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A plea for more general tests than those for location only:  
Further considerations on Rasch & Guiard’s 

‘The robustness of parametric statistical methods’ 

WOLFGANG T. WIEDERMANN1 & RAINER W. ALEXANDROWICZ 

Abstract 
Starting with the discussion between Rasch & Guiard (2004) and von Eye (2004) concerning the 

use of parametric and nonparametric tests for the comparison of two samples a further approach toward 
this question is undertaken. Student’s t-test requires for its application interval scaled and normally 
distributed data along with homogeneous variances across groups. In case that at least one of these 
prerequisites is not fulfilled, common statistical textbooks for social sciences usually refer to the non-
parametric Wilcoxon-Mann-Whitney test. Earlier simulation studies revealed the t-test to be rather 
robust concerning distributional assumptions. The current study extends these findings with respect to 
the simultaneous violation of distributional and homogeneity assumptions. A simulation study has 
shown that both tests lead to highly contradicting results, and a more general approach toward the 
question of whether parametric or nonparametric procedures should be used, is introduced. Results 
indicate that the U-Test seems to be in general a more proper instrument for psychological research. 
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1. Introduction 
 
The comprehensive article of Rasch & Guiard (2004) provides a detailed overview con-

cerning the robustness of parametric procedures. One aspect of their work leads to the con-
clusion that there is no further need for the Wilcoxon-Mann-Whitney test, that is why they 
recommend t-test due to its robustness. In a commentary, von Eye (2004) stresses the point 
that the exclusive use of the t-test might be inappropriate due to its sensitivity regarding 
autocorrelation of values. In their reply, Guiard & Rasch (2004) clearly worked out that the 
same is true for the nonparametric test and therefore conclude: “Summarising we still think 
there are more disadvantages than advantages in using the Wilcoxon test in place of the 
t-test.” (Guiard & Rasch, 2004, p. 553). This far-reaching conclusion raises the question 
whether the t-test might preserve its favourable properties even for more extreme distribu-
tional aberrations, which it was not designed for. In detail, we investigate the behavior of the 
t-test in comparison to the U-test in the presence of simultaneous violations of both distribu-
tional and homogeneity assumptions.  

Rasch & Guiard (2004; referring to Posten, 1978) address the comparison of means (i.e. 
the “location hypothesis” H0: µx = µy). Their results are based on distributions with positive 
and negative values of skewness over 0 ≤ γ1 ≤ 2.0 and kurtosis over 1.4 ≤ γ2 ≤ 7.8. We have 
decided to extend these values by using the lognormal distribution (γ1 = 6.19; γ2 = 113.93). 
Our choice reflects (i) the fact that in the context of psychological research (heavily) skewed 
distributions are likely to occur and (ii) depicts such extreme aberrant cases as mentioned 
above. Examples for lognormally distributed variables are given in e.g. Sachs & Hedderich 
(2006) and Limpert, Stahel, & Abbt (2001).  

 
 

2. The two-sample problem 
 
Given two independent, normally distributed samples and homogeneous variances to-

gether with interval scaled values, Student’s t-test is the most powerful test (Pitman, 1948, as 
cited in Randles & Wolfe, 1979). Given the same conditions the asymptotic relative effi-
ciency (ARE) of the most powerful nonparametric tests is .955 compared with the t-test, 
which means that sample size of the nonparametric procedure must be increased by about 
4.5% to achieve the same efficiency as the parametric procedure (cf. Randles & Wolfe, 
1979; Nikitin, 1995). Numerous studies have dealt with the adequacy of Student’s t-test if at 
least one assumption is violated. In case of unequal variances it has been shown that Stu-
dent’s t-test is only robust if sample sizes are equal (cf. Hsu, 1938; Scheffé, 1970; Posten, 
Yeh & Owen, 1982; Tuchscherer & Pierer, 1985; Zimmerman & Zumbo, 1993a, 1993b; 
Bradstreet, 1997; Zimmerman, 2004). If both sample size and variances are unequal, the 
Welch t-test (Welch, 1938, 1947), which does not pool the variances, is referred to as an 
adequate procedure. 

The same reactions are observable in the case of more than two groups, where it is well 
known that the ANOVA F-test is only usable for equal sample sizes (cf. Box, 1954). A pro-
cedure which overcomes the lack of robustness, if sample sizes differ is discussed in e.g. 
Welch (1951) and Brunner, Dette, & Munk (1997). 

