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difficulty effect and its consequence for con-
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Abstract 

Psychometric research has posited that difficulty effects related to item-level input for factor 

analysis serves as the precondition for observing a difficulty factor. Two studies are reported 

that investigated and confirmed this hypothesis. First, it was demonstrated that extreme and 

same-sized extreme difficulty levels of items resulted in deviations of the input to factor anal-

ysis from the expected systematic variation. Difficulty levels, as defined by McDonald and 

Ahlawat (1974), that were close to the upper limit for such levels were used for this purpose. 

Subsequently, it was demonstrated that data with this effect were likely to show model misfit 

in structural investigations by the one-factor CFA model. According to these results the diffi-

culty effect is a method effect caused by the difficult factor condition of data. This condition is 

the source of additional systematic variation that is not accounted for by the intended latent 

variable. This additional variation means model misfit unless it is captured by a difficulty factor. 
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In psychometric research, the label difficulty factor is used to characterize factors 

where loading values reflect the difficulty levels of the items, but the values do not 

provide a clear picture of the content measured by the factor (Guilford, 1941). Since 

such a factor seems to serve no obvious purpose, it is usually considered as a reflection 

of construct irrelevant variance that does not contribute to the understanding of the 

content. Researchers have debated a number of possible circumstances that may give 

rise to such a factor, such as a broad range of difficulty values, non-linear underlying 

dimensions or ways of computing correlations (Bandalos & Gerstner, 2016; Ferguson, 

1941; Gibson, 1959, 1960; McDonald, 1965, 1967; McDonald & Ahlawat, 1974; 

Wherry & Gaylord, 1944). The research reported in this paper differs from the previ-

ous approaches in that it investigates the possibility of a difficulty effect as a specific 

method effect (for details see next paragraph) that may give rise to a difficulty factor. 

This approach proceeds from the suggestion that extreme difficulty levels of items 

may play a key role in the generation of a difficulty factor (Bandalos & Gerstner, 

2016). The effect of extreme difficulty levels of items on the input to factor analysis 

and also on the results of factor analysis is investigated in simulated data.  

Data characteristics resulting from the measurement process, which are unrelated to 

what an instrument is assumed to measure, are considered as method effects (Maul, 

2013; Schweizer, 2020). These effects are by-products of the stimulation of a specific 

response in measurement so that a specific source can be expected as the origin of the 

response. Such effects are apparent whenever the outcome of measurement not only 

reflects the intended source but an influence of an additional source of variation. Ac-

cordingly, Sechrest, Davis, Stickle and McKnight (2000, p. 64) describe a method 

effect as an effect which does not originate from the attribute to be measured but 

shows to be related to the observational procedure. This argument can be extended to 

the context of measurement because the context can influence measurement in a char-

acteristic way. For example, the method effect referred to as speededness (Oshima, 

1994) is the consequence of an insufficient time span for completing the items of an 

achievement scale, resulting in omitted items. In the case of speededness, some par-

ticipants do not reach their optimal score, due to a time limit imposed on the testing 

situation. In sum, method effects bias observed data and, thereby, impair the quality 

of measurement (Lu & Sireci, 2007).    

The structure of a scale is most frequently examined by means of factor analysis. For 

this purpose, the outcome of measurement is transformed into the input to factor anal-

ysis (e.g., an empirical variance-covariance matrix). Consequently, method effects in-

cluded in the input to factor analysis may influence the outcome of factor analysis. 

For example, factor analysis expects complete data, but speededness may have caused 

omissions. An accepted way of dealing with omissions is data imputation (Graham, 

2009). But, as there is no guarantee that the replacement of an omission exactly cor-

responds to what is missing, the outcome of factor analysis may still show an influence 

of the method effect. Other method effects may demand other provisions.  

What is expected as input to factor analysis is complete structured random data show-

ing interval scale and a specific distribution (i.e., an approximately normal distribu-

tion, Graham 2006). But even if data meet the mentioned expectations, they may still 
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be influenced by a method effect because they may include systematic variation other 

than the systematic variation originating from the stimulated source of responding. 

