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A note on the analysis of difference patterns - structural zeros by design 

ALEXANDER VON EYE1 & EUN YOUNG MUN 

Abstract 
The method of finite differences is popular in the analysis of series of measures, because it allows 

one to analyze the shape of the curve that describes the series, and changes in the shape. In addition, it 
allows one to relate these changes to covariates. In the analysis of categorical variables, researchers can 
cross the sign patterns of first, second, and higher differences. In this note, it is shown that crossing sign 
patterns from different levels results in contingency tables with systematically large numbers of struc-
tural zeros. In addition, a simple algorithm is proposed that allows one to identify impossible combina-
tions of sign patterns. Examples are presented using empirical and random number-generated data that 
are analyzed using log-linear models and Configural Frequency Analysis. 
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In behavioral research, measurement and analysis of change are of importance in many 
contexts. For example, intervention and therapy are concerned with changes in behavior over 
time. This applies accordingly to prevention and education. The number of methods of 
analysis of change is large. Among these, the method of finite differences plays a prominent 
role. It can be used for a number of important purposes. The following five applications are 
most prominent. First, the method allows one to determine a polynomial function that either 
fits or sufficiently approximates a series of values (for a description of this technique, see 
Zurmühl, 1965; for applications, see von Eye, 2002). Second, it allows one to identify and 
correct errors in a series of measures (Hermite interpolation; see, e.g., Zurmühl, 1965). 
Third, the method can be used to devise numerical solutions of partial differential equations 
(Smith, 1986). Fourth, the method has been used in the context of modeling. McArdle and 
collaborators (McArdle, 2001; McArdle & Hamagami, 2001) have devised structural models 
of developmental change that are based on latent first difference scores. Fifth, the method 
has been used to describe the shape of trajectories over time (Krauth,1973; Lienert & Krauth, 
1973 a, b). The present note is concerned with characteristics of the patterns that result when 
the signs of the differences are used. That is, this note examines the method of differences in 
the context of categorical data analysis. Specifically, (1) it will be shown that, when differ-
ences of various orders are categorized, the resulting cross-classifications contain structural 
zeros by design (that is, cells that, by definition, cannot contain any cases), and (2) an algo-
rithm will be presented that allows one to identify those patterns that are structural zeros. 
Effects of these structural zeros include constraints when it comes to modeling the resulting 
cross-classifications or performing configural analyses. 

 
 

1. The method of differences 
 
There exist many variants of the method of finite differences (see Zurmühl, 1965). Here, 

we use the method of finite ascending differences (MFAD) as an example. The following 
arguments apply accordingly to any of the methods of differences. Consider a series of I 
measures, X, with values xi and i = 1, ..., I. Then, the MFAD creates first differences as ∆1, j = 
xj + 1 - xj, for  j = 1, ..., I - 1, second differences as  ∆2, k = ∆1,k + 1 - ∆1, k, for k = 1, ..., I - 2, and 
so forth. If a series of measures can be described using a polynomial of lth order, with l ≤ I - 
1, the lth differences are constant, and all higher-order differences are zero. Consider the 
data example in Table 1. The table shows, in the second line, the values of the 3rd-order 
polynomial 2 325 3 2 0.6y x x x= + + + , for values of X from 0 to 6, in steps of 1. In the fol-
lowing rows, it shows the first, second, and higher differences. Obviously, the third differ-
ences are constant, and the fourth differences are zero. 
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Table 1: 
First and higher differences for series of six values for the polynomial 

2 325 3 2 0.6y x x x= + + +  
 

X 0 1 2 3 4 5 6 
f(X) 25 30.6 43.8 68.2 107.4 165 244.6 

 ∆j 5.6 13.2 24.4 39.2 57.6 79.6  
 ∆2, k 7.6 11.2 14.8 18.4 22   
 ∆e, l 3.6 3.6 3.6 3.6    
 ∆4, m 0 0 0     

 
 
