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Rasch Joint Maximum Likelihood  

Estimation Algorithms and Missing Data 

 

Adam E. Wyse1 

Abstract 

This article examines two approaches for performing joint maximum likelihood estimation with 

the Rasch model and how these estimation algorithms may be impacted by the amount and type 

of missing data. The two estimation algorithms include the Newton-Raphson procedure and a 

proportional curve fitting algorithm. Using simulated data from two different credentialing pro-

grams, we found that the amount and type of missing data can impact the amount of error and 

variability observed in item and person parameters. However, we found that the proportional 

curve fitting and Newton-Raphson algorithms tended to give virtually identical results. The 

only differences between the two algorithms were when missing data were created using a com-

puterized adaptive testing algorithm and there were less than 50 scored item responses. In some 

of these cases, there were very small differences between the two algorithms with the propor-

tional curve fitting algorithm performing slightly better. It is suggested that in most practical 

applications that one should expect very similar results no matter what algorithm is employed 

to estimate item and person parameters. 
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One of the most commonly used models in educational and psychological testing is 

the Rasch (1960) model. The Rasch model posits that the probability of obtaining a 

correct response on an item is a function of the person’s ability and the difficulty of 

the item. A key aspect of applying the Rasch model to exam data is obtaining estimates 

of item and person parameters. There are many different approaches for obtaining 

estimates of item and person parameters, including joint maximum likelihood estima-

tion (JMLE), conditional maximum likelihood (CMLE), marginal maximum likeli-

hood estimation (MMLE), the PROX method, the PAIR method, and Bayesian esti-

mation methods (see Engelhard, 2014; Linacre, 1999; 2004; Molenaar, 1995). Among 

these methods, JMLE is one of the most commonly used methods due in large part to 

its widespread availability in several software packages, such as Winsteps (Linacre, 

2016), Facets (Linacre, 2014), ConQuest (Adams, Wu, & Wilson, 2012), jMetrik 

(Meyer, 2016), mixRasch (Willse, 2014), and TAM (Kiefer, Robitzsch, & Wu, 2016).  

Although JMLE is used in many different software programs, the way that JMLE is 

carried out is not always the same across programs. Some software packages use pro-

portional curve fitting algorithms, while other software packages use Newton-

Raphson algorithms. In discussing the choice to implement a proportional curve fit-

ting algorithm in Winsteps, Linacre (2016) explains that Newton-Raphson estimation 

has proven to be unstable with sparse data sets and odd score distributions. This state-

ment implies that knowing the algorithm implemented by the software and the prop-

erties of the data one is employing it on may be important. 

Despite the statement in the Winsteps manual on the negative performance of the 

Newton-Raphson algorithm and the robust performance of the proportional curve fit-

ting algorithm with sparse data, published research to substantiate this claim is lacking 

in the literature. The authors performed a literature search and did not find a single 

published article that examined how the type and amount of missing data may impact 

different JMLE algorithms. This article examines how the amount and type of missing 

data may impact these JMLE algorithms using two real data-based simulations. Our 

specific research questions are: 

 

1) How does the type and amount of missing data impact different JMLE 

algorithms? 

2) Are results consistent across different datasets, or does utilizing differ-

ent data produce disparate results? 

 

In the next section, we outline the two different JMLE algorithms that are the focus 

of our investigations. Then, we review prior research on missing data and how it may 

impact the estimation of item and person parameters for the Rasch model. The next 

section provides a description of the data and methods used to investigate our research 

questions. The results for the different JMLE algorithms are then compared for two 

different datasets. The article concludes with discussion of results and suggestions on 

using JMLE when there may be missing data.  
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Joint Maximum Likelihood Estimation Algorithms 

JMLE was first introduced to estimate Rasch item and person parameters by Wright 

and Panchapsken (1969). JMLE derives its name from the fact that item and person 

parameters are jointly estimated. In the context of the Rasch model, this means that 

estimates for person parameters are used to estimate item parameters and then the 

estimates for items are used to estimate person parameters. This process is iterated 

until the convergence level is reached. It is well known that JMLE can give biased 

estimates. Generally, parameters improve when the numbers of items and people in-

crease, and the sample used to estimate the model well represents the population of 

interest (Linacre, 1999, 2004; Meyer & Hailey, 2012; Svetina et al., 2013; Wang & 

Chen, 2005; Wright & Douglas, 1977; Wright, 1988; Wyse & Babcock, 2016). JMLE 

estimates are also known to be inconsistent (Anderson, 1973; Del Pino, San Martin, 

González, & De Boeck, 2008; Ghosh, 1995; Haberman, 1977; Jansen, van den Wol-

lenberg, & Wierda, 1988; Linacre, 1999, 2004). Despite these challenges, JMLE re-

mains a staple in estimating Rasch item and person parameters and yields acceptable 

results in most practical applications. 