The parametric significance tests mentioned above depend on the normality assumption, 
which is – as Micceri (1989) impressively pointed out – rarely satisfied in practice. In this 
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case common textbooks (e.g. Aron, Aron, & Coups, 2006) refer to the nonparametric Wil-
coxon-Mann-Whitney U-Test (Wilcoxon, 1945; Mann & Whitney, 1947), although theoreti-
cal findings by Bartlett (1935) and systematic examinations by e.g. Boneau (1960) and Pos-
ten (1978, 1984) emphasize the robustness of Student’s t-test under non-normality.  

Since the efficiency of parametric methods depends on the adequacy of the estimation of 
location parameters, Wilcox (1992, 2005a, 2005b) refers to the Yuen-Welch t-test (Yuen, 
1974), which uses trimmed location and winsorized scale parameters for the computation of 
the test-statistic. Because trimming the samples reduces the impact of outliers, the risk of an 
inadequate estimation of location decreases. In order to take such corrective action into ac-
count too, this test will also be considered in the present study. 

 
 

3. Method 
 
A simulation study permits a systematic investigation of different violation conditions. 

For this purpose equally distributed pseudorandom numbers in the interval [0, 1] were gen-
erated by means of the Mersenne-Twister random number generator introduced by Matsu-
moto & Nishimura (1998). Standard normal variates were generated using the Box & Muller 
transformation (Box & Muller, 1958). These samples were used for the case of normally 
distributed data. For the analysis of skewed samples lognormal distributions were generated 
as follows: normally distributed samples were generated as described above and variables x 
and y underwent the following modifications: (i) x’ = exp(x) and y’ = exp(y); (ii) for each 
simulation condition k=10,000 samples of x’ and y’ were generated; (iii) the means 'ˆ xµ and 
standard deviations 'ˆ xσ of these samples were averaged (obtaining the grand means 
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= . The same procedure was applied to y’. This simulation tech-

nique is based on a contribution of Zimmerman (2004). It differs slightly from our procedure 
in the sense, that Zimmerman standardized x’ and y’ using the theoretical mean and standard 
deviation of the lognormal distributions instead of the empirical ones. Henceforth we use the 
symbols x and y for both (a) the original normal distributed samples and (b) for the log-
normal samples x” and y” as described above. For a detailed description of non-normal 
variates and their higher moments see e.g. Evans, Hastings, & Peacock (2000). 

The scores of the sample x were multiplied by a constant so that the ratio σx/σy had a pre-
determined value. After these modifications the samples were evaluated with Student’s t-test, 
the Welch t-test, the Yuen-Welch t-test, and the Mann-Whitney U-test. Equal (Nx = Ny = 
10...(10)...100) and unequal (Nx [Ny] = 10 [20], 20 [50], 50 [100], 20 [10], 50 [20], 100 [50]) 
sample sizes were taken into account. All significance tests were nondirectional with a sig-
nificance level of α = .05. For determining the robustness of the significance tests an ε-
robustness of 20% was chosen. This means that a test is only robust if the relative frequency 
of rejecting the null hypothesis lies between .04 and .06 (cf. Rasch & Guiard, 2004). Each 
condition included 10,000 replications. Generation and analysis of the data was done in R 
2.3.1 (R Development Core Team, 2006) and performed on a 1.60 GHz Intel Pentium M 
processor. 
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4. Results and discussion 
 
4.1 Equal sample sizes 
 

For normally distributed data and homogeneous variances all results were close to the 
nominal significance level. The Type I error rates for the Wilcoxon-Mann-Whitney-test are 
slightly above the significance level when sample size and the ratio σx/σy increase (Table 1, 
upper half).  

The results for lognormal samples (Table 1, lower half) and equal variances indicate that 
the parametric procedures are quite robust for at least moderate sample sizes, whereas the 
Wilcoxon-Mann-Whitney test also preserves the nominal significance level for even small 
samples. For the case of unequal variances, the relative frequencies of rejecting H0 of all 
tests under consideration generally increase with sample size and the ratio σx/σy. But the 
Yuen-Welch t-test and the Wilcoxon-Mann-Whitney test do this to a much larger extent than 
Student’s t-test and the Welch-test. 

 
Table 1: Relative frequencies of rejecting H0 for equal sample sizes. 

