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Abstract 

Simulation-based learning is often used to facilitate complex problem-solving skills, such as 

collaborative diagnostic reasoning (CDR). Simulations can be especially effective if additional 

instructional support is provided. However, adapting instructional support to the learners’ needs 

remains a challenge when performance is only assessed as the outcome after using the simula-

tion. Researchers are, therefore, increasingly interested in whether process data analyses can 

predict outcomes of simulated learning tasks and whether such analyses allow early identifica-

tion of the need for support. This study developed a random forest classification model based 

on theoretically derived process indicators to predict success in a simulated learning environ-

ment. The context of the simulated learning environment was medicine. Internists interacted 

with a simulated radiologist to identify possible causes of an illness. Participants’ CDR was 

conceptualized via log-data, coded on a broad, domain-general level for better generalizability. 

Results showed a satisfactory prediction rate for CDR performance, indicated by diagnostic 

accuracy. The model predicted accurate and inaccurate diagnoses and was therefore suitable for 

making statements about the performance by only using process data of CDR. The findings 
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contribute to the development of more adaptive instructional support within simulation-based 

learning through being able to predict the individuals’ learning outcomes already during the 

process. 

Keywords: simulation-based learning, complex problem solving, learning analytics, process-based 

performance prediction, adaptive instructional support 

 

 

Simulation-based learning is thought to facilitate complex problem-solving skills 

(Chernikova, Heitzmann, Fink, et al., 2020). Simulations represent relevant aspects of 

real-life problems (Grossman, 2021) and can be especially effective if they provide 

adaptive instructional support (Leutner, 1993). Adaptivity of instructional support is 

understood as the provision of support adjusted to individuals’ specific needs. The 

aim of adaptive instructional support is twofold: Enhancing learning outcomes and 

enhancing self-regulation skills concerning learning processes. When a simulation can 

identify the needs of learners to better self-regulate their learning process and provide 

adaptive instructional support accordingly, this can allow learners to progress in their 

learning more efficiently than with non-adaptive support (Plass & Pawar, 2020). 

Methods from the field of Learning Analytics seem to be helpful to enable adaptive 

instructional support because they focus on predicting future outcomes based on be-

havioral data during the assessment or training process, rather than solely observing 

the outcome of assessments (Baker & Siemens, 2014). One application of Learning 

Analytics is the prediction of learning performance using process data, thereby iden-

tifying learners at risk of showing inadequate performance (e.g., Gašević, Jovanovic, 

Pardo, & Dawson, 2017). The present study aims to apply Learning Analytics to the 

context of collaborative diagnostic reasoning (CDR) in simulation-based learning en-

vironments. CDR is an example of a complex problem-solving skill (Fiore et al., 2018) 

and refers to individual and collaborative skills that enable diagnosticians to diagnose 

problem states of specific systems (e.g., patients) while working together in teams, 

based on their conceptual and strategic knowledge (Radkowitsch, M.-R. Fischer, 

Schmidmaier, & F. Fischer, 2020). 

Particularly, we predict CDR performance, indicated by diagnostic accuracy, based 

on the collaborative diagnostic process derived from existing theoretical models. In 

addressing this goal, the study serves as preparatory research for developing more 

adaptive instructional support within simulation-based learning. 

 

Simulation-Based Learning of Complex Skills  

Although most complex tasks require intensive training to be performed expertly, 

many are not easily accessible as training situations as they may be scarce (e.g., natu-

ral disasters) or too critical to be approached by novices (e.g., some medical proce-

dures). Simulation-based learning enables the deliberate practice of complex tasks that 

learners cannot solve (Ericsson, 2004), with the opportunity to provide additional 
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instructional support. It represents a promising instructional approach to facilitate the 

development of complex skills by providing authentic situations approximating real-

life diagnostic problems (Cook, Brydges, Zendejas, Hamstra, & Hatala, 2013; Heit-

zmann et al., 2019). As Chernikova, Heitzmann, Stadler, et al. (2020) report in a recent 

meta-analysis, simulation-based learning significantly fosters complex problem-solv-

ing skills.  