There are several different options to compute the item and person parameters using 

JMLE. All the algorithms have the same starting point. In particular, each algorithm 

is focused on estimating item and person parameters for the Rasch model, which can 

be written as: 
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where βg is the person measure of person g and δi is the difficulty parameter for item 

i (Rasch, 1960). All the algorithms also need initial estimates of the item difficulty 

and person parameters to begin the iteration process. An initial estimate of the item 

parameter for an item is typically found as: 
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where Ni is the total number of people responding to item i, n is the total number of 

items, and si is the number of people correctly answering item i (Wright & Pan-

chapakesan, 1969). Similarly, an initial estimate of the person parameter is typically 

found as: 
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where rg is the total number of items answered correctly by person g and ng is the 

number of items that they answered (Wright & Panchapakesan, 1969). It is important 

to recognize that the total number of persons responding to an item and the total num-

ber of items answered by a person may differ across items and people.  

The algorithms differ in how the item and person parameters are found during the 

iteration process. In the Newton-Raphson procedure, the derivatives of Equation 1 

with respect to items or persons are used to determine the new item and person pa-

rameters. New item parameter estimates are obtained as: 
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where t is the iteration, N is the total number of people answering the item, si is the 

number of people correctly answering item i, and igP̂ is the estimated probability of 

correct response to the item based on the current person and item parameter estimates 

from Equation 1 (Wright & Panchapakesan, 1969). These estimates are then centered 

at zero and used to find new person parameter estimates using the equation: 
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where the terms have the same meaning as described above (Wright & Panchapake-

san, 1969). The new estimates are then compared with the estimates from the previous 

iteration for both items and people and if the differences between the new and old 

estimates are smaller than the desired convergence level the iterative process stops. 

Otherwise, another iteration of the process is performed. The Newton-Raphson pro-

cedure is efficient and works quite well in most applications. However, it is possible 
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for the Newton-Raphson procedure to run into convergence problems in some situa-

tions (Linacre, 1987; 2004; Molenaar, 1995).  

In the proportional curve fitting procedure, one tries to approximate the item and test 

characteristic curves for the Rasch model using linear equations. The item character-

istic curve is Equation 1 and the test characteristic is the sum of item characteristic 

curves over items. To implement this algorithm, one must first define a starting devi-

ation measure,
( )0d . This deviation measure defines the length of the line segments 

that are fit to the characteristic curves. Typically, 
( )0d is set to 1 as a starting value. 

To figure out the item parameter in iteration t, one computes 
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where igP*ˆ is the value of Equation 1 with 
( ) ( )tt d+̂ input for the item parameter 

and the other terms have the same meaning as before (Linacre, 2016). These item 

difficulty parameters are then centered at zero and used to find new person parameters 

using the equation: 
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where igP#ˆ
is the value of Equation 1 with 

( ) ( )tt d+̂
input for the person parameter 

and the other terms have the same meaning as before (Linacre, 2016). The new estimates 

are then compared with the estimates from the previous iteration for both items and 

people and if the differences are smaller than the convergence level the iteration process 

stops. Otherwise, another iteration is performed with the maximum difference between 

any two parameters becoming the new deviation measure. Like the Newton-Raphson 

procedure, the proportional curve fitting algorithm is efficient and works well in most 

applications. Based on Linacre (2016), one would infer that this approach should be 

more robust than the Newton-Raphson procedure when there is missing data. 
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Missing Data and the Rasch Model 

There are three kinds of missing data that are encountered in practice; missing com-

pletely at random (MCAR), missing at random (MAR), and missing not at random 

(NMAR) (Dempster, Laird, & Rubin, 1977; Little & Rubin, 2002). MCAR data occur 

if the missing data do not depend on the values of the observed and unobserved data. 

MAR data occur if the missing data only depend on the values of the observed data 

and do not depend on the values of the unobserved data. NMAR data occur if the 

missing data depend on the values of the unobserved data. Research on the Rasch 

model and how it is impacted by missing data has looked at all three kinds of missing 

data. This research has followed three different lines of inquiry. 

The first line of inquiry has focused on developing or extending existing Rasch models 

to handle various kinds of missing data. Examples of this type of research include 

Verhelst and Glas (1993), Holman and Glas (2005), Rose, von Davier, and Nagengast 

(2010), and Bertoli-Barsotti and Punzo (2013). This line of research often does not 

look at how different estimation algorithms are impacted by missing data, but it does 

suggest that the kind of missing data can impact results and that using a model that 

considers the kind of missing data can improve parameter estimates. Given that the 

kind of missing data can impact results, we look at how the estimation algorithms may 

be impacted by four types of missing data in our simulations. 