Figure 1 displays the series of the raw scores (circles), first differences (x symbols), sec-

ond differences (+ signs), and third differences (triangles). Clearly, with increasing order, the 
differences become smaller. 
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Figure 1:  

First and higher differences for a third order polynomial 
 
 

2. Patterns of differences 
 
In the analysis of empirical data, the numerical value of differences itself often is either 

not interpretable, e.g., when ordinal scales are used, or not of interest. Instead, researchers 
may ask whether change is positive (∆ > 0) or negative (∆ < 0)2. To analyze patterns of 
positive and negative change, differences of any order are sign-transformed such that: 

 
                                                                                                                         
2 For the following considerations, we will not consider the case in which ∆ = 0. However, the following 

arguments apply accordingly to this case. 
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(Lienert & Krauth, 1973 a, b). Alternative transformations have been discussed (for an over-
view, see von Eye, 2002). 

Now, in the analysis of repeated observations, researchers often ask questions concerning 
change patterns. To perform analyses, researchers cross the signed variables. That is, vari-
ables indicating first and higher differences are crossed. 

Data example. For the following example, we use data from a study on the development 
of aggression in adolescents (Finkelstein, von Eye, & Preece, 1994). In this study, 38 boys 
and 76 girls in the UK were asked to respond to an aggression questionnaire in 1983, 1985, 
and 1987. The average age at 1983 was 11 years. One of the dimensions of aggression exam-
ined in this study was Physical Aggression against Peers (PAAP). In the present example, we 
analyze the development of PAAP from 1983 to 1987. 

In the present example, a single variable is observed three times. For this series of meas-
ures, two indicators of first differences can be created (∆1,1 = Time 2 - Time 1, and ∆1,2 = 
Time 3 - Time 2) and one indicator of second differences (∆2,1 = ∆1,2 - ∆1,1). Each of these 
indicators is sign-transformed as described above and, thus, dichotomous. Crossed, these 
three indicators span a 2 x 2 x 2 contingency table. This table has the cell indices 000, 001, 
010, 011, 100, 101, 110, and 111. Table 2 displays this cross-classification for the present 
sample data. In a first analysis, we perform a first order Configural Frequency Analysis 
(CFA) which uses the log-linear main effect model for a base model (for a discussion of 
CFA base models, see von Eye, 2004). For the CFA, the z-test was used, and the Bonferroni-
adjusted α* = 0.00625. 

The log-linear main effect fails to describe the data well. It comes with the LR-X2 = 
81.27 which suggests significant model - data discrepancies (df = 4; p < 0.01). Indeed, the 
CFA suggests that two types (over-frequented cells) and two antitypes (under-frequented 
 

 
Table 2: 

CFA and log-linear analysis of first and second differences of Physical Aggression against 
Peers, observed three times 

 

Configurationa          ijkm         ˆ ijkm                     z                   p             Type/Antitype? 

     000         25    27.622      -.499   .30892591 
     001         21    21.580      -.125   .45034337 
     010          0    12.238     -3.498   .00023422    Antitype 
     011         25     9.561      4.993   .00000030    Type 
     100         33    16.729      3.978   .00003474    Type 
     101          0    13.069     -3.615   .00015012    Antitype 
     110          6     7.412      -.518   .30206214 
     111          4     5.790      -.744   .22844302 

a The first two digits indicate the first differences (linear changes), the third digit indicates the second 
differences (quadratic changes); ijkm  indicates the observed frequencies for Cell ijk, and ˆ ijkm  indicates the 
estimated expected frequencies for Cell ijk. 
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cells) exist. The first type is constituted by Configuration 011. This pattern describes an 
initial decrease in physical aggression that is followed by an increase. This pattern has a 
positive quadratic trend as is indicated by the ‘1’ for the second difference. The second type, 
constituted by Configuration 100, shows just the opposite curvature. It describes an initial 
increase that is followed by a decrease in physical aggression. It thus has a negative quad-
ratic trend, indicated by the ‘0’ for the second differences. 

