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Abstract 
We examined the performance of two versions of the multiple-indicator correlated traits-correlated 
(methods – 1) [CT-C(M – 1)] model (Eid et al., 2008) in terms of convergence, improper solutions, 
parameter bias, standard error bias, and power to detect misspecified models. We also studied 
whether Yuan et al.’s (2015) correction procedure for the maximum likelihood chi-square model fit 
test yields accurate Type-I error rates and adequate power for these models. The models performed 
well except for underestimated standard errors for some parameters in specific small-sample condi-
tions. Yuan et al.’s (2015) chi-square correction worked well for correctly specified models but 
showed limited power to detect misspecified models in small-sample, low-reliability conditions. We 
recommend that researchers using these models in smaller samples select highly reliable indicators. 
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Multitrait-multimethod (MTMM) analysis (Campbell & Fiske, 1959) is frequently used to 
study construct validity in the social sciences. The MTMM approach uses a measurement 
design in which multiple traits T are assessed with multiple methods M (e.g., different rater 
types, tests, or physiological measures), resulting in T × M measured variables (e.g., items, 
test score variables, questionnaire ratings, physiological scores).3 The convergent and dis-
criminant validity of different measures can be assessed based on the intercorrelations of 
the variables included in the MTMM design. Correlations between variables that share the 
same trait but not the same method (so-called monotrait-heteromethod correlations) can 
be used to examine the degree of convergent validity across methods, with high correla-
tions indicating strong convergent validity (agreement between methods). Correlations be-
tween measures that do not share the same trait can be used to examine discriminant va-
lidity. High correlations between measures of different traits within the same method (so-
called heterotrait-monomethod correlations) indicate a lack of discriminant validity that is 
potentially due to the presence of shared method (e.g., halo) effects. 
Modern approaches to MTMM analysis typically use models of confirmatory factor anal-
ysis (CFA) because of their ability to (a) correct for measurement error (unreliability) in 
the measures, (b) separate variance components due to trait, method, and error influences, 
and (c) relate method factors to one another as well as to external variables. In the present 
study, we examined the performance of two multiple-indicator CFA-MTMM models 
through simulations. 

CFA-MTMM Models 

Early CFA-MTMM models were based on a single measured variable Ytm (t = trait, m = 
method) per trait-method combination as in Campbell and Fiske’s (1959) original MTMM 
design with T × M variables. Single-indicator CFA-MTMM models have been described 
in detail by, for example, Eid (2000); Lance, Noble, and Scullen (2002); Marsh (1989); 
and Widaman (1985). 
Marsh and Hocevar (1988; see also Eid, Lischetzke, Nussbeck, & Trierweiler, 2003; 
Marsh, 1993) pointed out limitations of single-indicator CFA-MTMM models. Perhaps 
the most serious problem of single-indicator models is that most of them include only one 

                                                                                                                         
3 From the perspective of latent state-trait (LST) theory (Steyer, Mayer, Geiser, & Cole, 2015), the term 

“trait” implies a construct that is solely driven by person-specific influences with no situational variation. 
In cross-sectional data, trait (person-specific) influences cannot be separated from situation or person-
situation interaction influences. Therefore, LST theory would consider the constructs studied in cross-
sectional MTMM analysis to be states (a blend of person, situation, and interaction influences) rather than 
pure traits. In contrast, in classical MTMM analysis, the term “trait” refers more broadly to any construct 
that a researcher may study, regardless of whether these constructs are trait-like (person-driven) or state-
like (situation-driven). Given that the term “multitrait-multimethod” is very well-established in the liter-
ature, we decided to use it in the present work. At the same time, we note that the traits considered in 
cross-sectional MTMM analysis are likely to contain both trait and state components. MTMM modeling 
extensions for longitudinal data (e.g., Geiser, Hintz, Burns, & Servera, 2019) allow disentangling these 
components. 
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general method factor per method, implying homogeneous (unidimensional) method ef-
fects across different traits for a given method. As a result, method effects are assumed to 
correlate perfectly (1.0) across different traits (e.g., biases associated with self-reports of 
extraversion would have to be perfectly correlated with the self-report biases for consci-
entiousness and the self-report biases for agreeableness). 
In a recent study, we found that the unidimensional-method assumption is not supported 
by empirical applications that have tested this assumption. In Geiser and Simmons (in 
press), we conducted a systematic review of 20 applications of different multiple-indicator 
CFA-MTMM models that reported a total of 111 different-trait, same-method method fac-
tor correlation estimates. In that study, we found that over 90% of the correlations were < 
|.90|. The average correlation was |.52|, with most estimates falling into a range between 
about |.30| and |.60|. Only one single correlation estimate was equal to 1.0. We were thus 
unable to find even a single application that would have been in line with the assumption 
of perfect generalization of method effects across traits for all methods—an implication of 
single-indicator models. When the assumption of perfectly general method effects is vio-
lated, convergent validity tends to be overestimated in single-indicator models, whereas 
method effects and reliability coefficients tend to be underestimated (Geiser & Simmons, 
in press). 

 

Figure 1: 
Multiple-indicator correlated traits-correlated (methods – 1) [CT-C(M – 1)] model with gen-

eral trait factors for a 2 traits × 3 methods design and three indicators per trait-method com-
bination. 
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Multiple-Indicator Correlated Traits-Correlated (Methods – 1) Models 