The second line of inquiry looks at how different ways of handling missing data may 

impact parameter estimates. For example, Hohensinn and Kubinger (2011) and Cus-

ter, Sharairi, and Swift (2012) looked at how treating data as missing versus incorrect 

may impact Rasch model results. Both studies showed that scoring omitted and not 

reached items as incorrect can lead to biased results. Shin (2009) showed that treating 

responses as missing was preferable to treating responses as incorrect when perform-

ing Rasch-based true-score equating. Ludlow and O’Leary (1999) also found that dif-

ferent methods of scoring omitted and not reached items can lead to different results 

for a cognitive ability test. Sijtma and van der Ark (2003) looked at how various im-

putation techniques may impact results and found that a strategy based on response 

function imputation tended to work quite well. This line of inquiry seems to suggest 

that how one handles missing data can impact the parameters that are obtained. Since 

our concern is with how the two estimation algorithms are impacted by missing data, 

we examine the case where missing data are treated as missing. We do not examine 

how results may be impacted by scoring items as incorrect, using listwise deletion, or 

employing different imputation strategies.  

The third line of inquiry examines how different estimation strategies may be im-

pacted by missing data. Heine and Tarnai (2015) developed a pairwise estimation al-

gorithm and looked at how the algorithm compared to MMLE, CMLE, and an impu-

tation-based strategy for an eight-item survey with various levels of missing data. 

Their research showed that the pairwise estimation algorithm worked quite well, es-

pecially as the amount of missing data was increased. However, the authors only used 

a single replication, focused on one data set with a small number of items, and did not 
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include JMLE as part of their investigations. Andrich and Luo (2003) also developed 

a conditional pairwise estimation algorithm that uses principal components and can 

handle missing data and low frequency counts. They showed that this method per-

formed well in a simulation study. DeMars (2002) used simulated data to compare 

JMLE and MMLE and showed that the two methods can produce different results 

when data are not MAR. In this article, we examine how JMLE algorithms work with 

two real data sets where the ways that data are set to missing and the amount of data 

set to missing are varied in different conditions.  

 

 

Data and Methods 

Data for this study come from two medical imaging credentialing programs. The ex-

ams are continuously administered via computer throughout the year. Passing the ex-

ams and earning a credential is often a requirement to obtain employment in each 

discipline. Examinees have up to three attempts to pass the exams. Each exam pro-

gram uses the Rasch model for scoring and equating purposes, and estimation of item 

and person parameters is carried out using JMLE with Winsteps (Linacre, 2016). For 

the purposes of scoring and equating the exams, all calibrations are based on responses 

from first-time candidates. Examinees who repeat the exam are not included in the 

calibration sample. 

Table 1 shows the number of scored items, the number of first-time candidates, the 

average Rasch item difficulty parameters, the standard deviation of the item difficulty 

parameters, the average person measures, and the standard deviation of the person 

measures for one form for the two exam programs. The Rasch item difficulty and 

person estimates in Table 1 were calculated using a proportional curve fitting algo-

rithm, but the results were identical using the Newton-Raphson algorithm. One can 

see that Program 1 had a much lower volume of first-time candidates taking the form. 

Each examinee had scored responses on all 160 items for the first program and all 165 

items for the second program. The average Rasch item difficulty parameters for each 

form were equal to 0.00 since this is the constraint used to identify the initial scale 

when calibrating data. The standard deviation of the item difficulty parameters was 

similarly around 1.00 for both programs. The average Rasch person measures were 

similar between the two programs with Program 1 having slightly lower average per-

son measures. As is common with credentialing exams, the average person measures 

were notably higher than the average item difficulty of the forms, indicating that many 

candidates did well on the items. We chose to use these two data sets in our simula-

tions because they represent ranges of sample sizes with which the Rasch model is 

used, and they illustrate common situations in which the Rasch model is applied to 

exam data in practice. 
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Table 1:  

Summary Statistics for Two Credentialing Exam Programs  

Exam Program 

Number 

of 

Scored 

Items on 

Form 

Number 

of Candi-

dates 

Taking 

Form 

Average 

Rasch 

Item 

Diffi-

culty 

SD of 

Rasch 

Item 

Diffi-

culty 

Average 

Rasch 

Person 

Measure 

SD of 

Rasch 

Person 

Measure 

Program 1 160 300 0.00 1.02 1.29 0.68 

Program 2 165 1817 0.00 1.00 1.36 0.62 

  

The first factor that we considered in our simulations was the type of missing data. 

The first kind of missing data included randomly selecting a number of item responses 

to be treated as scored and setting the rest of the responses to missing. This condition 

simulates a set of missing data that are designed to be missing completely at random. 