Unlike random influences, method effects are sources of additional systematic varia-

tion of data. For example, there is the item-position effect (Knowles, 1988; Zeller, 

Reiß, & Schweizer, 2017). This effect is apparent in the dependency of item statistics 

on the positions of the items within the series of items, in the gradual increase of the 

item reliability and the correlations among the items. It is also apparent as additional 

systematic variation of items that increase along the sequence of the arrangement of 

items. It is such an additional kind of variation that is captured by a difficulty factor 

in factor analyses.  

Taken together, this discussion suggests that a proper understanding of the difficulty 

factor requires the identification of the source of additional systematic variation, the 

investigation of the type of additional systematic variation and the consequences for 

factor analysis. Knowledge of what leads to a difficulty effect means that it is possible 

to predict the observation of a difficulty factor.      

 

 

Study 1: The Difficulty Effect 

In this study we investigate the characteristics of data that, when used as input for a 

factor analysis, are likely to give rise to a difficulty factor. Since in the following 

discussion the concept of the difficulty level that is also addressed as level of difficulty 

plays a major role, we like to clarify the meaning of this concept before going into 

details. We follow McDonald and Ahlawat (1974) who define difficulty level as level 

“… measured by the proportion of examinees passing each item” (p. 84). This means 

that a high difficulty level of an item signifies easiness. Such an item is an easy item 

since many participants are able to complete it correctly. Furthermore, it needs to be 

pointed out that very difficult items are likely to show the same characteristic as very 

easy items in that both these types of items tend to show rather small variances. As 

variances and covariances or correlations serve as input for factor analysis, both items 

with high and low difficulty levels may give rise to a kind of difficulty factor. There-

fore, it may be more appropriate to refer to extreme items as source of such a factor 

instead of very difficult items only.   

In early research on difficulty factors, many researchers favored the hypothesis that 

variability due to a wide range of item difficulty levels led to the presence of a diffi-

culty factor (Ferguson, 1941; Gibson, 1959, 1960). Although this hypothesis did not 

find general acceptance, there has been agreement that variability of item difficulty 

values may be of importance as a precondition of a difficulty factor. More recent lit-

erature suggests that within a set of items, items with extreme difficulty levels and 

especially items that have the same extreme level of difficulty will produce a difficulty 

factor (Bandalos & Gerstner, 2016). A simulation study with datasets that comprised 

a few items with extreme difficulty levels and also same-sized extreme difficulty lev-

els among other items demonstrated that the presence of such items increased the 
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number of observed difficulty factors (Schweizer & Troche, 2018). In the following 

we refer to this specific set of characteristics as difficulty factor condition.  

Another characteristic likely to give rise to a difficulty factor relates to the scale of the 

items, where only binary data seem to result in a difficulty factor (Floyd & Widaman, 

1995; McDonald & Ahlawat, 1974). With binary data, the variance of an item and the 

probability of a correct response are closely related. Furthermore, it is known that the 

loadings on a difficulty factor reflect the difficulty levels of the items that are closely 

linked to the probabilities of solving these items (Guilford, 1941). If the number of 

ordered categories is increased, this linkage is weakened or even disappears. As a 

consequence, when based on binary data, factor loadings are highly correlated with 

the variances used as (part of the) input to factor analysis.  

Although the aforementioned conditions may contribute to observing a difficulty fac-

tor, they do not explain how this factor may arise. Such an explanation requires the 

investigation of how the difficulty factor condition influences the input to factor anal-

ysis. The input is usually a correlation or covariance matrix. We restrict the investi-

gation to correlations because of the better interpretability.  

 

Objectives 

Taking the described approach of explaining a difficulty factor, the question to be 

investigated can be specified as follows: what are the special characteristics of the 

correlations computed from pairs of items with extreme and equal-sized extreme dif-

ficulty levels if the data are binary?  