Complex problem solving is a multidimensional set of skills needed to solve complex 

problems (Dörner & Funke, 2017). Complex problems require active knowledge ac-

quisition to create a mental representation of the problem (Stadler, Niepel & Greiff, 

2019). If complex problems are solved with another person or simulated agent, this 

process is called collaborative problem solving (Fiore et al., 2018; Stadler, Herborn, 

Mustafić & Greiff, 2020). One example is CDR, which can be conceptualized as the 

set of skills to solve a problem, such as diagnosing a patient, “by generating and eval-

uating evidences and hypotheses that can be shared with, elicited from, or negotiated 

among collaborators” based on their conceptual and strategic knowledge (Rad-

kowitsch et al., 2020, p. 2). The first entails declarative knowledge about constructs 

(e.g., diagnoses and symptoms) and their relation, the second is about knowledge of 

how to apply strategic knowledge through problem-solving (Stark, Kopp & M.-R. 

Fischer, 2011). The goal of CDR is to reduce the uncertainty of decision-making by 

diagnosing a phenomenon, such as a patient's symptoms, in a collaborative effort. As 

such, CDR requires individual diagnostic as well as collaborative processes. To suc-

cessfully solve a diagnostic problem, diagnosticians draw inferences from latent or 

hidden patterns of a phenomenon based on their current knowledge (Heitzmann et al., 

2019). Heitzmann et al. (2019) described the process of individual diagnosing using 

the scientific reasoning and argumentation framework by F. Fischer et al. (2014), stat-

ing that, similar to scientific reasoning, diagnosing can be described with eight epis-

temic activities (e.g., evidence evaluation, evidence generation, hypothesis genera-

tion). In an attempt to extend these considerations to collaborative diagnostic pro-

cesses, Radkowitsch et al. (2020) proposed the CDR model. The CDR model is based 

on the scientific discovery as dual search model by Klahr and Dunbar (1988) and its 

further development by Van Joolingen and De Jong (1997) and describes how indi-

vidual diagnostic processes (F. Fischer et al. 2014) and collaborative activities (Liu et 

al., 2015) interact with each other. Liu and colleagues (2015) suggest four social skills 

(sharing ideas, negotiating ideas, regulating problem-solving, and maintaining com-

munication) to describe collaborative activities. One of the main functions of the col-

laborative activities is to construct a shared problem representation (Roschelle & Tea-

sley, 1995) through sharing and eliciting relevant information, as information might 

not be distributed equally between all collaborators. Hence, it is crucial to accurately 

share all relevant information to diagnose the patient‘s illness. These activities seem 

particularly relevant in a field such as medicine in which physicians from different 

fields of expertise collaborate frequently. In such situations, it is crucial for an accu-

rate diagnosis of the patient’s problem that all relevant evidence and hypotheses for 

the specific collaborators are shared (Kiesewetter, F. Fischer , & M.-R. Fischer, 2017). 



Simulation-Based Learning of Complex Skills 
545 

The CDR model specifies such collaborative diagnostic processes by suggesting col-

laborative diagnostic activities (CDAs). CDAs combine individual and collaborative 

diagnostic activities such as evidence elicitation, evidence sharing, and hypotheses 

sharing. Evidence and hypotheses, which are results of individual diagnostic pro-

cesses and stored in an individual’s cognitive storage (see Klahr & Dunbahr, 1988), 

can become part of collaborative cognitive processes by, for instance, sharing or elic-

iting them. In the medical context, evidence is, for example, patient information about 

symptoms and other parameters which are identified as relevant for a diagnosis. A 

hypothesis is a suspected diagnosis that refers to an underlying illness that could ex-

plain the patient´s symptoms. Evidence elicitation is, then, the activity of collabora-

tively generating new information, for example, by conducting medical examinations 

like radiological tests (Radkowitsch et al., 2020). Adequate performance of CDR in 

the context of medicine is defined as performing those activities with high quality 

resulting in an accurate diagnosis (Tschan et al., 2009). However, there is currently 

no assumption about the linearity and sequence of the performance of CDAs required 

to reach an accurate diagnosis, and not all CDAs might be necessary for all collabo-

rative diagnostic scenarios.  

In summary, simulation-based learning offers a promising approach for the training 

of complex problem-solving skills, such as CDR, by providing authentic diagnostic 

situations for learners to engage in (Chernikova, Heitzmann, Stadler, et al., 2020; H. 