Marsh and Hocevar (1988; Marsh, 1993) were the first to introduce multiple-indicator ex-
tensions of CFA-MTMM models in which each trait-method unit is represented by two or 
more measured variables Yitm (i = indicator/observed variable/measure; i = 1, …, I). This 
results in a design with T × M × I measured variables. As a result of this extended design, 
there is enough information to identify separate method factors for each trait (so-called 
trait-specific method factors). Eid, Lischetzke, Nussbeck, and Trierweiler (2003) devel-
oped the multiple-indicator correlated traits-correlated (methods – 1) model [CT-C(M – 1) 
model; see Figure 1] that allows researchers to examine trait-specific method factors as 
well as estimate correlations between these factors to study the degree of generalization of 
method effects across traits. The multiple-indicator CT-C(M – 1) model thus does not re-
quire the assumption of perfectly general method effects within each method. 
One advantage of the CT-C(M – 1) approach is that the latent trait and method factors in 
this approach are explicitly defined based on conditional expectations of measured varia-
bles. As a result, all latent variables have a clear psychometric meaning and interpretation 
based on concepts of classical psychometric test theory (for details, see Eid, 2000; Eid et 
al., 2003; Geiser, Koch, & Eid, 2014; Koch, Eid, & Lochner, 2018). Other approaches in 
this tradition were presented by Pohl, Steyer, and Kraus (2008) as well as Pohl and Steyer 
(2010). In the present article, we focus on the CT-C(M – 1) approach as it was the most-
used approach in our recent literature review of applied multiple-indicator CFA-MTMM 
studies (Geiser & Simmons, in press). 
The CT-C(M – 1) model uses a “gold standard” or reference method approach in which 
M – 1 (non-reference) methods are contrasted against a reference method (Method 1 in 
Figure 1). No method factors are included for the reference method so that the trait factors 
are defined by the reference method. For example, van der Ende, Verhulst, and Tiemeier 
(2020) studied internalizing and externalizing problem behavior in adolescents using self-
reports, parent reports, and teacher reports and used self-reports as reference method. Van 
der Ende et al. (2020) thus contrasted the self-ratings against parent and teacher ratings. 
Greiff, Fischer, Wüstenberg, Sonnleitner, Brunner, and Martin (2013) examined the con-
vergent validity of different methods for measuring complex problem solving and used a 
specific task as reference method. Mazzetti, Schaufeli, and Guglielmi (2018) studied work-
aholism and work engagement with self- and coworker reports using self-reports as refer-
ence method. For detailed guidelines with respect to the choice of an appropriate reference 
method and the proper interpretation of the results, see Geiser, Eid, and Nussbeck (2008). 
We can see that the CT-C(M – 1) model in Figure 1 is for a design with two traits and three 
methods. In Figure 1, Method 1 serves as reference and thus does not include method 
factors. The model contains four trait-specific method factors Mtm; two for Method 2 and 
two for Method 3. Standardized trait factor loadings (indicated as λ in the present article) 
of the nonreference indicators quantify the degree of convergent validity relative to the 
reference method. Standardized method factor loadings (indicated δ in the present article) 
measure the degree of method specificity (discrepancy between a given nonreference 
method and the reference method). Trait factor correlations indicate discriminant validity 
with respect to the reference method. Method factor correlations within the same method 
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indicate the degree of generality of method effects across traits. Method factor correlations 
across different methods indicate to which extent non-reference methods share a common 
perspective above and beyond what each method shares with the reference method. Trait 
factors are not allowed to correlate with method factors pertaining to the same trait because 
method factors are defined as residuals with respect to the trait factors (Eid, 2000). Asso-
ciations between the reference method and the non-reference methods are captured by the 
standardized trait factor loadings of the non-reference indicators on the reference trait fac-
tors. 

 

Figure 2: 
Multiple-indicator CT-C(M – 1) model with indicator-specific trait factors for a 2 traits × 

3 methods design and three indicators per trait-method combination. 

In the context of multi-rater studies, different rater types often use the same or similarly 
worded questionnaires or items. For example, in a multi-rater study on depression, a child 
self-report item may be worded as “I often feel depressed” with the corresponding parent-
report item being “My child often feels depressed.” As a result of identical or at least 
similar item wording across rater types, item- or indicator-specific effects might carry over 
across raters resulting in the same items being more highly correlated across raters than 
items differing in content. To take indicator-specific effects into account, Eid et al. (2008) 
presented an extended version of the multiple-indicator CT-C(M – 1) model that includes 
indicator-specific trait factors (see Figure 2). In this model, each indicator has its own trait 
factor, and the indicator-specific trait factors can all be correlated. Of importance, trait 
factors pertaining to the same trait, but different indicators, do not have to be perfectly 
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correlated as is implied by models with general trait factors such as the model depicted in 
Figure 1. Nonetheless, correlations between indicator-specific traits are often substantial. 

Previous Studies Examining the Performance of Multiple-Indicator CFA-
MTMM Models 

Even though multiple-indicator models are more flexible and imply more realistic assump-
tions about method effects than do single-indicator models, relatively little is known about 
their applicability and performance across a wide range of conditions. In addition, there 
appear to be relatively few applications of multiple-indicator models to date. In our sys-
tematic review (Geiser & Simmons, in press), we were only able to identify 20 applications 
with correlated trait-specific method factors most of which were reported as part of meth-
odological papers. Perhaps applied researchers are unsure about these models given how 
little is known about their performance. In addition, it is well known from various appli-
cations and simulation studies that single-indicator CFA-MTMM models can be prone to 
estimation problems such as nonconvergence and improper parameter estimates (Eid, 
2000; Kenny & Kashy, 1992; Marsh, 1989). Multiple-indicator models are more complex 
and include more parameters than single-indicator models. Given the frequent occurrence 
of estimation problems with single-indicator CFA-MTMM models, it is important to gain 
more insights into the performance of multiple-indicator CFA-MTMM models as well, 
which appear to be promising alternatives to single-indicator models. To date, only few 
studies have examined the performance of multiple-indicator CFA-MTMM models under 
a limited set of conditions. 
Nussbeck, Eid, and Lischetzke (2006) studied the performance of the multiple-indicator 
CT-C(M – 1) model for ordinal indicators using mean and variance adjusted weighted least 
squares estimation (WLSMV). Geiser (2009) examined an extension of the multiple-indi-
cator CT-C(M – 1) model for longitudinal data using continuous indicators and maximum 
likelihood estimation. Both these studies found minimal parameter and standard error bias, 
but revealed issues with the accuracy of the chi-square test of model fit when simulating 
correctly specified multiple-indicator CT-C(M – 1) models. In Nussbeck et al.’s (2006) 
study, WLSMV chi-square tests of model fit were relatively accurate, but tended to show 
Type-I error rates that were somewhat lower than the nominal level of alpha (e.g., .01 
rather than .05). In contrast, in Geiser (2009), it was found that maximum likelihood chi-
square values were inflated and led to rejection of too many correctly specified models 
even in relatively large samples. Both studies examined only correctly specified models. 
The finding of an inflated chi-square statistic is well in line with the “model-size effect” 
that has consistently been found in studies of CFA models with many observed variables 
(indicators; Herzog, Boomsma, & Reinecke, 2007; Kenny & McCoach, 2003; Moshagen, 
2012; Shi, Lee, & Terry, 2018). These studies all revealed that as the number of observed 
variables included in a CFA model increases, the accuracy of the empirical chi-square 
approximation decreases in such a way that Type-I error rates increase (too many correctly 
specified models are rejected). This effect is particularly severe in samples of small to 
moderate size. 
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Multiple-indicator CFA-MTMM models by design use many observed variables. For ex-
ample, 27 indicators are used in the typical 3 Traits × 3 Methods design with three indica-
tors Yitm per trait-method unit. The multiple-indicator CT-C(M – 1) model with general 
trait factors for this design (see Figure 1) has 288 degrees of freedom. When more traits, 
methods, or indicators are used, the number of observed variables increases further. There-
fore, when applying multiple-indicator CFA-MTMM models, researchers must expect the 
model-size effect and run the risk of incorrectly rejecting correctly specified models too 
frequently unless they use a very large sample. This effect can cause researchers to erro-
neously abandon adequate models and/or to resort to unnecessarily highly parameterized 
alternative models that seemingly show a better fit. It is therefore important to study the 
performance of available correction procedures for the chi-square statistic that we discuss 
later in this article. 
The two previous studies examining multiple-indicator CFA-MTMM models that we 
know of (Geiser, 2009; Nussbeck et al., 2006) are limited in several ways. First, these 
studies included a rather limited set of conditions. Both studies examined only one set of 
parameter estimates that was derived from a single real data application, respectively. Sec-
ond, these studies did not examine the performance of correction procedures for the model-
size effect to find out whether more accurate chi-square tests of model fit could be obtained 
through such procedures. Third, previous studies only examined model versions with gen-
eral trait factors (Figure 1) that are frequently misspecified in actual empirical applications 
due to the presence of indicator-specific effects (i.e., less than perfectly unidimensional 
indicators). In practice, the more complex model version with indicator-specific trait fac-
tors (Figure 2) is often more adequate. Models with indicator-specific traits are even more 
complex in terms of the number and types of free parameters. To our knowledge, the per-
formance of models with indicator-specific trait factors has not yet been examined in sim-
ulation research. Fourth, previous studies only examined correctly specified models. 
Therefore, to date, nothing is known about the consequences of misspecification, including 
the question of whether the (corrected and uncorrected) chi-square statistics have sufficient 
statistical power to reveal such misspecifications. The present simulation study was de-
signed to shed more light on these questions. Below, we first discuss chi-square correction 
procedures for the model-size effect that have been proposed in the literature. Subse-
quently, we present the results of our simulation study of two different versions of the 
multiple-indicator CT-C(M – 1) model. 
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Correction Procedures for the Model-Size Effect 