 

Method 

To elucidate this situation, we generated 300 datasets of binary and structured random 

data with sample sizes of 500. Each dataset included five items (= columns) generated 

such that correlations between items of .1225 were expected. This means that in factor 

analysis these correlations would be reproducible by factor loadings of 0.35. Two 

items (= columns) showed difficulty levels of .75, another one of .80 and the remain-

ing two items of .95. We refer to the items with difficulty levels of .75 and .80 as 

normal difficult and the other items as extreme difficult. The difficulty levels of .75 

and .80 were taken from the difficulty level range between .20 and .80 that was found 

to have no effect on the probability of observing a difficulty factor (Schweizer & Reiß, 

2019).  

Prelis (Jöreskog & Sörbom, 2001) was used to generate data and to compute tetracho-

ric correlations that were recommended for estimating relationships of binary data. 

The estimated correlations were subdivided according to size, and assigned into one 

of eight correlational ranges ([-1 to -.75[, [-.75 to -.5[, [-.5 to -.25[, [-.25 to 0[, [0 to 

.25], ].25 to .5], ].5 to .75], ].75 to 1]). Note. In order to clearly define to which interval 
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a boundary value (e.g., .25) has to be assigned, we use brackets for inclusion and 

exclusion: in the case of […] the interval includes the boundary values; in the case of 

]…[ the interval only includes estimates that approximate the boundary values; and 

there are combinations of both types ([..[ and ]..]) for combining inclusion and exclu-

sion. Subsequently, the estimates assigned to the ranges (= groups) were counted. It 

was expected that the estimates would fall exclusively into the range between 0 and 

.25, as .1225 was the expected correlation.  

 

Results 

Figure 1 illustrates the results. 

 

 

Figure 1. Frequencies of correlations in the expected range (0 to .25) and other ranges for 

pairs of items showing different difficulty levels (normal difficult, different: .75 and .80; 

normal difficult, same: both .75; extreme difficult, different (= wide difficulty range): .75 and 

.95; extreme difficult, same: both .95). Each level included the computation and investigation 

of 300 tetrachoric correlations.  

 

Across the set of simulated difficulty conditions, the normal difficulty data conditions 

[pairs of items denoted as normal difficult, different (levels of .75 and .80) and normal 

difficult, same (levels of .75 and .75)] showed the best agreement between estimated 

and expected values. For these conditions, the expected range included roughly 86 

percent of the tetrachoric correlations. In contrast, only 59 percent of the observations 

Expected range 
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for items under a wide range of difficulty levels (levels of .75 and .95) fell in the 

expected range, and only 51 percent of the observations for items with extreme and 

same-sized extreme difficulty levels (levels of .95 and .95). For pairs of items of same-

sized extreme difficulty level, some very large negative correlation values were ob-

served that might be due to problems in threshold estimation as part of the computa-

tion of tetrachoric correlations. Moreover, the results for items with same-sized ex-

treme difficulty levels and for items with a wide range of difficulty levels differed. 

With same-sized extreme values, the majority of the deviations (between observed 

and expected values) were negative, and with a wide range of difficulty values, devi-

ations were positive.  

Furthermore, we checked whether the frequency distributions for the different types 

of items corresponded or differed substantially from each other. We combined the 

normal difficult, different and normal difficult, same observations on the one hand 

and the extreme difficult, different and extreme difficult, same observations on the 

other hand for conducting a 2 test. This test was restricted to the three ranges with a 

larger number of observations ([-.25 to 0[, [0 to .25], ].25 to .5]). A 2 of 403.1 (df = 

2) was observed that suggested different distributions.   

 

Discussion 

In sum, extreme difficulty levels resulted in larger negative and positive deviations 

from the expected size of the tetrachoric correlation than moderate difficulty levels. 

