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Abstract 

The hierarchical position-effect model for investigating whether data show an item-position 

effect is presented. This model includes a hierarchy of latent variables for representing such an 

effect. Several lower level latent variables associated with subsets of items originating from the 

segmentation of the item set constitute the first level of the hierarchy while the second level 

includes the general position-effect latent variable only. This model is proposed for situations 

where an item-position effect is not exactly monotonically increasing, as the customary posi-

tion-effect model assumes it. In the application to a real data, model fit varied depending on the 

specification of the hierarchical model. The comparison with the customary position-effect 

model yielded similar outcomes, but the best model fit was achieved by the hierarchical posi-

tion-effect model with linear effect specifications at both levels. 
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Investigating an item-position effect in the framework of confirmatory factor analysis 

(CFA) requires the separation of this effect from the effect due to the latent source of 

responding that is usually a psychological attribute. So far, this has been achieved by 

constraints strictly following a mathematical function. An item-position effect may 

not always exactly unfold corresponding to such a function. For achieving a better 

degree of compatibility with a variety of possible courses of the item-position effect, 

a hierarchical model is proposed that allows for adaptation to the actual course of the 

effect. In the following, the item-position effect is described in some detail and its 

major explanation is outlined before two position-effect models are described: the 

customary position-effect model and the hierarchical position-effect model.  

An item-position effect is a method effect that is apparent in positive relationships 

between item characteristics and item positions along the sequence of items that con-

stitute a scale. Item means, item variances and even item reliabilities have turned out 

to be related to the positions of items (Carlstedt, Gustafsson, & Ullstadius, 2000; Ham-

ilton & Shuminsky, 1990; Hartig, Hölzel, & Moosbrugger, 2007; Knowles, 1988; 

Knowles & Byers, 1996). This effect has been investigated and confirmed in taking 

different methodological perspectives. In the framework of item response theory 

(IRT), it has been demonstrated by using linear logistic test models and multidimen-

sional Rasch models (Debeer & Janssen, 2013; Embretson, 1991; Hohensinn et al., 

2008; Kubinger, 2008; Verguts & De Boeck, 2000). Furthermore, CFA models have 

been employed for examining the item-position effect. In this case, the focus has been 

on modeling variances and covariances among items (Lozano, 2015; Ren et al., 2012; 

Ren et al., 2014). The demonstrations of an item-position effect by CFA reveals that 

this effect is not restricted to mean changes but also extends to changes in individual 

differences.  

A number of different sources that can drive an item-position effect have been con-

sidered. The list ranges from learning to impulsivity to fatigue (Carlstedt et al., 2000; 

Embretson, 1991; Krampen, Gold, & Schweizer, 2020; Kubinger, 2008; Lozano, 

2015). The learning hypothesis stating that experiences with previous items influence 

the responses to subsequent items has received the most support yet (Embretson, 

1991; Ren et al., 2012; Ren et al., 2014; Schweizer, Zeller, & Reiß, 2020; Verguts & 

De Boeck, 2000).  

However, the learning hypothesis only provides a vague explanation of the effect be-

cause of the manifold of learning theories and the many different ways in which learn-

ing can potentially unfold in a sample. For example, the focus can be on the acquisi-

tion of rules, as in the seminal study by Carpenter, Just, and Shell (1990) that investi-

gated the detection of the rules underlying the matrix problems of Advanced Progres-

sive Matrices. Associative learning (Kaufman et al., 2009; Williams & Pearlberg, 

2006) based on the idea of gradual establishment of links between knowledge items 

is another possible focus of studying learning. Furthermore, learning may be concep-

tualized as property of executive processes of working memory that can be improved 

by extended training of cognitive control in completing cognitive tasks (Kray et al., 

2012; Karbach & Verhaeghen, 2014; Stankov & Lee, 2020). Moreover, learning has 
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been associated with a change of the mode of mental information processing. It is 

assumed that repeated stimulation of cognitive processes can lead to a switch from the 

conscious and controlled to the unconscious and automatic mode of mental processing 

(Nordgren, Bos, & Dijksterhuis, 2011; Schweizer et al., 2020; Schweizer et al., 2021). 

Such a switch can result in improved performance since it means a reduction of the 

load on working memory and fast processing routines.  