When the number of variables in a confirmatory factor or structural equation model is large 
and the sample size is relatively small, the maximum likelihood chi-square statistic tends 
to over-reject correctly specified models (i.e., there is a Type-I error inflation in these 
cases; see discussion above). Several correction procedures have been proposed to adjust 
the chi-square statistic in these cases. These correction procedures are discussed in detail 
in Yuan, Tian, and Yanagihara (2015). The goal of all model-size correction procedures is 
to shrink the empirical chi-square statistic so that the corrected statistic will result in more 
accurate Type-I error rates that do not lead to an over-rejection of correctly specified mod-
els. Yuan et al. (2015) compared different procedures that are based on analytical solutions 
to an empirical correction procedure that these authors developed based on simulations. In 
Yuan et al.’s (2015) procedure, the empirical maximum likelihood chi square test statistic 
TML is corrected by multiplying TML with a correction factor e such that the corrected sta-
tistic TMLe = eTML, where e = [N – (2.381 + 0.361p + 0.006q)]/(N – 1), N indicates the 
sample size, p indicates the number of observed variables, and q indicates the number of 
free parameters estimated in the model. The larger p, the greater the shrinkage of the TML 
statistic according to this correction. In addition, the number of free parameters (q) also 
has a small impact on the chi-square statistic that is also considered through the correction 
factor e. 
Yuan et al. (2015) found that their empirical procedure outperformed previously described 
analytical correction procedures. A study by Shi et al. (2018) confirmed that the Yuan et 
al. (2015) empirical correction procedure performed best for simple-structure CFA models 
with a homogeneous loading pattern of the indicators (all indicators had equal loadings 
and low reliabilities of .49). In this article, we only studied the Yuan et al. (2015) correction 
given that it has been shown to outperform all previous procedures. 
Even though the Yuan et al. (2015) correction procedure appears to show good perfor-
mance for conventional (simple-structure) CFA models, this procedure to our knowledge 
has not yet been tested for multiple-indicator CFA-MTMM models. Compared to conven-
tional simple-structure CFA models, multiple-indicator CFA-MTMM models are special 
in that they include cross-loadings of indicators on multiple factors and many trait and 
method factor correlations. Moreover, in previous studies of simple-structure CFA models, 
indicators were simulated with homogeneous loadings and low reliabilities (standardized 
loading of .7 which corresponds to a reliability of .49). In MTMM studies, a homogeneous 
loading pattern of all indicators is not expected. For example, in the CT-C(M – 1) ap-
proach, non-reference indicators typically have smaller loadings on the reference trait fac-
tor as compared to reference indicators due to the presence of method effects which result 
in less than perfect convergent validity. Another reason for heterogeneous loadings can be 
differences in the reliabilities (i.e., the amount of random error variance) between indica-
tors either within the same method or across different methods. 
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Goals of the Present Study 

In summary, multiple-indicator CFA-MTMM models represent particularly complex CFA 
models as they contain many indicators, cross-loadings, loadings that likely differ in size 
at least across methods, potentially indicator-specific trait factors, and many factor corre-
lation parameters to be estimated. To date, limited simulation work is available regarding 
the performance of multiple-indicator CFA-MTMM models. We know of no simulation 
studies that have examined the applicability and accuracy of correction procedures for the 
chi-square test of model fit for these models or simulations of multiple-indicator CFA-
MTMM models with indicator-specific traits. The purpose of the present study was to (1) 
study the performance (convergence rates, improper parameter estimates, parameter and 
standard error bias) of both the multiple-indicator CT-C(M – 1) model with general and 
indicator-specific factors across a range of realistic conditions and (2) examine the perfor-
mance of Yuan et al.’s (2015) chi-square correction procedure that accounts for the model-
size effect. To this end, we studied correctly and incorrectly specified models so that we 
could determine both Type-I error rates (rates of incorrectly rejecting proper models) and 
statistical power (correct rejection of misspecified models). 

Method 

Using Mplus 8 (Muthén & Muthén, 1998-2017), we simulated normally distributed data 
based on multiple-indicator CT-C(M – 1) population models (see Figures 1 and 2) each 
with three continuous indicators Y1tm, Y2tm, and Y3tm per trait-method combination.4 The 
choice of our simulation conditions was informed by our previous literature review of ap-
plied multiple-indicator CFA-MTMM models (Geiser & Simmons, in press). We chose 
the multiple-indicator CT-C(M – 1) approach because to date it is the most frequently used 
multiple-indicator CFA-MTMM approach (Geiser & Simmons, in press). We simulated a 
3 traits × 3 methods design, as this design was the most common design found in our 
literature review. We assumed continuous observed variables as most multiple-indicator 
applications to date have used scale-level rather than item-level data. Samples sizes were 
chosen according to common sample sizes found in our previous literature review. We 
varied the reliability of the indicators as it is known that model fit statistics are influenced 
by the level of reliability (e.g., McNeish & Wolf, 2020). 
In summary, our simulation design included four fully crossed population conditions: 

• Multiple-indicator CT-C(M – 1) model version (1 = model with general traits 
[Figure 1], 2 = model with indicator-specific traits [Figure 2]) 

• Sample size (1 = small [N = 200], 2 = medium [N = 500], 3 = large [N = 800]) 