This meant that these observed values would not be reproduced well by a factor with 

factor loadings that could be expected to reproduce correlations falling into the ex-

pected range. Equal-sized difficulty levels even increased the probability of a large 

deviation value (especially in the negative direction). The effect of equal-sized diffi-

culty levels was probably due to the increased chance of perfect correspondence of 

the subsets of correct and incorrect responses of two items. Overall, the results of 

investigating the effect of the difficulty factor condition on the input to factor analysis 

revealed changes. These were changes leading away from characteristics of data that 

could be expected to lead to good model fit.  

The results show that the difficulty factor condition produces deviations from ex-

pected sizes of correlations (or covariances). This means that a modification of an 

otherwise homogeneous set of correlations (or covariances) is created. This modifica-

tion is, however, restricted to the subset of items showing the difficulty factor condi-

tion. This suggests that the difficulty effect is a systematic deviation of some coeffi-

cients (correlations or covariances) from an otherwise rather homogeneous pattern of 

correlations or covariances that is associated with the intended source of responding. 

The described systematic deviation due to the difficulty factor condition can alterna-

tively be perceived and addressed as additional systematic variation that is restricted 

to a subset of items showing the difficulty factor condition.   
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Study 2: Influence of the Difficulty Effect on Confirmatory Factor 

Analysis 

This study addresses the consequences of the difficulty factor condition for customary 

confirmatory factor analysis using the one-factor confirmatory factor analysis model. 

At first, we introduce the framework of the investigation: the confirmatory factor anal-

ysis (CFA) model, the corresponding covariance matrix (CV) model and the scaling 

method for the variance parameter. Afterwards, we report an investigation on how the 

difficulty factor condition influences model fit and the scaled variance of the latent 

variable when using a one-factor CFA model in combination with free and fixed factor 

loadings.    

The one-factor model of measurement of customary CFA (Brown, 2015) is a linear 

combination of two components that are considered as a systematic component and 

an error component since they refer to the systematic variation of data on one hand 

and the error variation of data on the other hand. This one-factor CFA model is de-

scribed by the following equation:  

                                                                                 (1) 

where the p 1 vector  represents the manifest variables, the p 1 vector  the factor 

loadings,  the latent variable, and the p 1 vector the error variables. This CFA 

model does not include a parameter that represents the variance of the latent variable. 

Such information on the latent variance, however, would be of interest because it 

could provide information on the systematic variation of data captured by the latent 

variable. The CV model is necessary for getting access to the latent variable variance 

(Jöreskog, 1970). The p  p model-implied covariance matrix, , for p manifest vari-

ables is defined as  

                                                                              .  (2) 

It includes the p  1 vector of factor loadings,  (and its transpose '), the variance 

parameter,  and the p  p diagonal matrix of error variation, . Within this model 

the variance parameter,  represents the latent variable variance. It is a scalar. The 

two components of this model serve the representation of the systematic variation of 

data, on the one hand, and of random error, on the other hand (Schweizer, Troche, & 

DiStefano, 2019).  

In data showing a unidimensional underlying structure the investigation of model fit 

by comparing the p  p empirical covariance matrix, S, with the model-implied p  p 

covariance matrix, , can be expected to yield good model fit if the model is specified 

to expect one factor. In this case the systematic part of the model, ', accounts for 

the systematic variation of data.  

In contrast, in the case of the difficulty factor condition, signified by the subscript DF, 

the empirical matrix, SDF, is likely to show systematic variation according to two 

sources that are at least partly independent of each other. (1) There is systematic 

δλx += 

x

 δ

Θλ'λΣ += 

Θ
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variation due to the main source of responding that finds its expression in the sizes of 

the correlations or covariances among all items of the correlation or covariance matrix 

that serves as input to factor analysis. (2) There is the subset of extreme items showing 

the difficulty factor condition which gives rise to additional variation that is apparent 

in the deviations of the correlations or covariances from what is expected according 

to the first source (see previous section).  

