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Abstract 

A large number of researchers have explored the use of non-parametric item response theory 

(IRT) models, including Mokken scale analysis (Mokken, 1971), for inspecting rating quality 

in the context of performance assessment. Unlike parametric IRT models, such as Many-Facet 

Rasch Model (Linacre, 1989), non-parametric IRT models do not entail logistic transformations 

of ordinal ratings into interval scales neither do they impose any constraints on the form of item 

response functions. A disregarded method for examining raters’ scoring patterns is the non-

parametric item characteristic curve estimation using kernel smoothing approach (Ramsay, 

1991) which provides, without giving numerical values, graphical representations for identify-

ing any unsystematic patterns across various levels of the latent trait. The purpose of this study 

is to use the non-parametric item characteristic curve estimation method for modeling and ex-

amining the scoring patterns of raters. To this end, the writing performance of 217 English as a 

foreign language (EFL) examinees were analyzed. The results of rater characteristic curves, 

tetrahedron simplex plots, QQ-plot, and kernel density functions across gender sub-groups 

showed that different exploratory plots derived from the non-parametric estimation of item 

characteristic curves using kernel smoothing approach can identify various rater effects and 

provide valuable diagnostic information for examining rating quality and exploring rating pat-

terns, although the interpretation of some graphs are subjective. The implications of the findings 

for rater training and monitoring are discussed. 
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1. Introduction 

Educational performance assessments have become increasingly widespread in inter-

national high-stakes assessments, such as the Graduate Record Exam (GRE), the Pro-

gramme for International Student Assessment (PISA), Trends in International Math-

ematics and Science Study (TIMSS), the Test of English as a Foreign Language 

(TOEFL), and the International English Language Testing System (IELTS). These 

assessments are widely used to reflect the ability of students in applying different 

knowledge and skills to complete a set of educationally meaningful tasks (Lane, 

2016). A common type of performance assessment in educational contexts is writing 

assessment which requires rater judgments (e.g., rater-mediated assessments, Eckes, 

2015; Engelhard, 2013). In rater-mediated assessments, human raters typically use 

some kind of (ordinal or multiple-category) rating scales to assess student responses 

to multiple complicated tasks and express their interpretation concerning the quality 

of student performances. As raters should score the performance of students, the cen-

tral role of raters engenders an extra layer of complexity to the rating process (Kuiken 

& Vedder, 2014). 

A wide array of parametric item response theory (IRT; Yen & Fitzpatrick, 2006) and 

the various forms of Rasch model (Kubinger, 1989; Wright & Masters, 1982) are typ-

ically used to provide a detailed analysis of rater-mediated assessments. The models 

include the Graded Response Model (Samejima, 1968), the Rating Scale Model (An-

drich, 1978A, 1978b), the Partial Credit Model (Masters, 1982), the Many-Facet 

Rasch Model (Linacre, 1989), the Partial Credit Model versions of Many-Facet Rasch 

Model (Linacre, 1989), the Generalized Partial Credit Model (Muraki, 1992, 1997), 

and the Hierarchical Rater Models (De Carlo, Kim, & Johnson, 2011; Lu & Wang, 

2006; Patz, Junker, Johnson, & Mariano, 1999). Although these models can calibrate 

different raters and task characteristics and provide valuable information about these 

factors, they rely on a set of strict assumptions which require practitioners to have 

sufficient knowledge in working with these models. However, Lei, Dunbar, and Kolen 

(2004) argue that as a large number of test developers and practitioners do not receive 

sufficient training in psychometrics and test theory, they are not able to interpret and 

explain the numerical values obtained from the analysis of parametric models. For 

this reason, some researchers have suggested the use of non-parametric IRT models 

for analyzing rater-mediated assessments (Wind, 2019a; Wind & Engelhard, 2016; 

Wind & Schumacker, 2017). Graphical displays of non-parametric IRT models could 

be easier for practitioners to utilize and elucidate. 

A neglected method for analyzing rater-mediated assessments is the non-parametric 

estimation of item characteristic curves based on kernel smoothing approaches devel-

oped by Ramsay (1991). This method is only based on visual illustrations of item 

characteristics (e.g., item difficulty and item discrimination) in a scale and offers di-

agnostic information about the functioning of the items and the test. The purpose of 

this study is to apply the non-parametric estimation of item characteristic curves to a 

writing data to investigate whether this approach would be effective for evaluating 
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rater-mediated assessments and in particular, analyzing patterns of individual raters 

in scoring writing performance.  