The second kind of missing data was created by keeping a certain number of scored 

item responses at the beginning of the exam and setting the rest of the item responses 

at the end of the exam to missing. This condition simulates data that might be impacted 

by item order effects, where items at the end of the test are less likely to be answered 

than items at the beginning of the test. There might not be a lot of item order effects 

for these data since the order of the items for each candidate is randomized as a test 

security measure. The randomization means that candidates see the same set of scored 

items on a form, but the order in which the items appear generally differs across can-

didates. If the item order effects are not large, the results for the first and second con-

dition will be similar. The third condition applied a computerized adaptive testing 

(CAT) algorithm to determine the scored and missing data for each examinee. In this 

case, we used the catIrt (Nydick, 2014) package and we simulated fixed length adap-

tive tests for each examinee where five items were randomly given at the start of the 

exam, and then items were selected based on maximizing the information at the per-

son’s current ability estimate. We selected the items from 160 or 165 scored item 

responses observed for that person. This condition simulates a common type of miss-

ing data in large-scale assessments, where item responses may be missing based on 

the person’s ability, item difficulty, and scored responses to previous items. The fourth 

condition simulated data by setting item responses to missing for people who were in 

the bottom quartile of the score distribution. In this case, we randomly selected the 

scored responses and we set the rest of the responses to missing. This condition sim-

ulates a condition where the missing data is fully dependent on the ability of the person 

with low ability candidates providing fewer item responses. It is important to look at 

the type of missing data because previous research indicates that the kind of missing 

data may impact Rasch item and person parameter estimates.  

The second factor that we considered was the number of scored item responses. The 

number of scored item responses included 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 

scored items responses. The number of scored item responses is inversely related to 
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the number of missing responses, which means that when the number of scored re-

sponses is less the number of missing responses is greater and vice versa. It is im-

portant to look at the number of scored item responses because the number of scored 

item responses may impact the performance of different algorithms. In particular, one 

may expect more error in item and person parameters when the number of scored item 

responses are fewer.   

These two factors were fully crossed to produce 40 simulated conditions for each 

exam program. For each simulated condition, expect for the conditions that involved 

the item order effects, we ran 100 replications. For the conditions that involved the 

item order effects, we ran a single replication. We only ran a single replication in these 

conditions because the order of the items did not change, which means that if we ran 

multiple replications we would have ended up with the same data. For each simulated 

data set, we estimated the item and person parameters using the Newton-Raphson and 

the proportional curve fitting algorithm. Both algorithms were written in R (R core 

team, 2014) and used a convergence criterion of 0.01. For people that obtained the 

maximum possible score for a set of scored items we set their ability estimates to 6 

and for people that obtained the minimum possible score we set their ability estimates 

to -6. Similarly, for items that everyone got correct we set the item difficulty estimates 

to 6 and for items that everyone got incorrect we set the item difficulty estimates to -

6.  

To evaluate the performance of the two different estimation algorithms, we looked at 

three different indices for each estimation algorithm and each condition. The first in-

dex we computed was the mean absolute difference between the estimated item or 

person parameters for the simulated data set and the values obtained with the full set 

of data with no missing data. For items, this statistic can be represented as:  

 

                                    𝑀𝐴𝐷 =
∑ ∑ |𝛿̂𝑖𝑟−𝛿̂𝑖|𝑛

𝑖=1
𝑅
𝑟=1

𝑅×𝑛
,                                      (8) 

where 𝛿̂𝑖𝑟 is the item difficulty estimates for item i for replication r, 𝛿̂𝑖 is the item 

difficulty estimate for item i for the full sample of population, n is the number of items, 

and R is the number of replications. For people, this statistic can be represented as: 

   

                                     𝑀𝐴𝐷 =
∑ ∑ |𝛽̂𝑔𝑟−𝛽̂𝑔|𝑁

𝑔=1
𝑅
𝑟=1

𝑅×𝑁
,                       (9)                

where 𝛽̂𝑔𝑟  is the person parameter estimate for person g for replication r, 𝛽̂𝑔 is the 

person parameter estimate for person g for the full sample of items, N is the number 

of people, and R is the number of replications. The goal is that the MAD is close to 

zero because this indicates that the item or person parameter estimates for that repli-

cation are close in absolute value to the item or person parameter estimates in the full 
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data set. We rounded the MAD statistic to two decimal places when computing it for 

each algorithm and condition.  