                                                                                                                         
4Indicators within each trait-method combination were simulated as tau-parallel in the sense of classical 
test theory. That is, they had equal factor loadings, error variances, and reliabilities in the population mod-
els. Simulating the indicators as parallel simplified our subsequent computations, analyses, and presentation 
of the results. In addition, no mean structure was included in the simulations. 
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• Reliability of indicators (1 = low [.50], 2 = high [.81]) 
• Generalization of method effects across traits (i.e., size of heterotrait-

monomethod method factor correlation ϕ; 1 = 1.0, 2 = .9, 3 = .8, 4 = .5, 5 = .3, 6 
= 0) 

The simulation design thus had 2 (model type) × 3 (sample size) × 2 (reliability) × 6 
(method generalization) = 72 cells. All observed variables were simulated to be in z-score 
metric in the population models. We varied convergent validity across non-reference meth-
ods within each cell of the design such that some indicators pertaining to Method 2 showed 
high convergent validity, and indicators pertaining to Method 3 showed low convergent 
validity. Likewise, discriminant validities (trait factor correlations) were varied within 
each condition. We studied two indicator reliability conditions because applied studies 
often use item parcels that may consist of a limited number of items and thus show rather 
low reliabilities. A detailed description of the specific parameter values used in the simu-
lation as well as all Mplus input and output files can be found in the online supplemental 
materials at https://osf.io/4hgyt/. 
In the first part of our simulations, we generated 1,000 data sets (replications) for each cell 
of the design and fit correctly-specified models to the data using maximum likelihood es-
timation. We examined convergence rates, improper solutions, parameter bias, standard 
error bias, the model-size effect on chi-square, and the performance of Yuan et al.’s (2015) 
chi-square correction procedure for correctly-specified models. In the second part of our 
simulation study, we examined the consequences of erroneously fitting a CT-C(M – 1) 
model with general trait factors (Figure 1) to data generated from the indicator-specific 
traits condition (Figure 2). We were interested in determining whether Yuan et al.’s (2015) 
chi-square correction procedure would provide adequate statistical power to detect this 
misspecification and whether parameters and standard errors for the most relevant param-
eters were biased when fitting a model with general traits to data generated from indicator-
specific traits. 

Results 

Correctly Specified Models 

Convergence Rates. For both model versions (general and indicator-specific traits), the 
CT-C(M – 1) model showed 100% convergence in all conditions except (1) the three con-
ditions with low sample size (N = 200), low reliability (.5), and small (ϕ = .5 and ϕ = .3) 
or zero method factor correlations. For these conditions, convergence rates were still ≥ 
98.1%. In addition, a single replication of the indicator-specific traits model simulated for 
a medium sample size (N = 500), high reliability (.81), and small method correlations (ϕ = 
.3) also did not converge, reducing the convergence rate for this condition to 99.9%. 
Improper Solutions and Non-Positive Definite Matrices. Negative error variance esti-
mates occurred only in the three above-mentioned small-sample, low-reliability conditions 
that also showed some convergence issues. In these conditions, the rate of improper error 
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variance estimates was still low (≤ 3.7%). Non-positive definite latent variable covariance 
matrices were more common. This can be a sign of improper latent variance or correlation 
estimates or of linear dependencies among latent variables. Population models with high 
correlations among trait or method factors are more susceptible to non-positive definite 
matrices. For the model version with general trait factors, the rates were zero or very low 
(≤ 4.7%) in all except the following conditions: 

• rates were ≥ 98.2% when the population method factor correlations were speci-
fied to be very high (ϕ = .9), but not perfect (ϕ = 1).5 

• for method factor correlations of ϕ = .8, the rates were low (0% to 9.7%) in the 
high reliability conditions, but rather high (31.8% to 77.5%) in the low reliability 
conditions. 

For the model with indicator-specific trait factors, the rates of non-positive definite latent 
matrices were low (≤ 6.3%) when the sample size was moderate (500) or large (800) in 
conjunction with strong indicator reliabilities (.81) and method factor correlations that 
were either perfect (ϕ = 1) or ≤ .8. In all other conditions, the rates ranged between 33.6% 
and 100%. 
Model Fit. Tables 1 provides a summary of model fit statistics for each condition of our 
simulations of the correctly specified general traits model. Results were very similar for 
the indicator-specific traits model. Therefore, results for this model are not shown here but 
are included in the supplemental materials. The expected model-size effect occurred for 
both model types. Average uncorrected chi-square values were larger than theoretically 
expected for correctly specified models. As a result, chi-square rejection (Type-I error) 
rates for a nominal alpha level of .05 were inflated in all conditions, leading to rejection 
of too many correctly specified models. The indicator-specific traits model showed slightly 
more accurate rejection rates than did the model with general traits; nonetheless, chi-
square values were inflated in all conditions. 
Overall, in the small sample size condition (N = 200), Type-I error rates were inflated to 
between 20% and 23.4% (general trait model) and to between 17.6% and 22.4% (indicator-
specific traits) for a nominal alpha level of 5%. For N = 500, Type-I error rates were re-
duced to between 9.7% and 11.2% (general trait model) and to between 8.8% and 10.1% 
(indicator-specific trait model). In the largest sample size condition (N = 800), Type-I error 
rates were relatively accurate (between 6.8% and 8.1% for general traits and between 6.7% 
and 7.4% for indicator-specific traits), but still slightly inflated. 
  

                                                                                                                         
5These problems likely did not occur in the perfect-correlation (ϕ = 1.0) conditions because in these condi-
tions, the method factors in the population model were combined into a single general method factor as is 
implied by ϕ = 1.0. 
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Table 1: 
Model Fit Statistics for the Correctly Specified Multiple-Indicator CT-C(M – 1) Model 

with General Traits Across Simulation Conditions 

Condition 
code χ2 M χ2 SD df χ2 rejection rate 

(alpha = .05) 

Yuan et al. (2015) 
corrected 

χ2 rejection rate 
(alpha = .05) 