 

2. Background 

2.1 Rater Effects and Rater Training 

As the results of ratings provide rich information about students’ ability for further 

inferences and decisions, a critical concern in educational rater-mediated performance 

assessments is the quality of rater scorings or the way raters do the ratings (Wind & 

Engelhard, 2016). It has been well-established that raters should be able to yield an 

appropriate and a consistent judgmental process of evaluating student responses. 

However, due to the complexity and subjectivity of the rating process, raters are liable 

to different sources of random errors, systematic biases, and idiosyncrasies, known as 

rater effects (Myford & Wolfe, 2003). Put differently, raters are systematically influ-

enced by a number of extraneous irrelevant factors (e.g., construct irrelevant variance) 

which can distort the pattern of rating, compromise rating validity, and jeopardize the 

validity of score interpretations and uses (Mesick, 1989; Myford & Wolfe, 2004). The 

most common types of rater effects are rater severity/leniency, central tendency/ex-

tremity, randomness, rater accuracy/inaccuracy, halo, and systematic biases, e.g., dif-

ferential rater functioning (Myford & Wolfe, 2003). According to Shaw and Weir 

(2007), “scoring validity is criterial because if we cannot depend on the rating of exam 

scripts, it matters little that the tasks we develop are potentially valid’ (p. 143). 

To support the validity of ratings, researchers have frequently used several procedures 

in operational settings such as rater training and monitoring to mitigate rater effects 

and increase rating quality (Engelhard & Myford, 2003; Wolfe, Chiu, & Myford, 

2000). Prior to rating, most large-scale assessment and test programs often provide 

interactive training sessions in a variety of forms (e.g., online, webinars, and face-to-

face) for potential raters to inform them about rating scales, review different aspects 

of writing prompts and scoring rubrics, practice rating, and get feedback on rating 

(Baldwin, Fowles, & Livingston, 2005; Lane & Stone, 2006). Research has shown 

that rater training can reduce rater variability and biases, and improve rating quality, 

systematicity in rater behavior, and the intra-rater consistency of the raters (Weigle, 

1998). Other studies, however, argued that training sessions are likely to fail to attain 

inter-rater agreement, and if raters feel impelled to reach an agreement, they may ne-

glect their own experience in the process of scoring, and thus compromise the scoring 

validity (Eckes, 2015). A number of researchers have further advocated rater moni-

toring as an effectual method to support rater training and ascertain the accuracy of 

raters’ scores. Experienced raters, or rating leaders, can monitor the quality and the 

way novice raters assign a rating to students’ writing during or after rating, and ad-

dress potential problems to identify peculiar patterns of scoring, referred to as “meas-

urement disturbances” (Wind & Schumacker, 2017, p. 1). 
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While it is accepted that rater training and monitoring can be effective at decreasing 

the influence of rater effects, they are unfortunately insufficient for examining rating 

quality because these methods fail to provide information for scoring leaders to iden-

tify raters with unsystematic scoring patterns (Myford & Wolfe, 2009). Instead, a va-

riety of quality indicators relying on quantitative methods have been suggested to 

monitor deficiencies in rating quality. These methods are utilized to not only notify 

rater training and monitoring but also ensure that the outcomes of rater-mediated as-

sessments provide accurate information about the reliability, validity, and fairness of 

the interpretations and uses of scoring results (Engelhard & Wind, 2018). 

 

2.2 A Framework for Classifying Measurement Techniques for Writing 

In his theoretical framework for evaluating rating quality, Engelhard (2008, 2013) 

classified measurement techniques into two major approaches, which later were ex-

tended by Wind and Peterson (2018) to the context of rater-mediated assessments: (1) 

the observed ratings tradition, and (2) the scaled ratings tradition. Many of the familiar 

indices that have been proposed for analyzing rating quality are based on the test-

score or observed ratings tradition. The main focus of these methods are to split the 

observed ratings into true scores and errors, and examine the consistency of observed 

ratings, where an equal category width or interval for observed ratings is considered 