Different learning theories give rise to different hypotheses on how learning can be 

expected to unfold. For example, in learning as rule acquisition (Carpenter et al., 

1990) stepwise learning curves are expected whereas associative learning (Kaufman 

et al., 2009) suggests continuously increasing learning curves. Furthermore, the con-

sequences for individual differences are to be considered. Knowles (1988) reports an 

increase in item reliability that means an increase in systematic variation of data along 

a sequence of items. Such an increase can be expected if some participants make great 

progress in learning while other participants learn nothing or show a small learning 

rate only. It is even possible that there is an upper limit for learning that is gradually 

reached by most participants. In such a case, an increase in systematic variation may 

even be followed by a decrease.  

The CFA approach for investigating item-position effects that seeks to reproduce the 

observed variances and covariances is designed for detecting increase in systematic 

variation. It makes use of systematically increasing fixed factor loadings. There are 

reports of investigations with either linearly, logarithmically or quadratically increas-

ing factor loadings (Ren et al., 2012; Schweizer, 2012; Schweizer & Troche, 2018; 

Sun, Schweizer, & Ren, 2019; Troche et al., 2019; Wang, Zhang, & Schweizer, 2020). 

A detailed investigation of the course of the item-position effect in data collected in a 

large sample using Raven’s Advanced Progressive Matrices considered different ways 

of how the effect may unfold. It reports similarity to a quadratically increasing curve 

but no exact correspondence (Zeller et al., 2017).  

The discussion of the possible ways of how an item-position effect may unfold sug-

gests that there may be variability in the course along a sequence of items depending 

on the cognitive processes stimulated by the scale items and on the participants’ prop-

erties. Therefore, the representation of the item-position effect by fixed factor loadings 

strictly following linearly or quadratically increasing functions may not always be 

appropriate. In the following, we describe a hierarchical model that allows for more 

flexibility in the representation of the course of an item-position effect and report the 

results of its evaluation.  

 

The Position-effect Models 

This section presents descriptions of the customary position-effect CFA model that 

shows the structure of the bifactor model and the hierarchical position-effect structural 

equation model (SEM). Note. A position-effect (also referred to as sequence effect) 

can be observed when comparing two experimental treatment levels of a repeated 
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measures design. In this case, the focus is on check and avoidance of error regarding 

the treatment effect in the statistical investigation. In contrast, when investigating the 

position-effect in a sequence of items, the focus is on representing it appropriately and 

measuring the amount of latent variance for which it accounts. We make the differ-

ence obvious by using the term item-position effect for addressing the effect in a se-

quence of items. Yet, we stay with the denotation as position-effect when character-

izing a latent variable of a measurement model. 

The customary position-effect CFA model includes two latent variables, Attribute and 

Position-effect, that represent the attribute of interest and the item-position effect, respec-

tively. It also includes p centered manifest variables. Figure 1 provides an illustration 

of this model. 

 

 

Figure 1.  

Position-effect CFA model as bifactor CFA model including the attribute latent 

variable with factor loadings of all manifest variables and the position-effect latent 

variable with factor loadings of all but one manifest variables. Arrows with small 

shafts represent random influences. An example with 12 items. 

 

As is obvious from the arrows linking the latent variables (ellipses) to the manifest 

variables (rectangles), the attribute latent variable shows factor loadings from all man-

ifest variables whereas the position-effect latent variable has factor loadings from all 

but the first manifest variables since the first items cannot show such an effect by 

definition. 

The formal model is given by  

𝒙 = 𝝀Attribute𝜉Attribute + 𝝀Position−effect𝜉Position−effect + 𝜹   (1) 

where x is the p × 1 vector of centered manifest variables, Attribute and Position-effect are 

the p × 1 vectors of factor loadings on latent variables Attribute and Position-effect and  is 
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the p × 1 vector of idiosyncratic disturbances. It can be perceived as an extension of 

the congeneric CFA model (Jöreskog, 1971) or alternatively as a version of the bifac-

tor model (Reise, 2012). 