RMSEA 
M 

RMSEA 
SD 

SRMR 
M 

SRMR 
SD 

111 323.323 27.355 302 .230 .063 0.017 0.011 0.050 0.005 
112 307.822 26.997 288 .219 .056 0.016 0.012 0.048 0.004 
113 307.683 26.985 288 .220 .057 0.016 0.012 0.048 0.004 
114 307.137 27.004 288 .213 .060 0.016 0.012 0.048 0.004 
115 306.771 27.036 288 .208 .059 0.016 0.012 0.047 0.003 
116 306.685 27.102 288 .200 .058 0.016 0.012 0.047 0.003 
121 323.523 27.379 302 .234 .068 0.017 0.011 0.048 0.012 
122 308.423 26.992 288 .231 .065 0.017 0.012 0.045 0.011 
123 308.451 26.995 288 .228 .068 0.017 0.012 0.044 0.010 
124 308.318 27.053 288 .222 .070 0.017 0.012 0.041 0.007 
125 308.197 27.114 288 .221 .078 0.017 0.012 0.040 0.006 
126 308.040 27.185 288 .216 .074 0.017 0.012 0.039 0.005 
211 309.662 26.300 302 .106 .050 0.007 0.007 0.032 0.003 
212 295.238 25.982 288 .111 .062 0.007 0.007 0.030 0.003 
213 295.204 25.990 288 .112 .062 0.007 0.007 0.030 0.003 
214 295.028 25.984 288 .109 .055 0.007 0.007 0.030 0.002 
215 294.888 25.923 288 .100 .054 0.007 0.007 0.030 0.002 
216 294.806 25.751 288 .097 .053 0.007 0.007 0.030 0.002 
221 309.785 26.336 302 .103 .051 0.007 0.007 0.030 0.008 
222 295.396 26.101 288 .107 .063 0.007 0.007 0.029 0.007 
223 295.467 26.088 288 .109 .062 0.007 0.007 0.028 0.006 
224 295.419 26.034 288 .109 .059 0.007 0.007 0.026 0.005 
225 295.318 25.962 288 .102 .057 0.007 0.007 0.025 0.004 
226 295.150 25.387 288 .104 .061 0.007 0.007 0.025 0.003 
311 305.911 25.216 302 .074 .051 0.005 0.005 0.025 0.002 
312 291.763 24.945 288 .080 .057 0.005 0.005 0.024 0.002 
313 291.763 24.960 288 .078 .057 0.005 0.005 0.024 0.002 
314 291.707 24.934 288 .073 .055 0.005 0.005 0.024 0.002 
315 291.665 24.862 288 .069 .054 0.005 0.005 0.024 0.002 
316 291.644 24.727 288 .070 .052 0.005 0.005 0.024 0.001 
321 305.827 25.294 302 .068 .050 0.005 0.005 0.024 0.006 
322 291.759 25.122 288 .080 .056 0.005 0.005 0.023 0.005 
323 291.802 25.155 288 .081 .058 0.005 0.005 0.022 0.005 
324 291.823 25.051 288 .079 .058 0.005 0.005 0.020 0.004 
325 291.833 24.928 288 .076 .058 0.005 0.005 0.020 0.003 
326 291.836 24.720 288 .069 .054 0.005 0.005 0.019 0.003 

Note. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual. 
The first digit in the condition code is for sample size (1 = 200; 2 = 500; 3 = 800). The second digit is for 
reliability (1 = .5; 2 = .81). The third digit is for population method factor correlation (1 = 1; 2 = .9; 3 = .8; 
4 = .5; 5 = .3; 6 = 0). The χ2 rejection rate (alpha = .05) columns give an estimate of the Type-I error rate 
for each condition. Models in Conditions xx1 have more df because they include fewer method factors 
(method factors for the same method are perfectly correlated and thus collapses into one factor). 
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Application of Yuan et al.’s (2015) chi-square correction procedure led to Type-I error 
rates that were closer to the nominal alpha level of .05 across all conditions. There was 
still a slight inflation of Type-I error rates in most conditions even after correction; how-
ever, the Yuan et al. (2015) corrected Type-I error rates were much closer to .05 than were 
the uncorrected rates. The “worst” condition showed a corrected rejection rate of .078 (as 
opposed to .221 uncorrected), which still represents a rather large improvement. In sum-
mary, Yuan et al.’s (2015) correction procedure appeared to work well for both the general 
and the indicator-specific trait versions of the multiple-indicator CT-C(M – 1) approach. 
For both model types, regular (uncorrected) indices of approximate fit such as the root 
mean square error of approximation (RMSEA) and the standardized root mean square re-
sidual (SRMR; see Tables 1 and 2) would not have led to over-rejection of the correctly 
specified population models according to common standards (e.g., Hu & Bentler, 1999), 
so that we did not study Yuan et al.’s (2015) correction for these statistics. 
Parameter Estimate Bias. We calculated percent parameter estimate bias (%peb) as  

%peb = 100 ∙ 𝐸𝐸(𝑃𝑃�)−𝑃𝑃
𝑃𝑃

, 
where 𝐸𝐸�𝑃𝑃�� indicates the average parameter estimate across replications, and P indicates 
the true population parameter. The %peb measure allows us to determine the percent bias 
in parameter estimates relative to the true population parameter for each simulation con-
dition.  
We averaged the absolute values of %peb across parameters within the same parameter 
type. For example, we averaged |%peb| values across the reference trait factor loadings 
pertaining to the reference method which all had the same true population values within a 
given condition. We used absolute values of peb to avoid misleading effects of positive 
and negative bias values potentially averaging out for a given parameter type. 
The averaged |%peb| values were close to zero for all parameter types under all conditions. 
The highest |%peb| values found were ≤ 3.1% for error variance parameters in the small 
sample, low reliability conditions. The exact |%peb| values for all parameter types and 
both model versions can be found in the online supplemental materials. 
Standard Error Bias. We calculated percent standard error bias (%seb) as  

%seb = 100 ∙ 𝐸𝐸(𝑆𝑆𝑆𝑆𝑝𝑝)−𝑆𝑆𝑆𝑆𝑝𝑝
𝑆𝑆𝑆𝑆𝑝𝑝

, 

where 𝑆𝑆𝑆𝑆𝑝𝑝 indicates the average standard error estimate for Parameter P across replica-
tions, and 𝑆𝑆𝑆𝑆𝑝𝑝 indicates the standard deviation of the parameter estimate for Parameter P 
across replications. 
The %seb measure allows us to determine the percent bias in standard error estimates by 
comparing the estimated large-sample standard errors to the standard deviation of the sim-
ulated sampling distribution for each parameter. 
Average percent absolute standard error bias across simulation conditions is shown in Ta-
ble 2 for the indicator-specific traits model. Results were very similar for the general traits 
model (although bias values were slightly lower for that model), which is why we include 
only the |%seb| values for the indicator-specific model here. The corresponding table for 
the model with general trait factors can be found in the supplemental materials. 
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Standard error bias was generally small for all parameter types (i.e., below 5% for most 
conditions) for both models. However, standard errors for specific parameters in some of 
the small sample (N = 200), low reliability (.5) conditions were negatively biased (esti-
mated to be too small; see bold-face entries in Table 2). In these conditions, the standard 
errors associated with the smaller method factor loadings (δit2), the measurement error var-
iances, and the method factor correlations were underestimated by up to 21.8% in the con-
ditions of zero, small (.30), or moderate (.50) method factor correlations across traits. 
Standard errors for the larger method factor loadings (δit3) and other parameters showed 
relatively small bias below 10% in these conditions. 