The second index we computed was the root mean squared difference between the 

estimated item or person parameters for the simulated data set and the estimated val-

ues from full set of data with no missing data. For items, this statistic can be repre-

sented as:  

                               𝑅𝑀𝑆𝐷 = √∑ ∑ (𝛿̂𝑖𝑟−𝛿̂𝑖)
2𝑛

𝑖=1
𝑅
𝑟=1

𝑅×𝑛
,                              (10) 

where the terms have the same meaning as before. For people, this statistic can be 

represented as:  

                               𝑅𝑀𝑆𝐷 = √∑ ∑ (𝛽̂𝑔𝑟−𝛽̂𝑔)
2𝑁

𝑔=1
𝑅
𝑟=1

𝑅×𝑁
,                                (11) 

where the terms have the same meaning as before. The goal is that the RMSD is close 

to zero because this indicates that the squared differences between the item or person 

parameter estimates for that replication and those in the full data set were small. Sim-

ilar to the MAD statistic, we rounded the RMSD statistic to two decimal places when 

computing it. We focused on the MAD and RMSD as opposed to the mean difference 

because the mean of the item parameters is set equal to zero to identify the scales. 

This means that the mean difference for items would be uniformly equal to zero across 

conditions.  

The third index we looked at was the average standard deviation of the estimated item 

or person parameters over replications. This statistic helps provide an indication of 

the variability of the item or person parameters. The goal is that the average standard 

deviation of the estimated item or person parameters over replications would be close 

to the standard deviations reported in Table 1 for each program.  

Based on what is stated in the Winsteps manual (Linacre, 2016), one would anticipate 

that the MAD, RMSD, and standard deviations would differ somewhat for the pro-

portional curve fitting and Newton-Raphson algorithms, and the proportional curve 

fitting algorithm would outperform the Newton-Raphson algorithm especially when 

the number of scored item response are fewer (i.e., the amount of missing data is 

higher). One would also expect to find differences based on the type of missing data 

as previous research indicates some differences based on the type of missing data in-

vestigated. In addition, one would anticipate higher values of MAD and RMSD and 

more variability when the number of scored item responses is less.  
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Results 

Figures 1, 2, and 3 show the MAD, RMSD, and average standard deviations for the 

four types of missing data for the item parameter estimates for the first exam program. 

One can see several trends in the results. First, one can see that the number of scored 

responses appeared to impact the MAD, RMSD, and average standard deviations with 

the statistics being higher when there were fewer scored item responses. Second, one 

can see some differences in the values of the statistics based on the type of missing 

data. In particular, one can see that when the data were set to missing for people in the 

bottom quartile of the score distribution that the values of the MAD and RMSD sta-

tistics were lower and the average SD was closest to the value of 1.02. Randomly 

setting responses to missing tended to result in the next lowest values. Using a CAT 

algorithm generally had the highest values, except when there were only 10 items 

responses in which case setting responses at the end of the test to missing had the 

highest values. One might find it a little surprising that randomly setting item re-

sponses to missing did not perform the best across all conditions. However, the fact 

that the method based on setting item responses in the bottom quartile produced the 

best results makes some sense because this condition had about a ¼ the amount of 

missing data compared to other conditions. The lower amount of missing data appears 

to compensate for the fact that missing data came from the bottom quartile of the score 

distribution. Another key finding is that values for the proportional curve fitting algo-

rithm and Newton-Raphson algorithm were very similar for a given number of scored 

item responses and specific type of missing data across all three figures. In fact, there 

were only a few cases when employing CAT algorithms where there were any differ-

ences. These differences occurred when there were 20 or 30 scored item responses for 

the MAD statistic with the proportional curve fitting algorithm performing slightly 

better than the Newton-Raphson algorithm. 
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Figures 4, 5, and 6 show the results for the four types of missing data for the person 

parameter estimates for the MAD, RMSD, and average standard deviations, respec-

tively, for the first exam program. Some of the patterns observed with the item pa-

rameter estimates also held for the person parameter estimates. In particular, results 

suggested that number of scored item responses impacted the MAD, RMSD, and av-

erage standard deviation statistics with fewer scored item responses yielding larger 

values of the statistics. We also found that the type of missing data appeared to impact 

the values of the statistics with the bottom quartile data having lower RMSD and 

MAD statistics and average standard deviations that best matched the value of 0.68 

shown in Table 1. In addition, we again found that the only type of data where there 

were any differences between the proportional curve fitting and Newton-Raphson al-

gorithms was when the missing data were created using a CAT algorithm. These dif-

ferences occurred for MAD and RMSD statistics in a few cases where there were less 

than 50 scored items responses, but again the differences between the two algorithms 

were very small.  