The two antitypes are most interesting for the present purposes. The first indicates that 
not a single adolescent showed a decrease that is followed by an increase and, overall, a 
negative quadratic trend (Configuration 010). The second indicates that no one showed an 
initial increase, followed by a decrease in tandem with an overall positive quadratic trend 
(Configuration 101). It only makes sense that nobody showed these patterns. The first anti-
type would be a ∪-shaped curve that is, simultaneously, ∩-shaped. The second antitype 
would be a ∩-shaped curve that is, simultaneously, ∪-shaped. Neither is logically possible. 
Because of this pattern of contradictory shapes, the cells 010 and 101 must be declared struc-
tural zeros. 

The effort to fit a standard hierarchical log-linear model, under consideration of the two 
structural zeros, to the cross-classification in Table 2 is futile. Without the two structural 
zeros, the hierarchical model with all two-way interactions would have described the data 
close to perfectly (LR-X2 = 0.31; df = 1; p = 0.58). However, this model assigns expected 
frequencies for the cells with structural zeros. Taking into account the structural zeros does 
not lead to a fitting model that is more parsimonious than the saturated model. More specifi-
cally, declaring cells 010 and 101 structural zeros has the effect that the log-linear model 
with all two-way interactions is left with no degrees of freedom. Removing any of the two-
way interactions leads to 1-df models, none of which fits. Therefore, we now recalculate the 
CFA after declaring these two cells structural zeros. The results of the CFA appear in Table 
3. For this CFA, the z-test and the first order base model were used again. However, the 
Bonferroni-adjusted α* is now less extreme (α* = 0.0083) because six instead of eight sig-
nificance tests are performed. 

 
 

Table 3: 
CFA and log-linear analysis of first and second differences of Physical Aggression against 

Peers, observed three times; structural zeros taken into account 
 

Configurationa         ijkm         ˆ ijkm                    z                    p             Type/Antitype? 

    000         25    30.784     -1.042   .14859511 
    001         21    26.406     -1.052   .14639006 
    010          0      -           -         - 
    011         25    13.810      3.011   .00130113    Type 
    100         33    21.810      2.396   .00828479    Type 
    101          0      -           -         - 
    110          6    11.406     -1.601   .05471897 
    111          4     9.784     -1.849   .03221839 

a The first two digits indicate the first differences, the third digit indicates the second differences (quadratic 
changes)  
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As in the first analysis, the first order CFA main effect base model fails to describe the 
data well (LR-X2 = 22.12; df = 2; p < 0.01), and we obtain two types. These types are the 
same as in Table 2. What used to be antitypes are now structural zeros, with zero probabili-
ties. 

In the next section, we discuss the problem with impossible shape patterns in more detail. 
 
 

3. Structural zeros by design 
 
The following considerations are based on the connection between the method of differ-

ences and polynomials. Consider the polynomial of order n, 
2
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where the ai are the unknown polynomial coefficients, and x is the variable used to pre-
dict the dependent measure. The orientation of a polynomial is determined by the sign of the 
last non-zero coefficient. For example, in a regression line, the sign of the regression pa-
rameter indicates whether the orientation is positive (line has positive slope) or negative 
(negative slope). This applies to polynomials of any order. Consider, for example, the poly-
nomial 2 34 2 .25y x x x= + + + . The left panel of Figure 2 displays this polynomial. The right 
figure displays this polynomial after the sign of the last term was changed to be negative. 
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Figure 2:  

Polynomial  2 34 2 .25y x x x= + + ±  
 
 
Clearly, the orientation of the polynomial in the left panel (last coefficient positive) is 

positive, and the orientation of the polynomial in the right panel (last coefficient negative) is 
negative. Now, for the following considerations, we use the fact that the signs of differences 
also indicate the orientation of a polynomial. Consider the polynomial in the left panel. Cal-
culating the difference between the last and the second-last y-values yields a positive score, 
indicating that the orientation of the curve is, at the end of the series of measures, positive. 
Accordingly, the difference between the last and the second last y-values in the right panel 
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yields a negative score, indicating that the orientation of the curve is negative. This applies 
to first differences as well as differences of any order. In addition, this applies to any of the 
differences within a series, because first differences correspond to first derivatives. 