(Dist=Distribution, N=Normal, LN=Lognormal, tst = Student, tw = Welch, ty.1 = Yuen (10% trimmed), 
ty.2 = Yuen (20% trimmed), U = Mann-Whitney, α = 5%, non-robust results are marked italic.) 
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4.2 Unequal sample sizes 
 
Table 2 shows the relative frequencies of rejecting H0 for unequal sample sizes. In the 

case of normally distributed samples with homogeneous variances, the Type I error rates are 
close to the nominal significance level of α = 5%. As the SD ratio (σx/σy) increases, two 
reactions of Student’s t-test can be observed: The Type I error rates rise far above the nomi-
nal significance level if the larger variance is associated with the smaller sample size. If the 
larger variance is associated with the larger sample size, the probability of a Type I error 
declines below the significance level. The Wilcoxon-Mann-Whitney test suffers from the 
same phenomenon (although to a lower extent), while the Welch t-test overcomes this prob-
lem entirely. For skewed samples with unequal variances the U-test as well as the Yuen-
Welch t-test show quite similar but less extreme results compared with the case of equal 
sample sizes. 

The results of the different significance tests can be summarised as follows. On the one 
hand Student’s t-test is quite robust for non-normal data with homogeneous variances. This 
is consistent with the theoretical findings of Bartlett (1935) and simulation results of Posten 
(1978, 1984) and Rasch & Guiard (2004). The same is true for the Wilcoxon-Mann-Whitney 
test (Zimmerman & Zumbo 1993a; Zimmerman, 1998). Furthermore our results are in ac-
cordance with the well-known fact that Student’s t-test preserves the nominal significance 
level for normally distributed samples with heterogeneous variances if sample sizes are equal 
(Posten, Yeh, & Owen 1982; Tuchscherer & Pierer, 1983), while the Type I error rates of the 
Wilcoxon-Mann-Whitney test are slightly above the nominal significance level (Trommer, 
1965).  

 
 

Table 2:  
Relative frequencies of rejecting H0 for unequal sample sizes. (Dist=Distribution, N=Normal, 

LN=Lognormal, tst = Student, tw = Welch, ty.1 = Yuen (10% trimmed), ty.2 = Yuen (20% trimmed),  
U = Mann-Whitney, α = 5%, non-robust results are marked italic.) 
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If sample sizes are unequal the Type I error rates of Student’s t-test rise above the nomi-
nal significance level if the larger variance is associated with the smaller sample, and de-
clines if the larger variance is associated with the larger sample (Hsu, 1938; Boneau, 1960 
and Posten et al., 1982). The Wilcoxon-Mann-Whitney test shows the same distortion but to 
a lesser extent (Zimmerman & Zumbo 1993a), while the Welch t-test protects the nominal 
significance level, which is in accordance with the results of Rasch & Guiard (2004), who 
therefore recommend the latter one for testing H0: µx = µy given unequal sample sizes. 

For heterogeneous variances combined with skewed samples the parametric and non-
parametric procedures show entirely different reactions (Stonehouse & Forrester, 1998, and 
Zimmerman, 2004). The fact that the U-test rejects the H0 without any difference in means 
can be explained through the specific calculation processes of the tests. Student’s t-test in-
deed compares the sample means, i.e. the difference in location, while the Wilcoxon-Mann-
Whitney test examines the samples including all ranks, i.e. the difference in shape. That is 
the reason why this test is more robust against violations of normality. The heavily skewed 
distributions combined with unequal variances lead to a considerably increased rate of rejec-
tion of H0: F(x) = F(y), which is exactly the H0 of the Wilcoxon-Mann-Whitney U-test and 
reflects the differences in shape. The larger the ratio of standard deviations (e.g. σx/σy = 3), 
the less Student’s t-test and the U-test are comparable – even if there are no violations of the 
normality assumption. 

The Yuen-Welch t-test occupies a position between Student’s t-test and the U-test. This 
test uses trimmed means, which leads to larger differences in means. Accordingly, the rela-
tive frequencies of rejecting H0 are between those of Student’s t-test and the U-test. The 
effect based on sample shape is also reflected in the differences in trimmed means, but to a 
lesser extent. A rejection of the null hypothesis of equal trimmed means (H0: µtx = µty) does 
not imply that the untrimmed means also differ. This further indicates that the probability of 
rejecting H0 is also a function of trimming. These results differ from those found by Kesel-
man, Wilcox, Kowalchuk, & Olejnik (2002) because in their studies the trimmed population 
means were transformed to be equal, while in the present simulation there was no difference 
between the untrimmed population means. 

A closer inspection of how small a difference in standard deviations has a relevant im-
pact upon the portion of significant results given lognormal distributions was performed in a 
further simulation. For that purpose very small ratios σx/σy (1.05, 1.10, and 1.15) were in-
duced for equal sample sizes of 50..(50)..200 (results are given in table 3).  