G. Schmidt & Rikers, 2007) while allowing to provide adequate instructional support. 

However, adapting these support measures (such as prompts or worked-out examples; 

Belland, 2017) to the learners’ needs remains a challenge because it requires assessing 

the learner’s current knowledge during the simulation rather than after using the sim-

ulation. Analyzing data stemming from the CDR process to inform a learner model 

(Ding, Zhu, & Guo, 2018) while the learner is still working on the simulation might 

lead to more timely support when necessary. 

 

Learning Analytics and Process Data in Simulation-Based Learning  

Using technologically-enhanced simulations that store data on the learning process 

immediately in log-files allows analyzing process data without the need for additional 

assessments with dedicated tests. Analyzing process data instead of only product data 

(the assessment’s outcome) allows insights into the process leading to the eventual 

outcome (e.g., Goldhammer, Naumann, Rölke, Stelter, & Tóth, 2017). Widely used 

process data is often not at all straightforward to interpret. For example, more time 

spent on a task may indicate cognitive factors (i.e., the tasks are challenging) or mo-

tivational factors (i.e., tedious tasks). Nevertheless, process data analyses can increase 

understanding of the analyzed process (Greiff, Niepel, Scherer, & Martin, 2016). The 

results can be used to improve the theoretical understanding of the processes involved 

and approaches to assessing and facilitating them (Goldhammer, Naumann, Stelter, 

Tóth, Rölke & Klieme, 2014).  
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Using process data allows for the prediction of performance, enabling researchers to 

identify learners at risk to show inadequate performance, such as to benefit little from 

engaging in a learning activity (e.g., Leitner, Khalil, & Ebner, 2017), and to provide 

them with additional instructional support (e.g., scaffolding, Tabak & Kyza, 2018). 

Such support is ideally timed and adapted to the learners' needs (Plass & Pawar, 

2020). Previous research has shown that the number of clicks and the time on task can 

be predictive for task success (Goldhammer et al., 2017). Stadler, Hofer, and Greiff 

(2020) analyzed differences between the time-on-task and the number of clicks of 

participants having the same outcome in a simulation of complex problem-solving. 

Despite having equal scores, participants differed in both time-on-task and number of 

clicks. The results indicate that process indicators depict individual differences in the 

ability not depicted in product data. This illustrates the need to take process data into 

account to assess learners’ abilities. This is also in line with the assumption that 

complex problem-solving is not only about a task’s outcome but also about the process 

to get there (Dörner & Funke, 2017). 

However, it is difficult to deduct information on specific problems a learner might 

have with a task or what instructional support might be beneficial using process data. 

Therefore, researchers have called for a more robust link from process data to learning 

theories to understand better and facilitate learning (Gašević, Dawson, & Siemens, 

2015). The identification of suitable features for the prediction of learning outcomes 

within process data should always be supported with theoretical models (Tomasevic, 

Gvozdenovic, & Vranes, 2020) in order to make findings replicable and generalizable 

beyond idiosyncratic learning environments.  

 

Goal and Research Question 

The current study uses activities theoretical derived from the CDR model (Rad-

kowitsch et al., 2020) and constructed from process data to predict the performance 

of complex problem-solving skills, such as CDR, in simulation-based learning. It ad-

dresses the research question to what extent theoretically derived process indicators 

are suitable to predict learners’ diagnostic accuracy in the context of simulation-based 

learning of CDR. Since CDR frequently occurs in medical settings and has been iden-

tified to be a significant challenge for physicians (e.g., Tschan et al., 2009; Brady et 

al., 2012), the simulation was embedded in the context of medical education and de-

veloped based on the CDR model. Three CDAs proposed in the CDR model are par-

ticularly relevant in the simulated situation: evidence elicitation, evidence sharing, 

and hypotheses sharing. Hence, the current study investigates to what extent diagnos-

tic accuracy can be predicted using the CDAs constructed from process data of a sim-

ulated learning environment in medical education. In addressing this research ques-

tion, the current study contributes to developing more adaptive instructional support 

within simulation-based learning through showing the possibilities of learning analyt-

ics methods, being able to predict the outcome already in the process.  
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Method 

Simulation and Learner Task 

The simulation was integrated into CASUS (https://www.instruct.eu/; M. R. Fischer, 