Now, in the application of the method of differences in the context of categorical vari-
able analysis, researchers can cross sign patterns from differences of different orders, thus 
analyzing the linear, quadratic, cubic etc. elements of series of measures simultaneously. 
This strategy has the effect that all possible combinations of sign patterns are included in the 
analysis. Unfortunately, as was illustrated in the last section, all impossible combinations are 
included also. 

Definition: Combinations of sign patterns are impossible if lower-order and higher-order 
signs suggest different orientations of a series of measures. 

This applies to patterns of difference signs of any order. We now ask how to detect im-
possible sign patterns. To answer this question, we propose an iterative procedure in which 
all candidate patterns for contradictory description of orientation are examined. Candidates 
are all sign patterns that indicate a change in orientation (from + to - or vice versa). Patterns 
that show constant signs do not need to be considered. Now, let ∆1,j and ∆1,j+1 be the first 
differences between the adjacent measure pairs xj+1 and xj, and xj+2 and xj+1, respectively, for j 
= 1, ..., I-1, and ∆2,k the corresponding second difference, that is, ∆1,k+1 - ∆1,k. Let sgn ∆1,j, sgn 
∆1,j+1, and sgn ∆2,k be the signs of these differences. 

 
Step 1: Compare each pair of sgn ∆1,j and sgn ∆1,j+1 with the corresponding sgn ∆2,k. If 

both sgn ∆1,j ≠ sgn ∆1,j+1 and sgn ∆1,j+1 ≠ sgn ∆2,k, then the pattern is impossible. For example, 
if the sign pattern “+-“ at a given difference level is combined with sign “+” at the next 
higher level, the sign pattern is impossible. The first differences would indicate a negative 
orientation, whereas the second difference would indicate a positive orientation. Accord-
ingly, the sign pattern “-+” at a given level cannot be combined with the sign “-“ at the next 
higher level. If a sign pair is classified as impossible, proceed to the next sign pattern. If a 
sign pattern is impossible, all other patterns that could be combined with the impossible 
pattern are impossible also. 

Step 2: Proceed to the next pair of signs, and start over, at Step 1. Continue until all pat-
terns of signs are completed. 

 
This procedure can be applied to sign patterns of all levels. If a researcher decides to skip 

levels, the procedure can be adjusted. For example, pattern “+-” at level k cannot go with the 
sign “-” at level k+2. For example, assuming k indicates first differences and k + 2 indicates 
third differences, the sign pattern “+ - +” for first differences and “+” for third differences 
would indicate the trends depicted in the left panel of Figure 2. For x-values of -10, -5, 0, 
and 5, the left panel in Figure 2 results in the sign pattern “+ - +” for the three first differ-
ences, “- +” for the two second differences, and “+” for the sole third difference. The first 
signs indicate an initial increase that is followed by a decrease, and then an increase. The 
second differences signs indicate that the rate of change is initially decelerated and, in later 
phases, accelerated. The third difference indicates an increase in acceleration. In contrast, 
consider the series 9, 15, 10, 6. For this sequence, the first differences sign pattern is “+ - -”, 
the second differences sign pattern is “- +” and the corresponding third difference has the 
sign “+”, thus indicating a ∩-shaped trend. For this series, a negative sign for the third dif-
ference would be impossible. 
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In the following example, we analyze an artificial data set. Four random variates (say, a 
time series of four scores) were created using SYSTAT’s uniform random number generator 
URN. The data set includes 500 cases. Up to third differences can be calculated. For this 
data set, the three first differences and the two second differences were calculated. None of 
these was constant, as one would expect from random variates. The differences were trans-
formed into 0 - 1 patterns as described above, with 0 indicating negative or zero differences 
and 1 indicating positive differences. The resulting dichotomous variables were crossed to 
span a contingency table with 25 = 32 cells. This table is reproduced in the Appendix. Each 
of the possible patterns in this table has a frequency greater than 0. Each impossible pattern 
has a frequency of zero. 