In order to assure that the position-effect latent variable accounts for the systematic 

variation of data due to an item-position effect, the factor loadings are fixed to pre-

specified values. In the case of assuming a linear increase, the fixation of the factor 

loadings of manifest variables xi on Position-effect is given by 

         𝜆Position−effect(𝑖) = (𝑖 − 1)1/(𝑝 − 1)1    (2)     

with (i = 1,…, p) and in the case of assuming a quadratic increase by 

         𝜆Position−effect(𝑖) = (𝑖 − 1)2/(𝑝 − 1)2 .    (3)   

This kind of fixation means that fitting of model to data cannot be achieved by esti-

mating factor loadings. In each latent variable with fixed factor loadings j (j = 1,…, 

q) the corresponding variance parameter j of the model-implied covariance matrix 

() is estimated. 

When dichotomous data are to be investigated, an additional link transformation is 

required that can be achieved by multiplication of factor loadings with weight wi: 

         𝑤𝑖 = √𝑃𝑟(𝑥𝑖 = 1) [1 − 𝑃𝑟(𝑥𝑖 = 1)]    (4)     

where Pr symbolizes probabilities. 

The hierarchical position-effect SEM model is proposed as another method for inves-

tigating data showing an item-position effect. It is expected to show more flexibility 

for deviations from a strictly linear or quadratic course of effect than the customary 

model. This flexibility is achieved by segmentation of the sequence of items into 

neighboring subsets of items together with a hierarchical structure. In this model each 

subset of items loads on its own latent variable so that there are as many first-order 

latent variables as there are subsets of items in addition to the first-order attribute 

latent variable. Furthermore, the model includes a second-order latent variable with a 

factor loading from each first-order latent variable representing a subset but not from 

the attribute latent variable. An illustration of such a model is provided by Figure 2.  

For making it easy to survey Figure 2, the position-effect latent variables are shifted 

from the upper half of the figure to the lower half. As with the customary position-

effect model, there is no factor loading of the first item on the corresponding latent 

variable.  

The first-order structure of the hierarchical position-effect model is given by  

        𝒚 = 𝝀Attribute𝜂Attribute + ∑ 𝝀Position−effect_𝑖𝜂Position−effect_𝑖
𝑞
𝑖 + 𝜺 = 𝜦𝜼 + 𝜺 (5)     

where y is the p × 1 vector of manifest variables, Attribute and Position-effect_i are the p × 

1 vectors of factor loadings on latent variables Attribute and Position-effect_i and  is the p 



K. Schweizer, A. Gold, D. Krampen 
258 

× 1 vector of idiosyncratic disturbances. Furthermore,  is the p × (q + 1) matrix of 

factor loadings on latent variables and  the (q + 1) × 1 vector of latent variables. 

 

 

 

Figure 2.  

Hierarchical position-effect CFA model with one attribute latent variable and four 

specific position-effect latent variables as first-order latent variables and a second-

order position effect latent variable. Arrows with small shafts represent random 

influences. An example with 12 items, four first-order position-effect latent 

variables and one second-order position-effect latent variable. 

 

A structural model that turns the hierarchical model into a SEM model is additionally 

necessary. The structural model relating first-order and second-order latent variables 

is given by  

         𝜼 = 𝜸𝜉Position−effect + 𝜻      (6)     
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 where  is the (q + 1) × 1 vector of loadings of first-order latent variables on second-

order latent variable Position-effect and  the (q + 1) × 1 vector of residuals. Since Attribute 

does not load on , 1 = 0 and 1 = 0. Combining Equations 5 and 6 gives the final 

hierarchical SEM model: 

         𝒚 = 𝜦𝜸𝜉Position−effect + 𝜦𝜁 + 𝜺     (7)     

(for more information on hierarchical models see Schweizer, Moosbrugger, and 

Schermelleh-Engel, 2003).  

As in the case of the customary position-effect CFA model, investigating an item-

position effect requires to assure that the position-effect latent variables account for 

the systematic variation of data due to the item-position effect. This involves the fix-

ation of factor loadings according to pre-specified values while the variances of the 

latent variables are set free for estimation. This can be accomplished according to 

Equations 2 or 3. In the case of the hierarchical position-effect SEM model it is also 

useful to fix the  coefficients accordingly. The flexibility of this model regarding 

deviations from a strictly linear or quadratic course of increase is achieved by the 

estimation of the latent variances, the second-order fixations and the possibility to 

choose between different segmentations. 

  

Application to a Real Data 

The study served the comparison of the customary and hierarchical CFA models in an 

application to data showing an item-position effect. A real data was used for the in-

vestigation. The data were collected by Advanced Progressive Matrices (APM) (Ra-

ven, Raven, & Court, 1997) in a sample of 104 university students. The responses 

were coded as either correct (x = 1) or incorrect (x = 0). 