Misspecified Models 

Convergence Rates. When (incorrectly) fitting a model version with general traits to data 
generated from the indicator-specific traits model, convergence rates were still ≥ 95.7% in 
all conditions. 
Improper Solutions and Non-Positive Definite Matrices. The rate of improper error 
variance estimates in the misspecified simulation was ≤ 5.1% across all conditions. Non-
positive definite latent variable covariance matrices were uncommon except (1) in the low 
sample size, low reliability conditions (rates up to 99.9%) and (2) in other conditions when 
the method factor correlations in the population model were set at .8 or .9 (rates between 
71.9% and 100%). All other conditions showed rates ≤ 0.1%. 
Model Fit. Table 3 provides a summary of model fit statistics for each condition in the 
misspecified model simulation. Recall that in this case, fit statistics should indicate mis-
specification and lead to rejection of the models. Chi-square rejection rates here indicate 
power to detect misspecified models. Table 3 shows that uncorrected chi-square rejection 
rates (estimated power) ranged between 70% and 100%. Power was lowest in the small 
sample, low reliability conditions. Yuan et al.’s (2015) corrected chi-square rejection rates 
were generally very similar, except in the small sample, low reliability conditions. In these 
conditions, power was reduced from between 70% and 74.1% to between 43.8% and 
50.4%. 
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Table 2: 

Percent Standard Error Bias in the Correctly Specified Multiple-Indicator CT-C(M – 1) Model with Indicator-Specific Traits Across 
Simulation Conditions 

 N = 200  N = 500  N = 800 
Parameter ϕ=1 ϕ=.9 ϕ=.8 ϕ=.5 ϕ=.3 ϕ=0  ϕ=1 ϕ=.9 ϕ=.8 ϕ=.5 ϕ=.3 ϕ=0  ϕ=1 ϕ=.9 ϕ=.8 ϕ=.5 ϕ=.3 ϕ=0 

 Low reliability [Rel(Ytm) = .50] 
λit1 4.0 4.6 4.6 4.8 4.9 4.8  3.1 2.8 2.9 3.1 3.1 3.2  2.7 2.7 2.6 2.6 2.6 2.4 
λit2 5.4 6.5 6.4 6.4 6.3 6.4  2.8 2.6 2.6 2.7 2.7 2.8  2.4 2.5 2.5 2.6 2.5 2.4 
λit3 5.6 7.1 7.2 7.4 7.5 7.6  2.3 2.8 2.9 2.9 2.9 2.8  1.7 1.6 1.6 1.4 1.3 1.2 
δit2 4.3 8.2 9.2 15.4 20.5 21.8  1.8 2.8 3.2 5.0 6.6 6.3  1.7 2.5 2.7 3.4 4.0 3.8 
δit3 2.8 4.6 5.1 6.6 7.5 9.7  1.7 2.4 2.6 3.2 3.3 3.3  1.9 1.9 1.9 2.0 2.2 2.2 
Var(εitm) 4.2 5.5 5.8 9.1 15.3 15.4  1.8 2.0 2.0 2.4 3.0 3.2  1.3 1.3 1.3 1.3 1.4 1.8 
ϕT 0.0 0.1 0.1 0.1 0.1 0.1  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
ϕM 3.3 7.4 7.8 9.9 11.7 11.7  1.1 2.2 2.3 2.5 2.8 3.9  2.2 2.3 2.2 2.3 2.5 2.6 
 High reliability [Rel(Ytm) = .81] 
λit1 1.6 1.4 1.4 1.5 1.4 1.6  1.5 1.3 1.3 1.2 1.1 1.1  2.3 2.0 2.0 1.9 2.0 1.9 
λit2 3.8 5.0 5.1 5.0 4.8 4.4  2.0 2.0 2.1 2.2 2.2 2.2  2.0 2.1 2.4 2.8 2.9 2.8 
λit3 3.2 4.3 4.3 4.5 4.7 5.3  1.9 1.3 1.4 1.8 1.8 1.7  1.5 1.1 1.4 1.6 1.3 0.8 
δit2 2.7 3.3 3.3 3.7 4.0 4.0  1.3 1.2 1.4 1.6 1.7 1.8  1.3 1.4 1.3 1.2 1.4 2.0 
δit3 2.2 2.8 2.6 2.4 2.0 2.1  1.7 2.2 2.3 2.5 2.4 1.8  1.2 1.6 1.7 1.3 1.7 1.9 
Var(εitm) 3.1 4.1 4.2 4.1 4.1 4.4  1.9 1.9 1.8 1.9 1.9 1.9  1.6 1.3 1.2 1.4 1.4 1.5 
ϕT 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 
ϕM 2.1 3.2 3.3 3.6 3.6 3.3  1.6 1.5 1.4 1.4 1.5 2.0  2.7 1.8 1.6 1.7 2.0 1.8 

Note. ϕ = latent correlation between method factors pertaining to the same method but different traits in the population models. Rel(Ytm) = reliability. λitm = trait 
factor loading (i = indicator, t = trait, m = method; reference method: m = 1; non-reference methods: m = 2, 3). δitm = method factor loading. Var(εitm) = measurement 
error variance. ϕT = correlation between trait factors. ϕM = correlation between method factors. Table entries show average absolute bias values in percent. Bias 
values for loading and error variance parameter estimates were averaged across the three indicators within each method as these indicators had the same parameters 
in the population model. Bold face entries indicate SE bias > |10%|. 
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Indices of approximate model fit varied in their ability to detect the misspecification. Ac-
cording to Hu and Bentler (1999), satisfactory approximate fit is indicated (roughly) by 
RMSEA ≤ .06, comparative fit index (CFI) and Tucker-Lewis index (TLI) ≥ .95, and 
SRMR ≤ .08.6 When applying these criteria, average RMSEA values consistently indi-
cated misfit in the high reliability conditions (values ≥ .071), but (erroneously) indicated 
decent fit when reliabilities were low (values ≤ .031). A very similar pattern emerged for 
CFI and TLI. Average SRMR values (erroneously) indicated decent model fit in all con-
ditions (values ≤ .06) and thus would typically not have led to detection of misspecified 
models regardless of sample size, reliability, and magnitude of method factor correlation. 
Parameter Estimate Bias. The averaged |%peb| values for all parameter types are given 
in the supplemental materials. Bias was generally low (≤ 7.4%) except for estimates of 
measurement error variances, which were strongly positively biased (overestimated by up 
to 33.5%) in the high reliability conditions. This means that reliability coefficients in these 
conditions would be underestimated. 