There were two key notable differences in the results for the person parameters com-

pared to the item parameters. First, the person parameter estimates were less accu-

rately estimated than the item parameter estimates. Second, we found that creating 

missing data by random setting item responses to missing in several cases led to the 

largest values of the MAD and RMSD, especially with higher numbers of scored re-

sponses. These results may seem odd of the surface. However, they do make some 

sense as one thinks more about how data are created for the other three methods. The 

bottom quartile again has the least amount of missing data, which help explains why 

this method performed better. The CAT algorithm works differently than randomly 

setting responses to missing and specifically selects what items to keep based on the 

ability level of each examinee. The targeting of items generally results in greater pre-

cision of person parameters for CATs, which helps explain why the CAT algorithm 

works better. The item order method appears to perform slightly better than the ran-

dom method because as the test gets closer to the end examinees are more likely to 

randomly guess and spend less time on the items than at the beginning of the test. 

Removing responses at the end of the test, as happens with the item order method, 

appears to slightly improve estimation of person parameters because some of these 

odd responses are more likely to be removed when estimating person parameters. This 

can make person parameters a little more precise for the item order method than the 

random method for the same number of scored item responses.   
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The trends for the first credentialing program played out with the second credentialing 

program as well. In particular, we found that the number of scored item responses 

impacted the MAD, RMSD, and average standard deviations statistics for both item 

and person parameter estimates with fewer scored item responses leading to higher 

values of the statistics. We also found that the type of missing data had some impact 

with the bottom quartile data producing the lowest values of the statistics. Like with 

the first program, we also found some very small differences between the proportional 

curve fitting algorithm and the Newton-Raphson algorithm when using CAT algo-

rithms to create the missing data with the differences occurring when there were less 

than 50 scored item responses. The proportional curve fitting algorithm again per-

formed a little bit better. The biggest differences in results for the second program 

were that the values of the MAD and RMSD for the item parameter estimates were 

notably less because more examinees took the exam. For example, for 10 scored item 

responses the values MAD statistics were 0.24 for the random data, 0.22 for the item 

order effect data, 0.24 for the CAT data, and 0.10 for the bottom quartile data. The 

average standard deviations were also closer to the values in Table 1 for the second 

program than for the first program. Because of space considerations and because the 

trends in results were the same with the second program as they were with the first 

program, we decided not to include figures showing the results for the second program 

in the main text of the article.  

 

Discussion and Conclusion 

The purpose of this article was to explore how the amount and type of missing data 

impacted two different JMLE algorithms. Using simulated data from two credential-

ing programs, we found that the amount of missing data impacted the error present in 

item and person parameter estimates with more error found when there were fewer 

scored item responses. The average standard deviations also tended to be greater when 

there were fewer scored item responses. We also found that the type of missing data 

could impact the error present in item and person parameters with less error found 

when data were created by only setting responses to missing for people in the bottom 

quartile of the score distribution. We found that randomly setting item responses to 

missing tended to work better than setting item responses to missing using a CAT 

algorithm or setting item responses to missing at the end of the test for item parameter 

estimation. The same finding did not hold for person parameter estimation, where 

using a CAT algorithm and deleting item responses at the end of the test often per-

formed slightly better than randomly setting item responses to missing. The fact that 

randomly setting item responses to missing worked better for item parameter estima-

tion and worse for person parameter estimation than using a CAT algorithm or setting 

item responses to missing at the end of the test can be explained by the fact that ran-

domly setting item responses to missing tends to give a better match to the item re-

sponses of the full population, which is generally important when figuring out item 

parameter estimates. However, for person parameter estimation, deleting item re-

sponses that are less targeted to the person’s ability level or that may have been 
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guessed or given with less effort can lead to better ability estimates when the number 

of item responses are fewer. We also found, contrary to what is stated in Linacre 

(2016), that proportional curve fitting and Newton-Raphson algorithms performed 

similarly in most cases. In fact, the only differences we found where when CAT algo-

rithms were used to create the missing data and the number of scored item responses 

were less than 50. In some of these cases, the proportional curve fitting algorithm 

performed slightly better, although the differences between algorithms were not prac-

tically significant.  

Of course, an important question is whether our simulated conditions were representa-

tive of results that may be expected in other circumstances. It is possible that our sim-

ulations may not have captured all types of missing data or situations that may be 

encountered in practice. For example, it is possible that the shape of the score distri-

bution in other situations may be different than the ones included in our analyses. It is 

also possible that the number of items or people may differ. To evaluate some of these 

possibilities, we ran other simulations with several other credentialing programs with 

which we work. The results of these additional analyses showed similar findings to 

those observed for the two programs that we reported above with the MAD, RMSD, 

and average standard deviations increasing when the number of examinees and num-

ber of exam items were fewer. In fact, the largest differences we found between the 

proportional curve fitting algorithm and Newton-Raphson algorithm occurred when 

we created missing data using the CAT algorithm with less than 30 scored item re-

sponses and fewer than 100 examinees. Although, even in these cases the differences 

in the item and person parameter estimates were only in the second decimal place, 

with the proportional curve fitting algorithm performing slightly better. These results 

imply that in most practical situations that choice of algorithm will not have a large 

impact on results and the algorithm used is a matter of preference.  