 

Method 

Customary and hierarchical CFA models were prepared according to Equations 1 and 

7 in considering linear and quadratic increases (Equations 2 and 3). Additional infor-

mation regarding the hierarchical CFA models is that not only the variance parameters 

of the first-order latent variables were set free for estimation but also the covariances 

between neighboring latent variables whereas the variance parameter of the second-

order latent variable was fixed to one. This is necessary because of unexplained cor-

relation between neighboring items that leads to bad model fit if it is ignored. The 

fixations for the links relating first-order and second-order latent variables were var-

ied. They are reported in combination with fit results (see corresponding tables). Ad-

ditionally, a simple one-factor CFA model was estimated in order to demonstrate the 



K. Schweizer, A. Gold, D. Krampen 
260 

advantage of considering the item-position effect. In this case, the latent variable was 

specified as attribute latent variable, i.e., all factor loadings were constrained to one. 

Figure 3 provides an illustration of an example of a hierarchical position-effect CFA 

model for APM data. 

 

 

Figure 3.  

Hierarchical position-effect CFA model for APM data (36 items) with reasoning 

ability latent variable and three specific position-effect latent variables and a second-

order position-effect latent variable (dotted and dashed lines indicate omitted parts 

because of the large number of items). Arrows with small shafts represent random 

influences. 

 

The subdivision of the set of 36 APM items into three even subsets giving rise to three 

first-order position-effect latent variables was selected for this example. Because of 

the large number of items it was not possible to represent all of them in this figure. 

These omissions were symbolized by dotted and dashed lines. Furthermore, since 
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APM represents reasoning the label attribute of Figures 1 and 2 was replaced be rea-

soning. 

The models were estimated using LISREL software (Jöreskog & Sörbom, 2006). 

Probability-based covariances served as input. The focus of the investigation was on 

model fit. The following fit indices are considered in the evaluation of results: 

RMSEA, SRMR, NNFI, CFI and AIC. Furthermore, in some investigations latent var-

iances were estimated in order to provide information on the size of the item-position 

effect. For this purpose the variance parameter was scaled to correspond to the sum 

of squared factor loadings (Schweizer, 2011; Schweizer & Troche, 2019; Schweizer, 

Troche, & DiStefano, 2019). 

 

Results 

Results for customary models. The investigation of the data by customary CFA models 

led to the fit statistics provided in Table 1. 

The results presented in the first row were obtained by the one-factor CFA model that 

did not include a position-effect latent variable. RMSEA indicated acceptable model 

fit whereas all other fit indices with a cutoff (SRMR, NNFI and CFI) (see Distefano, 

2016) suggested model misfit. The results obtained by the position-effect CFA model 

with linearly increasing fixations (second row) showed fit improvement with the ex-

ception of SRMR although there was no change in quality level. Allowing the latent 

variables to correlate with each other (third row) further improved model fit. RMSEA 

signified good model fit, SRMR acceptable model fit. NNFI and CFI were still indi-

cating model misfit according to cutoffs. Replacing the linear increase by quadratic 

increase led to small numerical improvements in model fit in the version with no cor-

relation among the latent variables whereas in the other version there was virtually no 

improvement (see fourth and fifth rows).  

Table 2 includes the scaled estimates of latent variances.  

This table comprises four columns with results on the right side. The first and second 

columns include the variance estimates for the attribute latent variable and the posi-

tion-effect latent variable in corresponding order. Including the position-effect latent 

variable into the model increased the variance estimate of the attribute latent variable 

from 0.82 to an average of 1.34. The variance size of the position-effect latent varia-

bles was on average 58 percent of the variance size of the attribute latent variable. All 

covariances were negative. The fourth column includes the variance sums that were 

obtained by adding up the two variance estimates and combining them with two times 

the covariance. The variance sums for the two models with correlated latent variables 

virtually corresponded to the variance estimate for the one-factor model. 
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Table 1 

Fit Results Observed in Investigating Ability Data with CFA Models Including an 

Ability Latent Variable Alone or in Combination with a Position-Effect Latent 

Variable (N = 104) 

Note. PE: position effect, 2: chi-square, df: degree of freedom, RMSEA: root mean 

square error of approximation, SRMR: standardized root mean square residual, 

NNFI: nonnormed fit index, CFI: comparative fit index, AIC: Akaike information 

criterion, r: (standardized) correlation.  