Discussion 
The use of multiple-indicator CFA-MTMM models has been recommended by methodol-
ogists to overcome overly restrictive assumptions of single-indicator CFA-MTMM models 
(Eid et al., 2003; 2008; Geiser & Simmons, in press; Marsh & Hocevar, 1988). At the same 
time, little is known so far about the performance of complex CFA-MTMM models under 
different conditions. Studying the adequacy of such models is important given that even 
the less complex single-indicator CFA-MTMM models can be prone to estimation prob-
lems. In the current study, we examined two versions of the multiple-indicator CT-C(M – 
1) approach, one of which had not previously been studied through simulation work. Our 
findings confirm results of previous research (Geiser, 2009; Nussbeck et al., 2006), ac-
cording to which the multiple-indicator CT-C(M – 1) approach shows high convergence 
rates and negligible parameter bias even in samples as small as N = 200. We also found 
that improper (i.e., negative) error variance estimates were uncommon with this approach, 
even in small samples. 
However, non-positive definite latent variable covariance matrices occurred frequently in 
our simulations. This is likely because we simulated models in which correlations between 
latent variables were very high (.8 or .9) in some conditions. As a result, sampling error 
can lead to correlation estimates > 1.0 in simulated data sets. In addition, high correlations 
among latent variables can lead to linear dependencies. In that case, improper parameter 
estimates may not occur, but a warning message about a non-positive definite latent vari-
able covariance matrix can still be issued by statistical software programs. In practice, 
researchers encountering such messages in applications of the CT-C(M – 1) approach 

                                                                                                                         
6The universal application Hu and Bentler’s (1999) guidelines for approximate fit has been criticized as 
these guidelines are based on a limited set of simulation conditions. McNeish and Wolf (2020) showed that 
dynamic fit index cutoffs can lead to more valid results. We nonetheless used Hu and Bentler’s (1999) 
guidelines in the present work given that the validity of dynamic fit index cutoffs has not yet been demon-
strated for CFA-MTMM models with a complex factor and loading structure (McNeish & Wolf, 2020).  
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should carefully study all latent variable parameter estimates. In cases of perfect or near-
perfect correlations between latent variables, these latent variables may be collapsed into 
a single latent variable. 
Although standard errors were generally adequate for correctly specified models, we found 
that specific parameters showed underestimated standard errors when the sample size was 
small (N = 200), indicator reliabilities were low (.5), and method factor correlations indi-
cating the degree of generalization of method effects across traits were zero, small, or 
moderate in size. Affected parameters in these conditions were the smaller method factor 
loadings, the measurement error variances, and method factor correlations, for which the 
standard errors were underestimated by up to 21.8%. Hence, in these conditions, the pre-
cision of estimation of the parameters in question would have been overestimated based 
on the estimated standard errors (i.e., estimated confidence intervals would be too narrow). 
In addition, the underestimated standard errors could lead to Type-I error inflation when 
testing method factor loadings and method factor correlations for statistical significance. 
As a result, a researcher may incorrectly claim that method effects are present when 
measures in fact do not show method effects. In addition, spurious associations between 
different methods may be over-interpreted. The former Type-I error (incorrectly assuming 
that method effects are present when they are absent) is probably less of a concern for 
actual substantive applications as method effects in the social sciences are typically present 
and rather strong. We found no substantial SE bias for the indicators that showed stronger 
method loadings (which may be more realistic) in the above-mentioned conditions. Incor-
rectly assuming that method effects are present (when in fact measures show perfect con-
vergent validity) should be a rare problem in the real world. 
Potential Type-I errors regarding between-method associations may be more problematic. 
For example, one might incorrectly claim that parent and teacher reports show a common 
perspective on child problem behaviors when in fact this may not be true. This incorrect 
claim could have real consequences. For instance, based on this finding, one might decide 
to collect only parent reports (but not teacher reports) due to ostensible redundancies. In 
that case, important information about differences in rater perspectives may be missed by 
the investigator. 
To avoid these issues, we recommend that researchers using multiple-indicator CFA-
MTMM models aim for samples larger than N = 200 or choose highly reliable indicators. 
In cases in which this is not possible, researchers might use a more stringent alpha level 
for tests of statistical significance (e.g., .01 instead of .05) or employ robust standard er-
rors. 
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Table 3: 

Model Fit Statistics for the Misspecified Multiple-Indicator CT-C(M – 1) Model with General Traits Across Simulation Conditions 

Condition 
code χ2 M χ2 SD df χ2 rejection rate 

(alpha = .05) 

Yuan et al. (2015) corrected 
χ2 rejection rate 

(alpha = .05) 

RMSEA 
M 

RMSEA 
SD 

CFI 
M 

CFI 
SD 

TLI 
M 

TLI 
SD 

SRMR 
M 

SRMR 
SD 

111 365.128 31.161 302 0.741 0.504 0.031 0.009 0.968 0.015 0.963 0.018 0.053 0.004 
112 347.385 30.587 288 0.719 0.490 0.031 0.010 0.969 0.015 0.962 0.019 0.052 0.004 
113 346.915 30.564 288 0.721 0.482 0.031 0.010 0.968 0.016 0.961 0.020 0.051 0.004 
114 345.345 30.454 288 0.709 0.458 0.030 0.010 0.966 0.017 0.959 0.021 0.051 0.004 
115 344.340 30.470 288 0.706 0.447 0.030 0.010 0.966 0.018 0.959 0.022 0.051 0.003 
116 344.051 30.407 288 0.700 0.438 0.030 0.010 0.966 0.018 0.958 0.022 0.051 0.003 
121 639.259 51.397 302 1.000 1.000 0.075 0.006 0.939 0.009 0.929 0.011 0.058 0.010 
122 600.223 49.483 288 1.000 1.000 0.073 0.006 0.941 0.009 0.928 0.011 0.060 0.011 
123 597.719 49.209 288 1.000 1.000 0.073 0.006 0.938 0.010 0.925 0.012 0.058 0.010 
124 593.519 48.845 288 1.000 1.000 0.073 0.006 0.934 0.011 0.920 0.013 0.054 0.007 
125 591.888 48.731 288 1.000 1.000 0.072 0.006 0.933 0.011 0.918 0.013 0.053 0.006 
126 590.921 48.713 288 1.000 1.000 0.072 0.006 0.933 0.011 0.918 0.013 0.052 0.005 
211 415.983 34.235 302 0.983 0.968 0.027 0.004 0.977 0.007 0.973 0.008 0.037 0.003 
212 396.596 33.724 288 0.979 0.963 0.027 0.004 0.977 0.007 0.972 0.009 0.036 0.003 
213 395.832 33.666 288 0.979 0.961 0.027 0.005 0.976 0.007 0.971 0.009 0.036 0.003 
214 393.811 33.497 288 0.973 0.960 0.027 0.005 0.975 0.008 0.969 0.010 0.036 0.002 
215 392.594 33.365 288 0.974 0.957 0.027 0.005 0.975 0.008 0.969 0.010 0.036 0.002 
216 391.373 33.192 288 0.975 0.953 0.026 0.005 0.974 0.008 0.969 0.010 0.035 0.002 
221 1102.466 73.761 302 1.000 1.000 0.073 0.003 0.941 0.006 0.932 0.006 0.045 0.006 
222 1029.844 70.201 288 1.000 1.000 0.072 0.003 0.944 0.005 0.931 0.007 0.049 0.008 
223 1023.722 69.752 288 1.000 1.000 0.071 0.003 0.941 0.006 0.928 0.007 0.048 0.007 
224 1013.557 68.857 288 1.000 1.000 0.071 0.003 0.937 0.006 0.923 0.007 0.044 0.005 
225 1009.676 68.409 288 1.000 1.000 0.071 0.003 0.936 0.006 0.922 0.008 0.043 0.004 
226 1007.438 68.113 288 1.000 1.000 0.071 0.003 0.936 0.006 0.922 0.008 0.042 0.003 
311 477.173 37.427 302 1.000 1.000 0.027 0.003 0.978 0.005 0.974 0.006 0.032 0.002 
312 455.335 36.736 288 1.000 1.000 0.027 0.003 0.978 0.005 0.973 0.006 0.031 0.002 
313 454.177 36.664 288 1.000 1.000 0.027 0.003 0.977 0.005 0.972 0.006 0.031 0.002 
314 451.242 36.417 288 1.000 1.000 0.026 0.003 0.976 0.005 0.970 0.007 0.031 0.002 
315 449.558 36.197 288 1.000 0.999 0.026 0.003 0.975 0.006 0.970 0.007 0.031 0.002 
316 447.745 35.917 288 1.000 0.998 0.026 0.003 0.975 0.006 0.970 0.007 0.030 0.002 
321 1577.428 87.740 302 1.000 1.000 0.073 0.002 0.942 0.004 0.932 0.005 0.041 0.004 
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Condition 
code χ2 M χ2 SD df χ2 rejection rate 