We did find one situation where both algorithms faced challenges, which was when 

the data was not well conditioned (see Molenaar, 1995). That is, both algorithms can 

struggle with convergence if there are subsets of the population that respond to differ-

ent items and there was not at least one item that was responded to correctly and in-

correctly across populations. In Winsteps, such a situation is indicated by the message 

“Data are ambiguously connected” when performing the calibration. These types of 

situations can sometimes arise with sparse data, and the result is that item and person 

parameter estimates are not comparable across subpopulations.  

It is also important to point out that our analyses only focused on the dichotomous 

Rasch model. It is possible that the algorithms may exhibit larger differences with 

polytomous items. For example, it is possible that one may observe larger differences 

when using the Rasch Partial Credit model (Masters, 1982) or the Rasch Rating Scale 

model (Andrich, 1978), which are designed for polytomous items. Future research 

should investigate the performance of proportional curve fitting and Newton-Raphson 

algorithms with these types of data. Future research could also look at how the con-

vergence criterion and other settings of the algorithms may impact results. In explo-

rations with our data, we found that the algorithms tended to be more accurate when 

the convergence criterion was more stringent. We also found that the number of 
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iterations tended to increase when the convergence criterion was more stringent, and 

the amount of missing data was higher. However, even in these cases both algorithms 

tended to quickly reach convergence; often in less than 20 iterations.  

Given the stakes often attached to test scores, using algorithms that produce accurate 

estimates of item and person parameters are imperative. This study adds to the current 

literature on the how various algorithms handle sparse data by demonstrating that 

JMLE proportional curve fitting and Newton-Raphson algorithms often lead to very 

similar results when they are employed with the dichotomous Rasch model. Since 

different software packages often use JMLE algorithms based on one of these two 

approaches, researchers and practitioners should have confidence that the choice of 

algorithm should not lead to markedly different results.  

 

 

References 

Adams, R. J., Wu, M. L., & Wilson, M. R. (2012). ACER ConQuest 3.0. [Computer software]. 

Melbourne: ACER.  

Anderson, E. B. (1973). Conditional inference and multiple choice questionnaires. British Jour-

nal of Mathematical and Statistical Psychology, 34, 42-54. 

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 

561-573.  

Andrich, D., & Luo, G. (2003). Conditional pairwise estimation in the Rasch model for ordered 

response categories using principal components. Journal of Applied Measurement, 4, 205-

221.  

Bertoli-Barsotti, L., & Punzo, A. (2013). Rasch analysis for binary data with nonignorable non-

responses. Psicológica, 34, 97-123. 

Custer, M., Sharairi, S., & Swift, D. (April, 2012). A comparison of scoring options for omitted 

and not-reached item through the recovery of IRT parameters when utilizing the Rasch 

model and joint maximum likelihood estimation. Paper presented at the Annual Meeting of 

the National Council on Measurement in Education. Vancouver, British Columbia.  

Del Pino, G., San Martin, E., González, J. & De Boeck, P. (2008). On the relationships between 

sum score based estimation and joint maximum likelihood estimation. Psychometrika, 13, 

145-151 

DeMars, C. (April, 2002). Missing Data and IRT item parameter estimation. Paper presented 

at the Annual Meeting of the American Educational Research Association. Chicago, IL.  

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete 

data via the EM algorithm. Journal of the Royal Statistical Society Series B, 39, 1-38. 

Engelhard, G. (2013). Invariant measurement. New York: Routledge. 

Ghosh, M. (1995). Inconsistent maximum likelihood estimators for the Rasch model. Statistical 

and Probability Letters, 23, 165-170.  



Rasch JML and Missing Data 
505 

Heine, J-H., & Tarnai, C. (2015). Pairwise Rasch model item parameter recovery under sparse 

data conditions. Psychological Test and Assessment Modeling, 57, 3-36.  

Haberman, S. J. (1977). Maximum likelihood estimates in exponential response models. Annals 

of Statistics, 5, 1148-1169.  

Hohensinn, C., & Kubinger, K. D. (2011). On the impact of missing values on item fit and the 

model validness of the Rasch model. Psychological Test and Assessment Modeling, 53, 

380-393. 

Jansen, P. G., van den Wollenberg, A. L., & Wierda, F. W. (1988). Correcting unconditional 

parameter estimates in the Rasch model for inconsistency. Applied Psychological Measure-

ment, 12, 297-306.  