 

Table 2 

Variance Estimates of Latent Variables of One-factor and Two-factor CFA Models 

with and without Factor Correlations (N = 104)  

 

Note. PE: position effect, VarAbility variance of ability latent variable, VarPE: variance 

of the position-effect latent variable, Cov: covariance, var: VarAbility plus VarPE plus 2 

× Cov.  

 

 

Characteristics of model 2 df RMSEA SRMR NNFI CFI AIC r 

One factor (ability) 902.7 629 0.065 0.110 0.76 0.76 976.7 - 

Two factors (ability and lin-

ear PE)  
801.8 628 0.052 0.146 0.78 0.78 877.8 - 

Two correlated factors (abil-

ity and linear PE) 
745.4 627 0.043 0.099 0.82 0.82 823.4 -0.77 

Two factors (ability and 

quadratic PE) 
776.6 628 0.048 0.130 0.80 0.80 852.6 - 

Two correlated factors (abil-

ity and quadratic PE) 
745.2 627 0.043 0.099 0.82 0.82 823.2 -0.64 

Characteristics of model 
 

VarAbility VarPE Cov var 

One factor (ability) 
 

0.82 - - 0.82 

Two factors (ability and linear 
PE)  

 
1.07 0.62 - 1.69 

Two correlated factors (ability 

and linear PE) 

 
1.92 1.30 -1.21 0.80 

Two factors (ability and quad-

ratic PE) 

 
1.01 0.50 - 1.51 

Two correlated factors (ability 

and quadratic PE) 

 
1.36 0.73 -0.64 0.81 
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Results for hierarchical models. The results reported in the following paragraphs were 

obtained by means of hierarchical CFA models. For investigating the data, the se-

quence of items was subdivided in subsets of either four, five or six items. The most 

promising results were observed for subsets of five items. These results are included 

in Table 3 whereas the results based on the other subsets can be found as Appendices 

1 and 2.  

Table 3 

Fit Results Observed by Hierarchical Model with Eight First-order Factors and One 

Second-order Factor (Item Segmentation into Five Item Subsets) (N = 104) 

Second-order fixations  2 df RMSEA SRMR NNFI CFI AIC r 

 Hierarchical linear-linear/quadratic multi-factor model  

1 1 1 1 1 1 11  724.6 616 0.041 0.277 0.77 0.77 824.6 - 

1 1 1 1 1 1 12 715.0 615 0.040 0.102 0.82 0.82 817.0 -0.85 

.1 .1 .1 .1 .1 .1 .11 742.4 616 0.045 0.109 0.80 0.81 842.4 - 

.1 .1 .1 .1 .1 .1 .12 738.2 615 0.044 0.103 0.80 0.81 840.2 -1.523 

.1 .2 .3 .4 .5 .6 .71 728.2 616 0.042 0.149 0.80 0.80 828.2  

.1 .2 .3 .4 .5 .6 .72 714.7 615 0.040 0.098 0.82 0.83 816.7 -0.62 

.02 .08 .18 .32 .51 .73 11 727.5 616 0.042 0.162 0.80 0.79 827.5 - 

.02 .08 .18 .32 .51 .73 12 719.8 615 0.041 0.104 0.81 0.81 821.8 -0.45 

 Hierarchical quadratic-linear/quadratic multi-factor model  

1 1 1 1 1 1 11  727.0 616 0.042 0.187 0.79 0.79 827.0 - 

1 1 1 1 1 1 12 719.4 615 0.041 0.101 0.81 0.82 821.4 -0.65 

.1 .1 .1 .1 .1 .1 .11 747.5 616 0.046 0.114 0.79 0.80 847.5 - 

.1 .1 .1 .1 .1 .1 .12 740.0 615 0.044 0.103 0.80 0.81 842.0 -1.913 

.1 .2 .3 .4 .5 .6 .71 731.6 616 0.043 0.126 0.80 0.81 831.6 - 

.1 .2 .3 .4 .5 .6 .72 721.1 615 0.041 0.101 0.82 0.82 823.1 -0.46 

.02 .08 .18 .32 .51 .73 11 728.3 616 0.042 0.134 0.80 0.81 828.3 - 

.02 .08 .18 .32 .51 .73 12 721.1 615 0.041 0.105 0.81 0.82 823.1 -0.31 

Note. 2: chi-square, df: degree of freedom, RMSEA: root mean square error of 

approximation, SRMR: standardized root mean square residual, NNFI: nonnormed 

fit index, CFI: comparative fit index, AIC: Akaike information criterion, r: 

(standardized) correlation.  