Proceeding from the assumption that the data show a unidimensional structure, as it 

is the standard procedure for structural investigations, the empirical correlation or co-

variance matrix (SDF) is investigated by means of a one-factor CFA model that gives 

rise to a model-implied matrix according to Equation 2. This means that two-dimen-

sional data are investigated by a model assuming one dimension. Therefore, we hy-

pothesize that the discrepancy function F serving as ingredient of several fit indices 

signifies a larger deviation between SDF and  as between S and :  

                                                                    .   (3) 

Furthermore, the fit indices used for evaluating the quality of model-data combina-

tions are likely to signify impairment in model fit for the data showing the difficulty 

effect in comparison to the data without such an effect.  

The factor loadings play the major role in capturing the systematic variation of data 

in exploratory factor analysis (Widaman, 2018). Although the outcome of factor anal-

ysis is mainly evaluated by inspecting the factor loadings, there is also the tradition to 

estimate the variance of a factor on the basis of factor loadings. The variance of the 

factor, var(), combines what is captured by the individual factor loadings: the squared 

factor loadings are summed:  

                                                                                                   .   (4) 

In contrast, the CV model of confirmatory factor analysis (Equation 2) includes the 

variance parameter,  that can represent the variance of the latent variable but also 

serve other purposes (e.g. serve as constant basis and reference point for estimating 

the variances of other latent variables) when scaled accordingly (Little, Slegers, & 

Card, 2006). Using it for representing systematic variation requires EV (eigenvalue4) 

scaling (Schweizer & Troche, 2019), where estimates of factor loadings achieved in 

the first analysis are transformed to meet the demands of EV scaling. In a new analysis 

with a free variance parameter, EV, and fixed entries of the vector of factor loadings 

an estimate corresponding to var() is achievable:   

                                                                             
                         

 .   (5) 

If data are generated to show a unidimensional structure, the estimate of the scaled 

variance parameter reflects the systematic variation of S well (= SNo_DF). In contrast, 

if the data show the difficulty factor condition, there are positive or negative devia-

tions from what is expected as systematic variation of data. This condition transforms 

 

4 This scaling method leads to estimates similar to eigenvalues if the manifest variables (e.g., items) show 

variances of one.   

   ΣSΣS ,F,F
DF



( ) =
i

i

2var 

( ) var
EV
=
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SNo_DF into SDF (see previous section). Because in the investigation of simulated data 

under the difficulty factor condition negative deviations show the overall stronger de-

viation from what is expected, we expect a decrease of the average of estimated factor 

loadings of the one-factor model. This means a decrease of the variance of the latent 

variable estimated by EV:  

                                                                     .   (6) 

 

Objectives  

This study aims at providing empirical evidence regarding the following hypotheses: 

(1) the difficulty factor condition leads to model misfit in the investigation of the 

structure of data that otherwise enable the observation of good model fit, as is sug-

gested by Inequity 3. (2) Impairment in model fit due to the difficulty factor condition 

is accompanied by an impaired representation of the systematic variation of data, as 

is indicated by a decreased size of variance of the latent variable. This is expected 

because of deviations from the systematic variation due to the main latent source of 

responding especially in the negative direction. (3) Free and fixed factor loadings lead 

to the same degree of good model fit if the data show systematic variation due to the 

assumed latent source of responding only, as there is no additional systematic varia-

tion that can additionally be tapped by free factor loadings.  

 

Method 

In order to examine these hypotheses, we extended the investigation of the previous 

example by generating 300 datasets that were 500  20 data matrices instead of 500  

5 matrices. Again data with an underlying structure giving rise to the expectation of 

factor loadings of 0.35 were generated (Jöreskog & Sörbom, 2001). In order to have 

two data types for a comparison, continuous, normally distributed data were trans-

formed into binary data in two different ways. Input matrices were first transformed 

by allowing 17 items (= columns) to have difficulty levels of .75 and the remaining 

three items, of .95 (first way). The items with the high probability levels were assigned 

to the positions of the 5th, 10th and 15th columns. Otherwise, difficulty levels were 

set at .75 for all items (second way).  