(alpha = .05) 

Yuan et al. (2015) corrected 
χ2 rejection rate 

(alpha = .05) 

RMSEA 
M 

RMSEA 
SD 

CFI 
M 

CFI 
SD 

TLI 
M 

TLI 
SD 

SRMR 
M 

SRMR 
SD 

322 1470.969 83.116 288 1.000 1.000 0.072 0.003 0.944 0.004 0.932 0.005 0.046 0.006 
323 1461.021 82.587 288 1.000 1.000 0.071 0.003 0.941 0.004 0.928 0.005 0.044 0.005 
324 1444.931 81.590 288 1.000 1.000 0.071 0.003 0.937 0.005 0.924 0.005 0.041 0.004 
325 1439.020 81.185 288 1.000 1.000 0.071 0.002 0.936 0.005 0.922 0.006 0.040 0.003 
326 1435.922 80.998 288 1.000 1.000 0.071 0.002 0.936 0.005 0.922 0.006 0.039 0.003 

Note. RMSEA = root mean square error of approximation. CFI = comparative fit index. TLI = Tucker-Lewis index. SRMR = standardized root mean square residual. 
The first digit in the condition code is for sample size (1 = 200; 2 = 500; 3 = 800). The second digit is for reliability (1 = .5; 2 = .81). The third digit is for population 
method factor correlation (1 = 1; 2 = .9; 3 = .8; 4 = .5; 5 = .3; 6 = 0). The χ2 rejection rate (alpha = .05) columns give an estimate of power to reject a misspecified 
model. Models in Conditions xx1 have more df because they include fewer method factors (method factors for the same method are perfectly correlated and thus 
collapses into one factor). 
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In our simulations of correctly specified models, we replicated the model-size effect ac-
cording to which the maximum likelihood chi-square test statistic tends to be inflated due 
to the use of many observed variables (27 in the case of a 3 × 3 × 3 multiple-indicator 
MTMM design). This effect leads to rejection of too many correctly specified models. We 
found that Yuan et al.’s (2015) empirical correction procedure resulted in chi-square re-
jection rates that were much closer to the nominal Type-I error level across all conditions 
compared to uncorrected chi-square rejection rates. We therefore recommend that re-
searchers using multiple-indicator CFA-MTMM models and maximum likelihood estima-
tion employ Yuan et al.’s (2015) correction procedure when testing their models to avoid 
over-rejection of correctly specified models. 
The only issue with this correction in our simulations was that it led to reduced power 
(between 43.8% and 50.4% in our simulations) to detect misspecified models in small 
samples (N = 200) when indicators had low reliabilities (Rel = .5). Under these conditions, 
the correction procedure may lead to the (erroneous) acceptance of misspecified models 
in about every other case. To avoid this problem, we recommend that (1) researchers using 
small samples choose highly reliable indicators and (2) researchers using indicators with 
rather low reliabilities choose samples larger than N = 200 to achieve sufficient power to 
detect misspecified models when using Yuan et al.’s (2015) correction procedure for mul-
tiple-indicator CT-C(M – 1) models. Likewise, we recommend that researchers interpret 
indices of approximate fit (RMSEA, CFI, TLI, SRMR) with caution when indicators have 
low reliabilities, as these indices appear to be less sensitive to misspecifications when in-
dicator reliabilities are low regardless of the sample size. 
In a recent paper, McNeish and Wolf (2020) criticized the use of fixed guidelines for in-
dices of approximate fit such as Hu and Bentler’s (1999) guidelines. As an alternative, 
McNeish and Wolf (2020) proposed the use of dynamic cutoff values for fit statistics based 
on simulations for the specific application at hand. It would be useful to study the appro-
priateness of their approach for CFA-MTMM models in future research. 
In summary, our simulations showed that multiple-indicator CT-C(M – 1) models perform 
well unless a small sample (200 or smaller) and unreliable indicators are used, in which 
case several different problems may occur. The use of indicators with higher reliabilities 
appears to (partly) compensate for the negative effects of a small sample and vice versa. 
Researchers frequently apply the multiple-indicator CT-C(M – 1) model with general trait 
factors. In practice, indicators may show indicator-specific effects leading to misspecifi-
cation of the general-traits approach. Our study revealed that this type of misspecification 
may be difficult to detect based on corrected chi-square statistics and indices of approxi-
mate model fit, especially when indicator reliabilities are low. We therefore recommend 
that researchers using equivalent scales across methods apply both model versions and 
carefully compare the parameter estimates. In case of substantial discrepancies, we recom-
mend that the indicator-specific model version be chosen as it implies less restrictive as-
sumptions with respect to the unidimensionality of indicators and thus is less likely to 
result in biased parameter estimates. 
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Goals for Future Research 

In our simulations, we examined only the multiple-indicator CT-C(M – 1) approach be-
cause to date this approach is most frequently used in multiple-indicator MTMM designs 
(Geiser & Simmons, in press). In future studies, other types of multiple-indicator CFA-
MTMM models (e.g., Pohl & Steyer, 2010; Pohl et al., 2008) should be examined to study 
the generalizability of our findings to other complex MTMM models. It would also be 
interesting to compare the performance of different multiple-indicator CFA-MTMM mod-
els in future simulations. 
In our simulations, we assumed continuous and normally distributed data. Future simula-
tions should also examine consequences of non-normality which occurs frequently in prac-
tice. In addition, the model-size effect on chi-square for correctly specified models appears 
to go in the opposite direction for ordinal indicators and WLSMV estimation (i.e., fewer 
models than theoretically expected are rejected; Nussbeck et al., 2006). Therefore, it would 
be interesting to study under which conditions the WLSMV chi-square has sufficient 
power to detect misspecified models. Finally, we recommend that other types of model 
misspecification than the one studied here be examined in future work and that the use of 
dynamic cutoff values for approximate fit statistics (McNeish and Wolf, 2020) be evalu-
ated for CFA-MTMM models. 
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