Aulinger, & Baehring, 1999), a case-based learning platform, where learners worked 

on five different patient cases within the simulation. Medical experts from internal 

medicine, radiology, and general medicine constructed the patient cases. In the simu-

lation, the learners' task was to interact with an agent-based (i.e., simulated) radiolo-

gist to diagnose fictitious patient cases suffering from unknown fever. To that end, 

learners requested further information about the patient from the radiologist who con-

ducted radiological examinations. This required learners to engage in the CDA evi-

dence elicitation, evidence sharing, and hypotheses sharing. Medical experts who sup-

ported the development of the situation considered these CDAs as particularly im-

portant for the specific collaborative diagnostic situation. The collaboration took place 

after the learners studied a health record (containing all current information about the 

patient). The collaboration consisted of filling out a radiological request form and re-

ceiving the requested results from the simulated radiologist only if the request form 

contained sufficient evidence and hypotheses relevant for the radiologist to conduct 

and interpret the radiologic test. Specifically, learners needed to elicit evidence by 

choosing an exam method to be performed by the radiologist, sharing evidence by 

choosing information from the health record relevant for the radiologist, and sharing 

suspected diagnoses as hypotheses. After the collaboration, learners were asked to 

indicate their final diagnosis individually. For a detailed description of the simula-

tion's development and validation, see Radkowitsch et al. (2020).  

 

Sample and Design 

Data for this study was taken from a more extensive experimental study conducted 

within the COSIMA Project. The study's design was an experimental setting with four 

groups investigating the effect of different kinds of instructional support. One group 

received an adaptive collaboration script; one was encouraged to have reflection 

phases, one both kinds of support, and the control group received none of them. In 

order to avoid confounding effects of the experimental conditions for the current 

study, only the control condition was used for the current analyses. Data was collected 

online from 9 male and 26 female intermediate learners from the 4th – 6th year of 

medical studies. In total, the study program includes six years of studying. Learners 

had an average age of M = 25.43 years (SD = 2.54 years) and studied medicine on 

average in their M = 5th year (SD = 0.76 years). Learners were recruited through an 

email distribution list and flyers. For full participation, learners received 10€ compen-

sation per hour of testing. In line with the university’s ethics requirements, participa-

tion was voluntary, and learners could terminate participation at any time. Given the 

focus of the study on the CDR process, the unit of analysis was the patient case and 

https://www.instruct.eu/
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not the participant. As learners worked on five patient cases, this led to a total of 

n = 167 after excluding missing data on diagnostic accuracy. The ethics committee of 

the medical faculty of LMU Munich declared ethical clearance prior to data collection 

(approval number 18-262). 

 

 

Measures  

Diagnostic Accuracy 

Each patient case is assigned to one primary diagnosis, consented by experts. After 

working on the patient case and requesting a radiological examination, the learners 

indicated their final diagnosis using a free text field with suggested options out of a 

list of 249 diagnoses, based on the first letters entered, to shorten and standardize the 

input. Diagnostic accuracy was calculated by coding the final diagnosis's compliance 

with the expert solution. To that end, two independent coders each coded the complete 

data. Differences in the coding were discussed until all codes were identical. Accurate 

diagnoses were coded with 1, while inaccurate diagnoses were coded with 0. For ex-

ample, when the patient suffers from hospital-acquired pneumonia, this diagnosis 

would be coded with 1, while only pneumonia or any other diagnosis would be coded 

with 0.  

 

Process Data 

Every click in the simulation leading to an interaction with the system was stored with 

the corresponding timestamp in log file data allowing for analyzing process data. 

Based on the CDR model, the CDAs were coded depending on the learners’ entries to 

a radiological request form during the collaboration with the simulated radiologist. 