1 The attribute and second-order position-effect latent variables are uncorrelated. 

2 The attribute and second-order position-effect latent variables are correlated.  

3 Unlike Pearson correlations estimated correlation can be larger than one. 
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Table 3 is subdivided into two parts. Results obtained by models with fixations of 

first-order factor loadings showing a linear increase are presented in the first part 

while in the case of a quadratic increase they are presented in the second part. The 

first column of this table informs about the fixations used for relating first-order and 

second-order latent variables to each other. The results reported in the first part of 

Table 3 compare with the results reported in the second and third rows of Table 1 and 

the results of the second part of Table 3 with what is reported in the fourth and fifth 

rows of Table 1. For making it easy to capture the main message of Table 3, we com-

puted means for the results obtained by linear models with and without correlated 

latent variables and also by quadratic models with and without correlated latent vari-

ables. 

The comparison of the linear customary and hierarchical models without correlated 

latent variables revealed the numerically better results for the hierarchical model re-

garding 2, RMSEA, NNFI, CFI and AIC. After allowing the latent variables to cor-

relate, there were only two better results for the hierarchical model regarding 2 and 

RMSEA. The numerically best model fit was observed for the linear hierarchical 

model when there were correlated latent variables and the following set of numbers 

was used for the fixation of the first-order to second-order relationships: .1 .2 .3 .4 .5 

.6 .7.  

When comparing the quadratic customary and hierarchical models without correlated 

latent variables of the second part of Table 3 with the corresponding part of Table 1, 

numerically better results characterized the hierarchical model regarding 2, RMSEA, 

NNFI, CFI and AIC. Inserting correlations between the latent variables reduced the 

numerical advantage for the hierarchical model to the 2 and RMSEA results. The 

numerically best model fit was observed for the quadratic hierarchical model when 

the latent variables were correlated and the following set of numbers was used for the 

fixation of the first-order to second-order relationships: 1 1 1 1 1 1 1. 

The overall best fitting model was a hierarchical position-effect model with linear 

increases of the constraints for the first-order latent variable and also for the second-

order latent variable. This model showed fit improvement over the best fitting cus-

tomary model regarding 2, RMSEA, SRMR, CFI and AIC.  

In sum, the investigations by the hierarchical position-effect model revealed consid-

erable variation due to different fixations of the first-order to second-order relation-

ships and yielded the configuration of fixations giving rise to the overall best fitting 

model. 
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Discussion 

The research reported in this essay focuses on a method effect that may be considered 

a negligible nuisance. This characterization mirrors a position that is favored because 

it liberates applied research from the necessity to check data for the presence of such 

an effect. Yet, negligence of a method effect may not be the best research strategy. 

Research based on the multitrait-multimethod design has shown that taking method 

effects into account increases the validity of results (Byrne, 2016). Method effects 

have been found to suggest convergent validity where there is no convergent validity 

and vice versa (Campbell & Fiske, 1959). An item-position effect is another method 

effect that can influence the validity of a scale. In the present study it accounted for 

about a third of the latent variance of the scale, which is remarkable. Von Gugelberg, 

Schweizer, and Troche (2021) even report an experimental condition where the item-

position effect surmounted the effect due to the construct that was reasoning. 

The present study included the application to a real data. The usefulness of such a 

study can be questioned since the true underlying structure of the data at hand is not 

known. This means it is not a demonstration of the efficiency of the method in recov-

ering the given latent structure used in data generation. Regarding this point, we like 

to argue that simulation studies demonstrating the efficiency of the basic method for 

investigating the structure of data with an item-position effect are available (e.g., 

Schweizer, 2012; Schweizer & Troche, 2018). Given the similarity of non-hierar-

chical and hierarchical methods it is unlikely that the hierarchical method captures 

data variation that is unrelated to the data variation captured by the non-hierarchical 

method. Furthermore, we like to point out that the insight provided by simulation 

studies can be very limited. There are many simulation studies that assume conditions 

which we do not observe in real data. For example, there are studies assuming factor 

loading sizes which we have never observed when investigating real data. The rele-

vance of an effect can only be shown by using real data. Therefore, demonstrating an 

effect in a real data is as important as demonstrating efficiency in using simulated 

data. Regarding the present research, the next step has to be a simulation study. 

