3), 

type = "n") 
> text(x, y)  
> abline(0, 1) 
 
An inspection of the graphical model test (see Figure 3) shows no dramatic deviations, 

the parameter estimates are not too distant from the diagonal and thus no violation with 
respect to LLTM homogeneity must be be assumed. Hence, the parameter restrictions im-
posed in W are acceptable. 

Further eRm computational examples for polytomous item responses and additional 
time/group contrasts can be found in Mair and Hatzinger (2007). 

 
 

5. Discussion 
 
In this paper the open source package eRm implemented in R was introduced. This pack-

age uses the CML approach to estimate the item parameters. Benefits of this method were 
pointed out both from a mathematical and from an epistemological point of view. 

 



P. Mair & R. Hatzinger 40 

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

Graphical LLTM Model Test

Beta RM

B
et

a 
LL

TM

1 23
4 5

 
 

Figure 3: Graphical Model Test 
 
 
The main purpose of this article was to provide some basics and methodological consid-

erations as our motivation for developing such a package. Therefore, only a fraction of the 
implemented features was mentioned. A more detailled description can be found in the refer-
ence manual (Mair & Hatzinger, 2006). Important recently added features are the treatment 
of structurally incomplete data and the estimation of person parameters. Amongst other 
extensions, future versions will implement Bayesian approaches to estimate person parame-
ters (see Hoijtink, 1995) as well as person and item fit indices (Smith, 2004) based on the 
residuals. 

Further models that fit into the eRm framework and could be implemented are the fol-
lowing: The linear logistic model with relaxed assumptions (Fischer, 1977), abbreviated to 
LLRA, dispenses the uni-dimensionality requirement of the RM. The reparameterization 

=:v i viθ −β θ  leads to a generalization of the RM with viθ  as independent trait parameters. 
Applications of this model for the analysis of change as well as the formal equivalence of the 
LLRA and the LLTM (by introducing the concept if virtual persons) are described in Fischer 
(1995b). Due to this equivalence, CML estimation can be applied. In combination with the 
EM-algorithm, the CML approach can also be used to estimate mixed Rasch models (MIRA) 
which emanate from latent class analysis (Formann, 1984). The basic idea behind such mod-
els is that the extended Rasch model holds within subpopulations of individuals (i.e., latent 
classes), but with different parameter values for each subgroup (for details see, e.g, Rost & 
von Davier, 1995). Finally, the implementation of the one parameter logistic model (OPLM; 
Verhelst & Glas, 1995) could be an issue. This is a simplification of the 2-PL model with 
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respect to a fixed item discrimination parameter and consequently, CML estimation is still 
applicable. 
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