Every activity where the learners selected a radiological examination by choosing a 

method and the body part to examine was coded as evidence elicitation. Every activity 

where the learners shared information from the health record to justify the radiological 

examination was coded as evidence sharing. Every activity where the learners indi-

cated a potential diagnosis was coded as hypotheses sharing. Diagnoses were entered 

using a free text field with suggested options out of a list of 249 diagnoses, based on 

the first letters entered, to shorten and standardize the input. To illustrate this process, 

we will give an example of how a learner could have filled out the request form: The 

learner started to fill out the request form by choosing an x-ray of the chest as a radi-

ological examination (evidence elicitation). This requires the learner to make two 

clicks in the simulation, one for selecting a method and another for selecting the re-

spective body part. Next, the learner justified the decision for the examination method 

by ticking information presented in the health record (evidence sharing). In this ex-

ample, the learner shared that the patient has decreased breathing sound, fever, is 
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male, and is a smoker. The learner identified and ticked the respective box to share 

that evidence, including this information. Lastly, the learner typed ‘pneu’ into the free 

text field on the bottom of the form. The system offered possible diagnoses starting 

with ‘pneu’ (e.g., pneumonia; community-acquired pneumonia; hospital-acquired 

pneumonia), the learner chose the share ‘pneumonia’ as a hypothesis with the simu-

lated radiologist. Before sending the form, the learner decided to additionally share 

the evidence that the patient has an increased lymphocyte value. 

First, the clicks in the simulation were coded automatically according to the CDAs 

using spreadsheet software. Then, each coded activity was decomposed into the num-

ber of seconds a participant spent on the activity. The activities coded in units of sec-

onds were then summarized into behavioral strings that indicated, per learner and case, 

which CDA was performed, how long, and what activity followed. This information 

was stored in a string variable.  

 

Analyses 

The proper selection of features is essential in prediction models. When process data 

depicts long sequences, exploratory approaches such as the n-gram method proposed 

by Damashek (1995) can be helpful. Here the process of activities is summarized as a 

sequence of n consecutive elements. This allows representing the sequence of activi-

ties as well as their frequency. For this study, we chose bigrams (n = 2) to ensure there 

are not too many different features in our prediction models. The bigrams represented 

either consistent activity (two instances of the same activity) or transitions from one 

behavior to another (two different activities). To apply the n-gram method, the string 

variable representing an individual’s sequence of activities was separated in bigrams 

using the n-gram package in R (3.0.4; D. Schmidt & Heckendorf, 2017), leading to 

nine features constructed from the three theoretical derived activities, each summariz-

ing how often this specific bigram occurred in the string variable.  

Referring back to the previous example, the learner spent 60 seconds on evidence 

elicitation, which resulted in 59 instances of the EE.EE bigram. Further, the learner 

spent 200 seconds at the beginning and 6 seconds with evidence sharing when they 

returned to that activity after sharing the hypothesis resulting in 204 instances of the 

ES.ES bigram. Spending 150 seconds with hypotheses sharing results in 149 instances 

of the HS.HS bigram. Those three bigrams indicate consistent activity. Looking at 

transitions, the learner had a value of one on the bigrams EE.ES, ES.HS, HS.ES indi-

cating changes between evidence elicitation and evidence sharing, evidence sharing 

and hypotheses sharing, as well as hypotheses sharing and evidence sharing, respec-

tively.  

For predicting diagnostic accuracy using bigrams of CDAs, the statistical software R 

(RStudio Team, 2020) was used. The essential packages were ranger (0.12.1; Wright 

& Ziegler, 2017) and caret (6.0-86; Kuhn, 2008). A random forest classification 

model (ranger algorithm; Wright & Ziegler, 2017) was developed to answer the re-

search question. This model was chosen as it is highly accurate and able to deal with 
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relatively large numbers of features and few data points while considering complex 

interactions among the features. In contrast to more interpretable logistic regression 

models, random forest classification models are also less affected by multicollinearity 

issues (Breiman, 2001; Fernández-Delgado, Cernadas, Barro, & Amorim, 2014). 

First, the data set was split into a training set (including 75 % of the data) and a testing 

set (including 25 % of the data). The training set was then used to fit the prediction 

model. To increase the model fit, hyperparameters were tuned automatically. A 10x3 

cross-validation was applied to identify the hyperparameters to decrease the risk of 

overfitting. For the ranger algorithm, only the number of randomly selected predictors 

(mtry), the split rule (gini or extra trees), and the minimum node size needed to be 

determined (Kuhn, 2008). The prediction model was evaluated in the testing set and 

the training set using a confusion matrix (Buskirk, Kirchner, Eck, & Signorino, 2018). 