The data (i.e., matrices) were investigated by CFA models according to Equation 1, 

allowing for either free or fixed factor loadings. In the case of fixed factor loadings, 

the value of 0.223 (that follows from EV scaling: 1 = 20 × 0.2232; this value is selected 

for the factor loadings that sum up to one after being squared) was assigned to all 

factor loadings to reflect the assumption that the latent source affects all manifest var-

iables in the same way. To extend the previous empirical investigation, we used the 

tetrachoric correlation-based CFA approach (Muthén, 1984). This approach 

( ) ( )
No_DFEVDFEV

SS  
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additionally required robust estimation in small datasets (Satorra & Bentler, 1994). 

The analyses were conducted using the LISREL software package (Jöreskog & 

Sörbom, 2006) with the ML option (maximum likelihood estimation). 

 

Results  

Table 1 includes average fit statistics and standard deviations resulting from investi-

gating the simulated data by one-factor CFA models. The evaluation concentrated on 

RMSEA (root mean squared error of approximation), SRMR (standardized root mean 

residual), NNFI (nonnormed fit index) and CFI (comparative fit index) because of the 

availability of cutoffs (see DiStefano, 2016; Hu & Bentler, 1999). All RMSEA and 

SRMR statistics indicated good model fit as shown by values under suggested cutoffs 

of .05 and .08, respectively. The NNFI and CFI statistics also showed good model fit 

in the absence of the difficulty factor condition with values greater than a cutoff of 

.95; however, model fit was only acceptable (i.e., values close to .90) in the presence 

of this condition. In all cases, the difference between the CFIs for the presence and 

absence of the difficulty factor condition was significant (CFIdifference > 0.01; Cheung 

& Rensvold, 2002). Furthermore, there was virtually no difference between the fit 

statistics for free and fixed factor loadings. Moreover, very large standard deviations 

of NNFI and CFI were observed but not expected for the presence of the difficulty 

factor condition.     

Table 1 

Average Fit Indices (SD in italics) Observed in Investigating 500 × 20 Data Matrices 

Generated With and Without Manipulation According to the Difficulty Factor Condition by 

the One-factor Confirmatory Factor Analysis Model (Nmatrices =300)    

 

Difficulty factor 

condition (DFC) 

Type of factor 

loading 
2 RMSEA SRMR NNFI CFI 

No DFC 
Free 

634.61 

70.6 

0.005 

0.01 

0.068 

0.00 

1.001 

0.01 

0.996 

0.00 

 

Fixed 
663.31 

75.5 

0.005 

0.01 

0.074 

0.01 

1.001 

0.01 

0.996 

0.01 

DFC 
Free 

790.91 

273.9 

0.014 

0.01 

0.076 

0.01 

0.935 

0.12 

0.939 

0.11 

 

Fixed 
830.21 

282.7 

0.014 

0.01 

0.084 

0.02 

0.939 

0.11 

0.936 

0.11 

1 2 before robustness correction 
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Further investigations concentrated on the results obtained by using fixed factor load-

ings, as in this case variance estimates became available. Figure 2 illustrates the aver-

age variance estimates based on all variance estimates. The variance for the absence 

of the difficulty factor condition is provided on the left and the variance for the pres-

ence on the right. As is obvious, the variance drops by 7.6 percent from absence to 

presence of the difficulty factor condition. In 92.5 percent of the datasets investigated 

by the tetrachoric correlation-based CFA approach the difficulty factor condition led 

to a decrease of the variance and in the remaining datasets to an increase. These results 

were in line with the observation that for 106 out of 300 datasets a substantial CFI 

difference was observed. 

 

 

 

Figure 2. Graphical representation of the average scaled variance estimates of the latent 

variable in the absence (without) and presence (with) of the difficulty factor condition 

estimated by a one-factor confirmatory factor model.  