To illustrate the algorithm described above, we now ask whether four sample cells in this 
table are possible, or constitute structural zeros. The results of this analysis are given in 
Table 4. 

 
 

Table 4:  
Search for structural zeros in a 25 cross-classification that is spanned by three first and two 

second differences 
Sign pattern level 

1st  2nd  
Pattern compared 
1st vs. 2nd  

Overall decision for 
pattern 

0 0 0 0 0 0 0 - 0   possible 
0 0 - 0   possible 

 
possible 

0 0 1 0 0 0 0 - 0   possible 
0 1 - 0   impossible 

 
structural zero 

0 0 1 0 1 0 0 - 0   possible 
0 1 - 1   possible 

 
possible 

0 1 1 0 0 0 1 - 0   impossible 
1 1 - 0   impossible 

structural zero 
structural zero 

 
 
The rows of the table can be read as follows. From the first sign pattern (left column), we 

take the first two entries (e.g., 0 0, in the first row), and compare them to the first entry of the 
second difference sign pattern (0, in the first row). If the second entry of the first differences 
is equal to the sole entry of the second differences sign pattern, the shape of the curve is 
described in a compatible way, and we can move on to the next entries of the same row. In 
the present case, we compare the second two entries of the first differences sign pattern (0 0), 
in the first row and compare it with the second entry of the second differences sign pattern 
(0, in the first row). If these are compatible, we are done with the first pattern and can come 
to a decision. If all comparisons indicate that these are possible patterns, the entire pattern is 
possible. If only one pattern is impossible, we have to treat the entire pattern as a structural 
zero. 

Table 4 shows the four decision scenarios that are encountered when deciding whether a 
sign pattern that includes signs from difference levels k and k + 1 must be treated as a struc-
tural zero. The first of these scenarios (first pair of rows) involves all zeros at the level of 
first differences. Whenever the sign pattern at level k is constant, any combination with sign 
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patterns at the k + 1st  level of differences is possible (for all possible scenarios of this exam-
ple, see the Appendix). 

The second scenario (second pair of rows) shows that, for some sign patterns, the two 
comparisons suggest different conclusions. In this case, the impossible supersedes the possi-
ble, and the pattern must be treated as a structural zero. 

In contrast, in the third scenario (third pair of rows) all comparisons suggest the same 
conclusion, although the sign patterns are not constant. In this case, all comparisons show 
that the pattern is possible, and the pattern can contain cases. It should be noted that all com-
parisons need to be made only if, before the last, there is none that would suggest an impos-
sible pattern. 

The fourth scenario (fourth pair of rows) shows why this is the case. As soon as a pattern 
is identified as impossible, the following comparisons are unnecessary. 

If a pattern is impossible, all following patterns, taking higher order differences into ac-
count, will be impossible also. If, however, a pattern is possible, some of the following pat-
terns, taking higher order differences into account, may be impossible nevertheless. 

In all, of the 32 cells in the present example, 14 are impossible. The log-linear main ef-
fect model (base model for first order CFA) that ignores the structural zeros has 26 degrees 
of freedom. The model that takes the structural zeros into account has 12 degrees of freedom. 
Accordingly, also taking the third differences signs into account, yields a table with 64 cells. 
The main effect model for this table has 57 degrees of freedom when the structural zeros are 
ignored, and 11 degrees of freedom when the structural zeros are taken into account. That is, 
this table contains 46 structural zeros. 