To assess classification quality of the prediction model classification accuracy (the 

total percentage of correct classifications), sensitivity (true positive classification rel-

ative to all positive classifications), and specificity (true negative classification rela-

tive to all negative specification), no-information rate (always predicting the most 

common class), and a one-sided significance test to see whether the developed model 

outperforms the no-information rate was evaluated (Alpaydin, 2010; Kuhn, 2008). 

Kappa, the agreement between predicted values and the actual data in relation to ex-

pected values by chance, is assessed, with a value of greater than .61 indicating suffi-

cient strength of agreement (Landis & Koch, 1977).  

Finally, a closer look into how each feature influenced the classification was done 

using feature importance. Due to complex interactions among different features, the 

interpretation of importance is not always straightforward and can only be done in 

relation to other features in the model, not by applying standardized cut off values 

(Kuhn, 2008; Liaw & Wiener, 2002; Strobl, Boulesteix, Zeileis, & Hothorn, 2007). 

The dataset and the code for the analyses are uploaded to the open science framework 

(OSF) repository and can be retrieved from https://osf.io/y6bfx/ 

 

 

Results 

Before looking at the predictability of diagnostic accuracy using process data, the used 

features are presented descriptively in Table 1. The bivariate correlation between the 

features and diagnostic accuracy is only minor, ranging from -.06 to .11.  

 

 

 

 

https://osf.io/y6bfx/?view_only=2f93909c5d6a47b5acbc49f4f5b2a661
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Table 1 

Descriptive Results of the Features used for Prediction Diagnostic Accuracy 

Feature 
Accurate Diagnoses  Inaccurate Diagnoses 

rp 

Median Range  Median Range 

EE.EE  25.5 6 - 342  36.0 2 - 429 -.05 

ES.ES  146.0 0 - 587  135.5 0 - 581 .11 

HS.HS  79.0 0 - 568  67.5 0 - 520 -.02 

EE.ES  1.0 0 - 6  1.0 0 - 6 .01 

EE.HS  0.0 0 - 5  0.0 0 - 4 .03 

ES.EE  0.0 0 - 3  0.0 0 - 4 -.04 

ES.HS  0.0 0 - 4  0.0 0 - 5 .05 

HS.EE  0.0 0 - 4  1.0 0 - 4 -.02 

HS.ES  0.0 0 - 2  0.0 0 - 3 .06 

Note. EE = evidence elicitation, ES = evidence sharing, HS = hypotheses sharing 

rp = Pearson correlation between feature and diagnostic accuracy 

 

Investigating the predictability of diagnostic accuracy using process indicators, de-

picted through bigrams of CDAs, the identified random forest classification model 

(mtry = 2, splitrule = extra trees, min node size = 1) performed well. Classification 

accuracy of .98 (95 % CI [.93; 1.00]) was found for the training set, indicating strong 

predictive power. The results of the one-sided hypothesis test indicated that the devel-

oped model was significantly better than the no-information rate model (accuracy of 

.54, p < .001). The kappa for the model was .95, implying high agreement between 

the predicted values by the model and the actual data (Landis & Koch, 1977). Further 

evaluation revealed a sensitivity of .95 and a specificity of 1.00, indicating that the 

model could correctly predict accurate and inaccurate diagnoses in most cases.  

When using the testing set, the results supported the good ability of the model to pre-

dict diagnostic accuracy, with a predictive accuracy of .95 (95 % CI [.84;.99]) and a 

no-information rate of .73. The classification was also significantly better than the no-

information model (p <.001) for the testing set. Results implied, again, a high agree-

ment between the predicted values by the model that was trained based on the training 
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sample and the data of the testing sample with a kappa of .88. The additional evalua-

tion metrics further indicated a sensitivity of .91 and specificity of .97, slightly worse 

than in the training set. Nevertheless, both measures indicated a high capacity of the 

model to predict accurate and inaccurate diagnoses in both the training and the testing 

data set. 

Looking at the importance of the different features (see Figure 1), the most important 

one was the transition from evidence sharing to hypothesis sharing. This is followed 

by the transition from evidence sharing to evidence elicitation and the transition from 

evidence elicitation to hypotheses sharing. The fourth most important feature is the 

transition from hypothesis sharing to evidence elicitation. All those transitions are 

entailed in the process of CDR.  