 
Table 3:  

Relative frequencies of rejecting H0 for lognormal-distributed samples. (tst = Student, tw = Welch,  
ty.1 = Yuen (10% trimmed), ty.2 = Yuen (20% trimmed), U = Mann-Whitney, α = 5%, non-robust results 

are marked italic.) 
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Even such negligible ratios of standard deviations lead to a systematic increase of rejec-
tions of a “false” or, as the case may be “another” null hypothesis by the U-test. The relative 
frequency of rejecting H0 is a function of both the ratio of standard deviations and the sample 
size, which is in accordance with e.g. Zimmerman (2003). Furthermore even in case of mod-
erate sample sizes and irrelevant SD ratios (such as Nx = Ny = 100 and σx/σy = 1.05) the pro-
portion of significant results rises markedly above the significance level of α = .05. Even for 
small samples (Nx = Ny = 25) the probability of rejecting H0 increases far above the nominal 
significance level (cf. figure 1). 

 
 

 
 

Figure 1: 
Relative frequencies of rejecting H0 as a function of the ratio of standard deviations for 

lognormal samples (Nx = Ny = 25) 
 
 

5. Conclusion 
 
Numerous previous studies have analyzed the robustness of Student’s t-test and the Wil-

coxon-Mann-Whitney test. Rasch & Guiard (2004) mention that the Wilcoxon-Mann-
Whitney test can be used for testing H0: µx = µy if samples do not differ in higher moments 
and they conclude that there is no need to use the U-test because Student’s t-test is robust for 
non-normal distributions. 

The aim of the present study was to test whether the conclusion of Rasch & Guiard 
(2004) that the t-test is robust under non–normality conditions can be generalized to the case 
of extreme non–normality along with heterogeneity of variances. The results clearly show 
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that parametric and nonparametric tests lead to different decisions: e.g. given a σx/σy of 1.1 
and a sample of Nx = Ny = 100, Student’s t-test has 4.8% significant results while the Wil-
coxon-Mann-Whitney U-test rejects H0 more than twice that often (11.6%). In terms of 
robustness Student’s t-test can be regarded as robust, while the Wilcoxon-Mann-Whitney U-
test cannot. But the non-robustness of the latter one could be seen from another direction: we 
want to raise the question whether the location hypothesis (H0: µx = µy) of Student’s t-test is 
what psychologists really are interested in? Maybe a psychological investigation is being 
considered successful when researchers are able to find a more general kind of difference. 
Consider the case that an intervention study using a two-group design leads to a higher pro-
portion of patients showing an improvement but the distribution becomes skewed. The dif-
ference in means might underestimate the true effect of this intervention due to a remaining 
portion of patients showing no improvement or even a worsening. Similarly, a training pro-
gram can be effective for some of the students (in this case an effect is given from a global 
point of view), but for others not. (Of course, more complex analyses might be indicated, 
e.g. estimation of a mixture model, but we would like to restrict our considerations to the 
amply used two-sample comparison). From a technical perspective psychologists are rather 
interested in the H0: F(x) = F(y) than H0: µx = µy. From that point of view the higher propor-
tion of significant results of the Wilcoxon-Mann-Whitney U-test mentioned above could also 
be seen as the higher power of the test to find differences aside of location.  

Moreover, as Micceri (1989) convincingly argued the normality assumption is seldomly 
realized. In addition, slightest departures from σx/σy = 1 are likely to occur, so the results 
presented here seem to apply more often than one might expect. Obviously, this effect in-
creases with both sample size and skewness. Regarding the interests of psychological re-
search our conclusion would be that the U-test seems superior for general usage. Here we are 
in line with Siegel (1956), who wrote “I believe that the nonparametric techniques of hy-
pothesis testing are uniquely suited to the data of the behavioral sciences” (p. vii). 

Another important fact is that the t-test – although robust – loses power for various non-
normal distributions. The ARE of the Wilcoxon-Mann-Whitney test with respect to Stu-
dent’s t-test is 1 for uniformly distributed samples, 1.097 for logistic distributions and 1.5 for 
Laplace (double exponential) distributions (cf. Randles & Wolfe, 1979). This power advan-
tage has repeatedly been shown by various simulation studies (e.g. Blair & Higgins, 1980; 
Posten, 1982; Zimmerman & Zumbo, 1990; Zimmerman & Zumbo, 1993a). And even if the 
seldom case of normal distributions along with homogeneous variances should occur and the 
t-test would be indicated then, the U-test used instead still exhibits an ARE of 95.5%. Con-
sidering the modification of the U-Test proposed by Berchtold (1979), an ARE of 99.2% is 
possible, which seems rather useful for psychological research.  
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