 

Discussion 

In the reported factor-analytic investigation the difficulty factor condition is associ-

ated with a substantial impairment in model fit when the investigation is conducted 

by the one-factor CFA model that means without considering a difficulty factor. There 

is the possibility that this impairment can be avoided by including another factor into 

the measurement model. There are investigations that demonstrate this possibility 

(Schweizer & Troche, 2018). Furthermore, there is the decrease of the variance of the 

latent variable that is predicted based on the deviations observed in investigating the 

difficulty factor condition. This situation suggests that a difficulty factor is an empir-

ical phenomenon that is closely linked to a specific method effect. It is a method effect 
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that has – unlike other method effects – so far not attracted researchers’ attention 

whereas its consequence for factor analysis, the difficulty factor, stimulated a long-

lasting scientific discussion (Hattie, 1985) that started in the 50ties and is still in pro-

gress.  

 

General Discussion 

We started this essay with highlighting the two major characteristics of a difficulty 

factor: a relationship between factor loadings and difficulty levels on the one hand 

and the lack of a specific meaning on the other hand (Guilford, 1941). Another char-

acteristic appears to be the rarity of reports of the observation of such a factor that 

makes it look more like a mystery or artificial result than a scientifically acknowl-

edged phenomenon (Kubinger, 2003). This lack of scientific credibility may even 

contribute to the rare reports of such a factor as well as a recently established habit 

among applied researchers: the use of correlated errors for eliminating disturbing sys-

tematic variation. Correlated errors may improve model fit but they do not explain at 

the expense of which source this is achieved (Schweizer, 2012).  

The reported research tries to shed light on the origin of a difficulty factor. For this 

purpose, we attempted to trace such factors back to method effects. It is well known 

that method effects can give rise to method factors (Campbell & Fiske, 1959). Method 

effects due to observational methods or to the context of the application of such meth-

ods can influence measurement in a characteristic way, resulting in data that not only 

demonstrate variation due to the primary source but also additional variation that orig-

inates from the observational method or the context of measurement. This additional 

variation can be considered as modified variation in the sense that it is due to a sys-

tematic modification of otherwise created systematic variation.  

Furthermore, a method effect can induce a hierarchical structure into data so that sub-

sets of participants differ according to the active influences on performance. For ex-

ample, speededness induces the creation of two different subsets of participants 

(Schweizer, Gold, & Krampen, 2020). In participants who are unable to complete an 

item because of not enough time processing speed determines performance whereas 

in the other participants it is the source of responding that is stimulated by the item 

and determines performance (e.g., reasoning).  

The results of our investigation show that extreme difficult and equal-sized extreme 

difficult items which are suggested as sources of a difficulty factor (Bandalos & Gerst-

ner, 2016) lead to deviations of correlations (and covariances) from what is expected. 

These deviations in turn become apparent in the statistical investigation as additional 

systematic variation. They amount to the difficulty effect that follows from the diffi-

culty factor condition and characterize the input to factor analysis. This observation 

suggests that predictability of the difficulty effect is possible. Therefore, given the 

difficulty effect, a difficulty factor may be predictable. Now researchers conducting 
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factor analysis are better aware of situations demanding the consideration of a diffi-

culty factor than before.  

The empirical results also provide insight into a characteristic of the general factor 

that is expected to account for the systematic variation originating from the stimulated 

latent source of responding. We learn that the capacity of the general factor to account 

for the systematic variation shows a restriction. It appears to work well over almost 

the complete difficulty range of items with the exception of small boundary ranges of 

extreme difficulty levels. Within these small ranges the general factor (i.e. factor with 

larger factor loadings of all items) may not account well for systematic variation alt-

hough there is no other latent source of systematic variation than the difficulty factor 

condition. This means that the difficulty factor has no substantial source of its own; it 

is due to a method source only.   

The results reported in this study can be useful for future investigations concerning 

the structural validity of scales. They tell researchers that the presence of items show-

ing extreme difficulty levels increase the probability of a difficulty effect that may 

necessitate the consideration of a difficulty factor in order to reach good model fit.  
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