Regarding the present study, we would like to point out that the results provide further 

support for the hypothesis that performance in completing the items of a reasoning 

scale, like APM, shows an item-position effect. The inclusion of a position-effect la-

tent variable into the one-factor CFA model improved model fit substantially, as is 

indicated by a substantial chi-square difference test result and CFI as well as RMSEA 

differences in model fit larger than cutoffs derived from Cheung and Rensvold’s 

(2002) work. Support for the assumption of an item-position effect was provided by 

customary position-effect models and hierarchical position-effect models.  

The outcomes for the hierarchical position-effect models showed some variability but 

rather no major differences. Some models differed substantially from each other ac-

cording to the cutoff for CFI differences while no such differences between models 

were observed regarding the cutoff for RMSEA differences. This means that the 

search for the specification of the model that especially well reflects how an item-
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position effect unfolds implies a small though substantial advantage regarding model 

fit. The search for further improvement in model fit requires the consideration of other 

possible method effects as, for example, the difficulty effect underlying a difficulty 

factor (Bandalos & Gerstner, 2016) or omissions due to the lack of enough processing 

speed (Schweizer, Gold, & Krampen, 2020). 

It was interesting to observe that the overall best model fit was found for a model 

assuming a linearly increasing item-position effect when APM data were investigated. 

This observation contradicts the results by Zeller et al. (2017) who observed a quad-

ratically increasing effect in APM data. One possible reason explaining the difference 

is the type of model since Zeller et al. (2017) only employed customary models but 

no hierarchical models. Another possible reason could be that the samples differ from 

each other. There is the possibility that different percentages of high ability and low 

ability participants lead to differences in how the item-position effect unfolds. Both 

these options will need to be further explored in the future. In addition, it would be 

interesting to examine item-position effects with other tests of fluid intelligence (e.g., 

inductive reasoning tests based on numbers or letters from the alphabet). The domain 

can also be expanded to include measures of other broad factors of the Cattell-Horn-

Carroll (CHC) theory of intelligence (see Schneider & McGrew, 2018). 

Finally, we would like to point out that the present study shows limitations. The se-

lection of a real data limited the number of manifest variables to the number of items 

of the scale with consequences for the possible subsets of items that provide the basis 

for the first-order latent variables. Furthermore, there is a restriction to the course of 

increase of the effect that is typical to APM. Other types of increases could not be 

taken into account. 

Overall, we think that the availability of the hierarchical position-effect model con-

siderably enlarges the variety of alternative representations of an item-position effect. 

This means that the chance of detecting such an effect is increased. 
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Appendix 1 

Table: Fit Results Observed by Hierarchical Model with Ten First-order Factors and 

One Second-order Factor (Item Segmentation into Four Item Subsets) (N = 104) 