for ordinal rating scale categories (Wind & Peterson, 2018). The most common meas-

urement models within this approach, which depend on inter-rater agreement and re-

liability, include classical test theory, regression models, generalizability theory, anal-

ysis of variance, traditional factor analysis, and structural equation modeling. Re-

searchers have argued that although these models are widely applied in the context of 

rater-mediated assessments and produce important evidence of rater reliability, they 

are limited in the following ways: (1) the use of various group-level inter-rater con-

sistency and inter-rater agreement, such as kappa coefficient, for the same dataset can 

induce inconsistent results, (2) the group-level coefficients do not offer sufficient di-

agnostic information about individual raters, (3) the methods do not offer information 

on the adherence of raters’ interpretation of students performances to the measurement 

theories, such as invariant measurement, and (4) the existence of high reliability and 

agreement between raters does not necessarily indicate the accuracy of the ratings 

(Eckes, 2015; Wind & Peterson, 2018). 

As an alternative approach to the observed rating traditions, techniques for exploring 

the quality of raters’ scoring based on the scaled rating traditions focus on the use of 

latent trait models or item response theory (IRT) models to examine individual rater 

judgments. Using a scale with equal spaced intervals, the analysis of such models 

allows analysts to examine rater severity/leniency, measurement invariant, and fair-

ness of rater-mediated assessments in accordance with expected measurement prop-

erties of a theoretical measurement framework. In fact, these models can identify those 

individual raters whose rating patterns diverge from the assumptions of a measure-

ment model, and recognize areas in which further training for raters are required. 
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A most commonly used method within the scaled rating traditions for detecting rater 

effects is the application of Many-Facet Rasch Model (Linacre, 1989) which belongs 

to the family of parametric IRT models. For analyzing scoring patterns, parametric 

IRT models entail the transformation of (multiple-category or ordinal) observed rat-

ings to interval scales and prescribe a set of strict requirements related to the mathe-

matical shape of the relationship between the locations of individuals on the underly-

ing latent trait and the probability of receiving a higher rating category, referred to as 

item response function which is graphically represented by an item characteristic 

curve. For parametric IRT models, several strict assumptions (e.g., monotonicity, uni-

dimensionality, measurement invariance, the logistic ogive form of IRF, and local in-

dependence) must hold for parameter estimation in accordance with a set of fit statis-

tics which indicate to what extent observed ratings conform to the model-expected 

ratings. The violations of these important assumptions yield unreliable and erroneous 

results for various assessment administrations. Because parametric IRT models in-

volve a set of strict requirement, a number of researchers have argued that these mod-

els are inadequate in the measurement procedures of social and behavioral sciences, 

particularly the logistic transformation of ordinal ratings into interval scales, although 

this method is mathematically plausible (Junker & Sijtsma, 2001; Molenaar, 2001). 

As Wind (2020) argued,  

“meaningful application and interpretation of [parametric IRT models] 

can only occur when there is theoretical and empirical support for impos-

ing a specific mathematical form on the shape of the response function 

(the relationship between the latent variable and the probability for rat-

ings in each category), when the sample size can support parameter esti-

mation for the full range of rater severity and test-taker achievement in-

cluded in a particular sample, and when there is a theoretical or practical 

reason for using interval-level estimates to describe rater severity, test-

taker achievement, and other facets in the assessment context” (125).  

Several researchers, however, have used non-parametric IRT models to analyze rating 

quality in performance assessments. Non-parametric IRT models include most of the 

important requirements of parametric IRT models (e.g., monotonicity, local independ-

ence, and unidimensionality) and are less restrictive compared to parametric IRT 

models since they do not impose a specific shape for item response functions (Sijtsma 

& Meijer, 2007). Under non-parametric IRT models, item characteristic curves are 

directly estimated from the data, and item response functions can take any shapes 