Kiefer, T., Robitzsch, A., & Wu, M. (2016). TAM: Test Analysis Modules. R package version 

1.995-0. [Computer software]. https://cran.r-project.org/web/packages/TAM/index.html.  

Linacre, J. M. (2014). Facets: Rasch-model computer programs (Version 3.71.4) [Computer 

software]. Beaverton, OR: Winsteps.com. 

Linacre, J. M. (2016). Winsteps: Rasch-model computer programs (Version 3.92.0) [Computer 

software]. Beaverton, OR: Winsteps.com. 

Linacre, J. M. (2004). Rasch model estimation: Further topics. Journal of Applied Measure-

ment, 5, 95-110.  

Linacre, J. M. (1999). Understanding Rasch measurement: Estimation methods for Rasch 

measures. Journal of Outcome Measurement, 3, 381-405. 

Linacre, J. M. (1987). Rasch estimation: Iteration and convergence. Rasch Measurement Trans-

actions, 1, 7-8.  

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Hoboken, 

NJ: Wiley-Interscience. 

Ludlow, L. H., & O’Leary, M. (1999). Scoring omitted and not-reached items: Practical data 

analysis implications. Educational and Psychological Measurement, 59, 615-630.   

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-172. 

Meyer, J. P. (2016). jMetrik (Version 4.0) [Computer software]. Charlottesville, VA: Univer-

sity of Virginia. 

Meyer, J. P, & Hailey, E. (2012). A study of Rasch, partial credit, and rating scale model pa-

rameter recovery in WINSTEPS and jMetrik. Journal of Applied Measurement, 13, 248-

258.  

Molenaar, I. W. (1995). Estimation of item parameters. In G. H. Fischer & I. W. Molenaar 

(Eds.), Rasch models: Foundations, recent development, and applications (pp. 39-51). New 

York, NY: Springer-Verlag. 

Nydick, S. W. (2014). catIrt: An R package for simulating IRT-based computerized adaptive 

Tests (Version 0.5) [Computer program]. Available at http://cran.r-project.org/web/pack-

ages/catIrt/index.html. Minneapolis, MN: Author. 

R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Aus-

tria: R Foundation for Statistical Computing. URL http://www.R-project.org/. 

http://cran.r-/
http://www.r-project.org/


A. E. Wyse 
506 

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. (Copenha-

gen, Denmark: Danish Institute for Educational Research). Expanded edition with fore-

word and afterword by B. D. Wright,. Chicago, IL: The University of Chicago Press. Re-

printed (1993) Chicago, IL: MESA Press.  

Rose, N., von Davier, M., & Nagengast, B. (2010). Modeling nonignorable missing data with 

IRT (Research Report No. RR-10-11). Princeton, NJ: Educational Testing Service.  

Shin, S. (2009). How to treat omitted response in Rasch model-based equating. Practical As-

sessment Research & Evaluation, 14(1).  

Sijtsma, K., & van der Ark, L. A. (2003). Investigation and treatment of missing scores in test 

and questionnaire data. Multivariate Behavioral Research, 38, 505-528.  

Svetina, D., Crawford, A. V., Levy, R., Green, S. B., Scott, L., Thompson, M., Gorin, J. S., 

Fay, D., & Kunze, K. L. (2013). Designing small-scale tests: A simulation study of param-

eter recovery with the 1-PL. Psychological Test and Assessment Modeling, 55, 335-360.  

Verhelst, N. D., & Glas, C. A. W. (1993). A dynamic generalization of the Rasch model.Psy-

chometrika, 58, 395-415. 

Wang, W.-C., & Chen, C.-T. (2005). Item parameter recovery, standard error estimates, and fit 

statistics of the WINSTEPS program for the family of Rasch models. Educational and Psy-

chological Measurement, 65, 376-404. 

Willse, J. T. (2014) MixRasch: Mixture Rasch models with JMLE. R Package version 1.1. 

[Computer software]. https://cran.r-project.org/web/packages/mixRasch/index.html. 

Wright, B. D. (1988). The efficacy of unconditional maximum likelihood bias correction. Ap-

plied Psychological Measurement, 12, 315-318.  

Wright, B., & Panchapakesan, N. (1969). A procedure for sample-free item analysis. Educa-

tional and Psychological Measurement, 29, 23-48. 

Wright, B. D., & Douglas, G. A. (1977). Conditional versus unconditional procedures for sam-

ple-free item analysis. Educational and Psychological Measurement, 37, 573-586. 

Wyse, A. E., & Babcock, B. (2016). How does calibration timing and seasonality affect item 

parameter estimates. Educational and Psychological Measurement 76, 508-527. 

 

 

https://cran.r-project.org/web/packages/mixRasch/index.html