Second-or-
der fixa-

tions 
2 df RMSEA SRMR NNFI CFI AIC r 

 Hierarchical linear-linear/quadratic multi-factor model  
1 1 1 1 1 1 
1 1 1 

737.7 612 0.045 0.282 0.75 0.76 845.7 - 

1 1 1 1 1 1 

1 1 1 
717.0 611 0.041 0.104 0.81 0.82 827.0 -0.86 

.1 .1 .1 .1 .1 

.1 .1 .1 .1 
769.1 612 0.050 0.108 0.79 0.79 877.1 - 

.1 .1 .1 .1 .1 

.1 .1 .1 .1 
762.4 611 0.049 0.105 0.79 0.80 872.4 -1.341 

.1 .2 .3 .4 .5 

.6 .7 .8 .9 
902.0 612 0.068 0.304 0.62 0.63 1010 - 

.1 .2 .3 .4 .5 

.6 .7 .8 .9 
721.1 611 0.042 0.100 0.81 0.81 831.1 -0.71 

.01234 … 
(quad) … 1 

937.6 612 0.072 0.153 0.72 0.73 1045 - 

.01234 … 

(quad) … 1 
724.3 611 0.042 0.104 0.80 0.81 834.3 -0.53 

 Hierarchical quadratic-linear/quadratic multi-factor model  
1 1 1 1 1 1 

1 1 1 
733.8 612 0.044 0.189 0.77 0.78 841.8 - 

1 1 1 1 1 1 

1 1 1 
723.6 611 0.042 0.104 0.80 0.81 833.6 -0.72 

.1 .1 .1 .1 .1 

.1 .1 .1 .1 
775.7 612 0.051 0.109 0.78 0.79 883.7 - 

.1 .1 .1 .1 .1 

.1 .1 .1 .1 
765.1 611 0.049 0.104 0.79 0.79 875.1 -1.611 

.1 .2 .3 .4 .5 

.6 .7 .8 .9 
735.6 612 0.044 0.143 0.79 0.79 843.6 - 

.1 .2 .3 .4 .5 

.6 .7 .8 .9 
726.8 611 0.043 0.101 0.80 0.81 836.8 -0.50 

. 01234 … 

(quad) … 1 
735.3 612 0.044 0.134 0.79 0.79 843.3 - 

. 01234 … 

(quad) … 1 
729.8 611 0.043 0.105 0.80 0.81 839.8 -0.35 

Note. 2: chi-square, df: degree of freedom, RMSEA: root mean square error of 

approximation, SRMR: standardized root mean square residual, NNFI: nonnormed 

fit index, CFI: comparative fit index, AIC: Akaike information criterion, r: 

(standardized) correlation. 

1 Unlike Pearson correlations estimated correlation can be larger than one. 
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Appendix 2 

Table: Fit Results Observed by Hierarchical Model with Seven First-order Factors 

and One Second-order Factor (Item Segmentation into Six Item Subsets) (N = 104) 

Second-order fixations  2 df RMSEA SRMR NNFI CFI AIC rA-PE 

 Hierarchical linear-linear/quadratic multi-factor model  

1 1 1 1 1 1 799.6 618 0.053 0.284 0.66 0.67 895.6 - 

1 1 1 1 1 1 715.5 617 0.039 0.103 0.82 0.82 813.5 -0.84 

.1 .1 .1 .1 .1 .1 722.8 618 0.046 0.111 0.80 0.80 848.8 - 

.1 .1 .1 .1 .1 .1 743.2 617 0.045 0.104 0.81 0.81 841.2 -1.731 

.1 .2 .3 .4 .5 .6 742.3 618 0.044 0.135 0.80 0.80 838.3 - 

.1 .2 .3 .4 .5 .6 724.7 617 0.041 0.101 0.82 0.82 822.7 -0.59 

.027 .111 .25 .444 .694 1 737.6 618 0.043 0.159 0.79 0.80 833.6 - 

. 027 .111 .25 .444 .694 1 724.9 617 0.041 0.104 0.81 0.81 822.9 -0.42 

 Hierarchical quadratic-linear/quadratic multi-factor model  

1 1 1 1 1 1 730.8 618 0.042 0.185 0.79 0.79 826.8 - 

1 1 1 1 1 1 718.5 617 0.040 0.101 0.81 0.82 816.5 -0.61 

.1 .1 .1 .1 .1 .1 779.7 618 0.050 0.149 0.77 0.78 875.7 - 

.1 .1 .1 .1 .1 .1 741.4 617 0.044 0.104 0.80 0.81 839.4 -2.021 

.1 .2 .3 .4 .5 .6 741.2 618 0.044 0.122 0.80 0.81 837.2 - 

.1 .2 .3 .4 .5 .6 721.3 617 0.041 0.103 0.82 0.82 827.3 -0.47 

.027 .111 .25 .444 .694 1 735.6 618 0.043 0.132 0.80 0.81 831.6 - 

.027 .111 .25 .444 .694 1 725.7 617 0.041 0.106 0.81 0.82 823.7 -0.30 

Note. 2: chi-square, df: degree of freedom, RMSEA: root mean square error of 

approximation, SRMR: standardized root mean square residual, NNFI: nonnormed 

fit index, CFI: comparative fit index, AIC: Akaike information criterion, rA-PE: 

(standardized)  correlation. 

1 Unlike Pearson correlations estimated correlation can be larger than one. 

 

 

 