(whether logistic or not). An integral requirement for non-parametric models is mon-

otonicity or the order restriction. Within the context of a rater-mediated assessment, 

monotonicity refers to the probability of receiving higher rating categories with in-

creasing levels of the expected latent variable, that is, as the levels of individuals’ 

writing ability increase, raters should give non-decreasing ratings to the performance 

of individuals across increasing levels of writing ability. When raters fulfill mono-

tonicity assumption, it is an indication that raters have interpreted the performance of 

individuals in the same order (Wind, 2020). According to van der Linden and Ham-

bleton (1997), non-parametric IRT models provide more accurate item characteristic 
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curves which are closer to the true ones relative to parametric IRT models. Sijtsma 

and Molenaar (2002) argued that the use of non-parametric IRT models for evaluating 

rater-mediated assessments is promising because “if an IRT model is used for con-

structing a test, and the measurement of respondents on an ordinal scale is sufficient 

for the application envisaged, parametric models might be unduly restrictive for this 

purpose” (p. 15, emphasis in the original). Unlike parametric IRT models whose as-

sumptions are untenable, non-parametric IRT models can provide valuable insight 

into desirable measurement characteristics such as invariant ordering of items and 

persons (Meijer, Tendeiro, & Wanders, 2015; Wind, 2015). A great advantage of non-

IRT models over their parametric counterparts lies in their potential for exploring un-

systematic patterns in the data by means of the analysis of monotonicity assumption 

and the evaluation of item response functions which allow practitioners to identify 

misfit and weak items (Sijtsma & Meijer, 2007). Many studies have already utilized 

Mokken Scale Analysis (Mokken, 1971), as a famous non-parametric IRT model, to 

evaluate rating quality (Wind, 2019a, 2019b, 2020; Wind & Engelhard, 2016; Wind 

& Patil, 2018; Wind & Schumacker, 2017, 2018), and their results have supported the 

effectiveness of non-parametric models, especially the Mokken Scale Analysis, for 

analyzing rating quality.    

Another neglected method is the non-parametric item characteristic curve estimation 

using Kernel smoothing approaches (Ramsay, 1991). This method has received too 

little attention in educational testing and measurement. Similar to other non-paramet-

ric models, the non-parametric estimation of item characteristic curves does not pre-

scribe a specific parametric form for item response functions. The method only pro-

vides a visual display for identifying any unsystematic patterns across levels of the 

latent trait.  

Schumacker (2015) recently compared empirical and expected item response func-

tions obtained from the Rasch model (Rasch, 1960) to detect any systematic errors or 

measurement disturbances across response patterns. The results of his study revealed 

that visual illustrations would be an effective method for exploring measurement dis-

turbances that are unobservable through the use of model fit statistics. In another 

study, Wind and Schumacker (2017) showed that graphical methods can be used to 

identify measurement disturbances related to raters in the context of a rater-mediated 

assessment. They also found the diagnostic value of graphical illustrations for discov-

ering measurement disturbances that are not captured through the use of numerical 

model-data fit indices. Furthermore, “[t]here seems to be a great reluctance by espe-

cially trained psychometricians to use graphs. We often see fit statistics and large ta-

bles full of numbers that certainly do not provide more information than graphs” (Mei-

jer, Tendeiro, & Wanders, 2015, p. 89). 
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2.3 Non-parametric Estimation of Item Characteristic Curves 

Ramsay (1991) introduced non-parametric estimation of item characteristic curve by 

suggesting regression methods, on the basis of kernel smoothing approaches. Com-

pared to parametric IRT models, the shape of item response functions in this method 

are exploratory and data-driven. In fact, the form of item response functions are not 

assumed a priori. However, similar to the item response functions of parametric mod-

els, the item response functions of this method should fulfill two important assump-

tions: (1) they should be monotonically non-decreasing in θ. This means that the prob-

ability of getting an item right or endorsing a higher response option increases or at 

least remains constant with the increase level of 𝜃; and (2) they should be unidimen-

sional, that is, item response functions should be representable on graphs, with the 

probability of success on the y-axis and the level of 𝜃 on the x-axis. 