 
 

4. Discussion 
 
The analysis of differences is attractive because it allows one to examine change, and 

variations in change, in the form of ups and downs in a series of measures, adopting a pattern 
analysis perspective. Taking higher order differences into account, statements can be made 
about the shape of the series of measures. In the context of latent variable modeling, second 
differences have been modeled by Hamagami, McArdle, Nesselroade, Ferrer, and Boker 
(2003). In addition, indicators of shape can be related to each other as well as to other classi-
fication variables or covariates, and variable-oriented and person-oriented analyses can be 
performed. 

The present note shows that, in the complete crossing of sign patterns from different lev-
els of finite differences, a large number of structural zeros will always and systematically 
result. In many cases, structural zeros are not overly problematic, and standard software 
(e.g., Lem, Splus, SYSTAT) allows one to take them into account. However, three problems 
render matters complicated. First, structural zeros almost always lead to incomplete designs. 
Therefore, the interpretation of log-linear parameters can be complicated (Mair, 2006; Mair 
& von Eye, in press). Second, the models that can be fitted will have to be far less complex 
than the number of variables and size of the cross-classification would allow otherwise. This 
was illustrated in Table 3, above, for which no fitting model was found after the structural 
zeros were taken into account. Therefore, data analysis, in particular modeling such data, 
may end up in non-fitting models. Accordingly, not all CFA base models may be possible or 
admissible. For example, the base model of second order CFA requires that all first order 
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associations be taken into account. If, because of the many structural zeros, the required 
parameters cannot be estimated, this CFA model cannot be applied. 

Matters are complicated further by a characteristic of signs of differences that has been 
explicated before (von Eye, 2002). Signs of differences come with a priori probabilities that 
do not necessarily correspond with the marginal proportions. Therefore, if researchers wish 
to take these a priori probabilities into account, additional vectors need to be included in the 
design matrix. Each of these vectors costs one degree of freedom. Therefore, the complexity 
of possible log-linear models or CFA base models is reduced even more, and the option of 
including covariates becomes increasingly remote. 

Another issue inherent in the analysis of difference scores is that differences of raw 
scores that come with measurement error are often unreliable (Lord, 1963). Von Eye (1982) 
showed that the reliability is not consistently low. Instead, it varies with (1) the reliability of 
the individual measures and (2) the retest reliability. In contrast, differences from Rasch-
scaled scores and from physiological measures have better characteristics. The same often 
applies to rank differences. 

To conclude, the analysis of cross-classifications of sign patterns that are based on finite 
differences of different order suffers from problems that are caused by possibly large num-
bers of structural zeros. Structural zeros and, possibly, taking a priori probabilities into ac-
count, constrain the models that can be fit to the data to be rather simple. 
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Appendix 
 
Cross-tabulation of three first and two second differences signs (artificial data, 500 cases; 

all zeros in the table are structural zeros) 
 

T2T1a      T3T2      T4T3      S21     |      S22 

                                       | 0           1 
---------+---------+---------+---------+------------------------- 
0         0         0         0        |       2.000      10.000 
                              1        |       6.000       5.000 
                                       + 
                    1         0        |       0.000      27.000 
                              1        |       0.000      32.000 
---------+---------+---------+---------+------------------------- 
          1         0         0        |       0.000       0.000 
                              1        |     107.000       0.000 
                                       + 
                    1         0        |       0.000       0.000 
                              1        |      27.000      31.000 
---------+---------+---------+---------+------------------------- 
1         0         0         0        |      30.000      31.000 
                              1        |       0.000       0.000 
                                       + 
                    1         0        |       0.000     104.000 
                              1        |       0.000       0.000 
---------+---------+---------+---------+------------------------- 
          1         0         0        |      38.000       0.000 
                              1        |      29.000       0.000 
                                       + 
                    1         0        |       2.000       8.000 
                              1        |       8.000       3.000 
---------------------------------------+------------------------- 
a T2T1 indicates the sign of the difference between measures T1 and T2, T3T2 indicates the sign of the 
difference between measures T2 and T3, etc.; S21 indicates the sign of the second difference of T2T1 and 
T3T2 etc. 

 