 

Figure 1 

Importance of Features Predicting Diagnostic Accuracy Using Process Data  

 

 

 

 

 

 

 

 

 

 

 

 

Note. EE = evidence elicitation, ES = evidence sharing, HS = hypotheses sharing 

 

Discussion 

The current study aimed at investigating to what extent theoretically derived process 

indicators are suitable to predict learners’ diagnostic accuracy (performance measure) 

in the context of simulation-based learning of CDR. A random forest algorithm 
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classified accurate and inaccurate diagnoses correctly based on bigrams of CDAs. The 

model predicted a large percentage of accurate and inaccurate diagnoses and is, there-

fore, suitable to support statements about the performance only using process data. 

This is in line with former research (e.g., Mahboob, Irfan, & Karamat, 2016), indicat-

ing that algorithms from the field of Learning Analytics are suitable for performance 

prediction.  

Learning performance and its enhancement are widely investigated in Learning Ana-

lytics (Leitner et al., 2017). However, most of the studies lacked a theoretical ground-

ing of their approach (Gašević et al., 2015). The present study used features for the 

prediction of diagnostic accuracy that were derived from the CDR model by 

Radkowitsch et al. (2020), which is theoretically rooted in well established theoretical 

frameworks (e.g., Klahr & Dunbahr, 1988; F. Fischer et al., 2014; Liu et al., 2015). 

The current results underline the relevance of epistemic activities, such as CDAs, and 

their sequences for diagnostic processes. However, so far, the CDR model does not 

consider predictions about the relation between the CDAs and diagnostic accuracy. It 

is only conceptualizing CDAs as part of the CDR process, which needs to be per-

formed with high quality to draw an accurate final decision. Using Learning Analyt-

ics, we showed that the CDAs are relevant for diagnostic accuracy, being a perfor-

mance indicator of CDR, even though the bivariate correlations between the bigrams 

and diagnostic accuracy were only minor.  

The clear benefit of using machine-learning prediction models instead of traditional 

statistical models is the change of perspective. While the latter is concerned about 

explaining causal relationships and therefore has a retrospective view on the data, the 

former has the goal of predicting future data and therefore has a prospective view 

(Yarkoni & Westfall, 2017). Accordingly, predictive accuracy is the primary goal, 

and the ratio of bias and variance, which minimize the occurring error the best, should 

be chosen. In order to achieve this, one must be willing to allow for bias and nonline-

arity for the sake of accurate prediction (Molnar et al., 2020; Yarkoni & Westfall, 

2017). This focus on predictive accuracy can make prediction models, especially en-

semble methods such as random forests, highly complex, resulting in accurate predic-

tions but lacking an explanation of how they were achieved, leading to less transparent 

models, also known as black boxes (Molnar et al., 2018; Yarkoni & Westfall, 2017). 

There is a need to investigate non-linear relations between process indicators to en-

hance theoretical models. The current results highlight the relevance of theoretically 

derived process indicators for the performance of CDR in simulation-based learning 

and can be used to predict the performance of complex problem-solving skills in sim-

ulation-based learning already in the process. Such predictions may help provide 

learners with inadequate performance with additional (adaptive) instructional support. 

From the feature importance plot, we can see that the consistent features (e.g., time 

spent with evidence elicitation) and transitions from evidence elicitation to evidence 

sharing and from hypotheses sharing to evidence sharing are relatively unimportant. 

Future analyses should therefore focus less on these processes and more on the tran-

sitions from evidence sharing to hypotheses sharing, from evidence sharing to evi-

dence elicitation and from evidence elicitation to hypotheses sharing and hypotheses 
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sharing to evidence elicitation. The most important feature is the transition from evi-

dence sharing to hypotheses sharing. However, the feature did not differ considerably 

regarding accurate and inaccurate diagnoses. Therefore, a non-linear relationship or a 

complex interaction with one or more other features is assumed, which needs to be 

further investigated. However, we currently do not know precisely what indicates in-

adequate performance and how to foster it accordingly, as the interpretation of black-

box models and feature importance is not straightforward, and the prediction is not 

linear but a result of complex interactions. 

Nevertheless, the current study was able to show that predicting the performance in 

complex simulation-based learning environments based on theoretically derived indi-

cators of behavior is possible, even if there are no linear correlations between behavior 

and performance. Since we were able to demonstrate a relation between the theoreti-

cally derived process indicators and the performance of CDR in simulation-based 

learning, the next step should be to investigate sequences of activities in depth, e.g., 

with sequence clustering (Piccarreta, 2017), allowing not only to identify learners who 

need additional instructional support but also to provide this support.  