The non-parametric estimation of item characteristic curve offers a visual illustration 

of item characteristics (e.g., item difficulty and item discrimination) in a scale and 

gives diagnostic information about the performance of the items and the test. The 

analysis of various plots and curves obtained from this method can provide convenient 

preliminary feedback and valuable information about troublesome items in terms of 

monotonicity, item discrimination across different levels of the latent trait being meas-

ured, and differential item functioning (Rajlic, 2020). As a result, the method could 

be a useful asset in the statistical toolkit of researchers in the context of classical test 

theory and IRT. A great advantage of the method compared to classical test theory is 

that the main focus of the model is on the performance of the items and the scale at 

the level of item, not at the total test scores. Unlike parametric IRT models in which 

the evaluation of item response functions are usually not taken into consideration and 

a great deal of valuable information are disregarded, the non-parametric estimation of 

item characteristic curve only provides graphical illustrations without presenting any 

statistics and numerical summaries. This feature allows researchers and practitioners 

not only identify weak items by inspecting the item response functions but also eval-

uate model fit and then select the most suitable parametric model (Lee, Wollack, & 

Douglas, 2009; Mazza, Punzo, & McGuire, 2014). The three-parameter logistic model 

(Lord, 1980), for instance, might be the appropriate model if the results of the non-

parametric estimation of item characteristic curve indicate that items of a test possess 

non-zero lower asymptotes, and also the two-parameter logistic model (2PL; Birn-

baum, 1968) could be the best model if the items of a test have various slopes (Rajlic, 

2020). 

In the non-parametric estimation of item characteristic curve, several equally-spaced 

points, which are selected from the distribution of standard normal scores, known as 

evaluation points, are used to estimate the probability of getting an item right or en-

dorsing a response category. Put simply, the probability of success is computed as the 

proportion of individuals who correctly responded to the item or the response option 

at the evaluation points. These evaluation points on the horizontal axis are then plotted 

against the probabilities on the vertical axis. When the points are linked, an item 
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response function is drawn. Kernel smoothing non-parametric regression is then uti-

lized to smooth the form of the item response function and estimate item characteristic 

curves from data (Eubank, 1988; Härdle, 1990). Smoothing in statistics is typically 

used to make an approximate curve which tries to decrease noise and seize main pat-

terns in the data. The aim is to estimate the values of y from x using a function g(x). 

The function g should be defined in such a way that it enables us to estimate the cor-

responding values of y for any values of x, regardless of whether x exists in the avail-

able data values or not (Ramsay, 2000). The best way is to estimate a smooth curve 

from which one can read off values of y from any values of x. As Ramsay (2000) 

argued, smoothing is a type of local averaging used to estimate the relationship be-

tween the probability of giving a correct response or endorsing a response option and 

the level of the intended latent trait. A constant size, referred to as bandwidth that is 

used to control the size or width of the kernel around the point, for each evaluation 

point is selected and then a weighted average for all data points within the evaluation 

point and bandwidth is computed. Higher weights are given to points closer to the 

evaluation point. For that reason, Santor, Ramsay, and Zuroff (1994) state that the 

non-parametric estimation of item characteristic curve has great potential to provide 

better fit to the data relative to parametric models.  

 

3. Data 

The essays of 217 upper-intermediate English as a foreign language (EFL) university 

students were analyzed. There were 87 (40.1%) male and 130 (59.9%) female stu-

dents. The essays were written by the examinees in their final exam in a writing course 

in the English Department of the Islamic Azad University of Mashhad, Iran. The writ-

ing task presented a contemporary social issue on the role of modern technological 

advances in unemployment and examinees were required to write their opinions in an 

essay of at least 250 words. The prompt was “Technological advances have replaced 

humans in the workplace. Technology is increasingly responsible for unemployment. 

To what extent do you agree or disagree with this statement?” The rating criteria were 

‘task achievement, ‘coherence and cohesion’, ‘lexical resource’, and ‘grammatical 

range and accuracy’. The essays were rated by the two instructors who taught the 

course using a rating scale containing four rating criteria each rated on a 5-point scale. 

The raters were experienced EFL university instructors and underwent a 2-hour train-

ing session in using and interpreting the scale. Both raters scored all the essays, and 

thus there were no missing data.    

 

4. Data Analysis and Results 

Data were analyzed using the “KernSmoothIRT” package version 6.4 (Mazza, Punzo, 

& McGuire, 2020) in the R statistical software (R Development Core Team, 2019). 

The non-parametric estimation of item characteristic curve fits non-parametric item 
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and option characteristic curves using kernel smoothing techniques. The package al-

lows a variety of exploratory plots for both dichotomous and polytomous data at test- 

and item-level as well as across different subgroups to examine the functioning of a 

scale, the individual items, and the test takers. 