The current results are not limited to learning of CDR in the medical context but likely 

generalize to related fields such as teacher education (Heitzmann et al., 2019) and 

complex problem-solving skills in different domains as the indicators of behavior 

were coded on a domain-general level. 

 

Limitations and Future Research  

The current study is not without limitations, which must be kept in mind when inter-

preting the results. First, it must be considered that all patient cases were analyzed 

independently, regardless of the order in which they appeared in the simulation, thus 

ignoring potential learning effects between the cases. Statistically speaking, this ap-

proach risks ignoring non-negligible random effects due to the clustered nature of the 

data. Extensions of the random forest algorithm have been proposed that consider 

clustered data (Hajjem, Bellavance, & Larocque, 2014). However, since our model 

performed exceptionally well, the intra-class correlation among participants is likely 

very low even without this extension. Another limitation is that only data from learn-

ers with an intermediate level of expertise was collected, limiting the observation of 

full expert and novice behavior. However, data showed a balanced frequency of ac-

curate and inaccurate diagnoses. Future research might investigate whether partici-

pants of different expertise levels employ different strategies for their collaborative 

diagnosing, which would likely require an algorithm capable of including this infor-

mation as an additional level of data. 

Another potential limitation lies in the decision to observe only bigrams rather than 

n-grams that are more complex. N-grams that are more complex might provide further 

insights into more advanced strategies and might be more interpretable towards nec-

essary support. However, the number of features increases exponentially with the 

length of observed n-grams. Even trigrams might have resulted in too many (33 = 27) 
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features for our limited sample. Future research might investigate longer n-grams us-

ing larger samples. An alternative would be the theoretical definition of specific se-

quences as predictors to explicitly test hypotheses on strategic behavior in a simula-

tion. In line with the current results, the focus should be on the transitions between 

activities rather than on consistent behavior.  

To help learners who potentially show inadequate performance as early as possible, 

future research will also need to investigate how early it is possible to predict the 

performance of complex problem-solving skills using process data. In addition, future 

research may also investigate how additional instructional support could look like. 

For example, Azevedo, Moos, Cromley, and Greene (2011) demonstrated that a com-

bination of content and process-oriented adaptive scaffolding is suitable to facilitate 

self-regulated learning. 

Currently, there is only little known about sequences of CDAs and their relation with 

diagnostic accuracy. However, we could show in this study that there are non-linear 

relations between those process indicators and learning performance. Future research 

should deepen this by investigating the transitions between activities to make further 

claims on refining existing theoretical process models. This is in line with the call for 

explanatory learner models that focus on optimal predictions using black-box models 

but use more interpretable methods to gain deeper insights into learning (Rosé et al., 

2019). One approach in this context is the use of different kinds of data, such as pro-

cess (e.g., log-file data), product (e.g., the outcome of a task), and learner data (e.g., 

self-report measures) using dispositional learning analytics (Buckingham Shum & 

Crick, 2021). This combination of data sources allows improving the design of adap-

tive scaffolding and interventions as it provides more profound insights into the ori-

gins of underperforming (Gašević et al., 2017). For example, Tempelaar, Rienties, 

and Nguyen (2021) combined this approach with a person-oriented type of research 

(instead of the traditional variable-oriented type) to identify five different learning 

profiles based on only learner data at the beginning and then by including more pro-

cess data in a stepwise manner. This allows providing instructional support not only 

for a group of learners or an average learner but also for a specific individual learner, 

that is, personalized learning support. 

 

Conclusion  

This study aimed to predict CDR performance using process data, indicated by diag-

nostic accuracy. Results show that using a Learning Analytics approach, a random 

forest prediction model, is suitable for predicting performance using process indica-

tors theoretically derived and constructed from process data. Using Learning Analyt-

ics enables researchers to provide practical solutions such as identifying learners at 

risk to show inadequate performance in need of adaptive instructional support. The 

findings contribute to the development of more adaptive instructional support within 

simulation-based learning through being able to predict the individuals’ learning out-

comes already during the process.  
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