 

4.1 Rater Characteristic Curves 

Figure 1 presents the option characteristic curves of the two raters on the five writing 

components or items. Instead of using the term option characteristic curves, here, the 

more accurate term rater characteristic curves is used for rater-mediated assessment. 

On the rater characteristic curve graphs, the y-axis represents the probability of as-

signing rating scores to students’ writing, ranging from 0 to 1, and the x-axis repre-

sents the expected total score on the latent trait dimension on which students are 

ranked, ranging from 0 to 32. Expected score is defined as the average score a re-

spondent at a particular latent trait level will attain (Ramsay, 2000). The vertical 

dashed lines, whose positions are equal for all the graphs, show the actual total scores 

below which 5%, 25%, 50%, 75%, and 95% of examinees fall. As an illustration, the 

50% line is located at the score 13 for all the rater characteristic curves, suggesting 

that 50% of the examinees are below the actual total score of 13 and 50% are within 

the range of 13 to 32.  

As presented in Figure 1, for each writing component or item of the rating scale, five 

curves in the rater characteristic curve graphs were plotted, representing the five rating 

categories (e.g., 0 to 4) in the scale. The curves indicate the relation between the latent 

dimension or students’ writing ability and the probability of receiving a rating score. 

This relation is represented by item response functions, graphically shown by a rater 

characteristic curve. With regard to the monotonicity assumption, item response func-

tions determine that students with higher writing ability are more likely to have higher 

probabilities of receiving higher ratings than writers with lower writing ability. In 

other words, as students’ writing ability increases, the probability of receiving higher 

rating scores increases as well. If monotonicity assumption is satisfied, it is an indica-

tion that the probability of assigning higher rating scores for higher level writers is 

non-decreasing (Wind, 2015). A rater characteristic curve that fulfills the monotonic-

ity assumption, in the case of rater-mediated assessment, indicates consistent ratings. 

That is to say, with increasing levels of writing ability, the probability of assigning 

higher ratings monotonically increments, or at least does not decrease. On the con-

trary, any violations of monotonicity, e.g., a “U-shaped” or a “wave” curve, indicates 

inconsistent ratings, that is, some writers with higher writing levels have received 

lower ratings, and writers with lower writing levels have received higher ratings. Re-

search has shown that violations of monotonicity assumption impact the accuracy of 

measurement (Hambleton & Swaminathan, 1985; Sijtsma & Molenaar, 2002). 

With regard to the component of task achievement displayed in Figure 1, except for 

Category 2, all of the curves show that the monotonicity assumption holds for Rater 
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1, although Category 4 has a minor distortion in monotonicity in the range of 11 to 

14. The satisfied monotonicity assumption indicates that raters have assigned higher 

ratings as writing ability levels (or total scores) of students increase. Similar to Rater 

1, most of the curves indicate the satisfaction of monotonicity for Rater 2, except for 

Category 2 and Category 1 in which there is a small bump in the right part of the 

curve. The probability of assigning rating scores to students’ writing shows that Rater 

1 is more lenient than Rater 2 with respect to task achievement component. As can be 

seen, the probability of assigning Category 3 is 0.58 for Rater 1 whereas it is 0.42 for 

Rater 2. For coherence and cohesion, the performance of Rater 1 shows the violation 

of monotonicity for Category 2 and Category 1 at the lower end of the scale. The 

performance of Rater 2 on coherence and cohesion component represents an aberrant 

rating behavior because monotonicity assumption has been seriously violated, indi-

cating that Rater 2 has inconsistently rated the students’ writing. That is, some high 

level examinees have been rated lower than expected whereas low level ones have 

been rated higher than expected. Similar to task achievement component, Rater 2 is 

more lenient than Rater 1 because the probability of assigning rating scores is lower 

for Rater 2 compared to Rater 1. As to the lexical resource component, the perfor-

mance of both raters indicates the fulfilment of monotonicity since those writers with 

high writing levels are more likely to receive higher ratings. The comparison of the 

rater characteristic curves for both raters reveals that Rater 1 has harshly rated on 

Category 3 while Rater 2 has been more severe on the other rating categories. With 

respect to the grammatical range and accuracy, Rater 1 showed a consistent rating 

because students receive higher ratings as their writing ability increases. For Rater 2, 

rater characteristic curves related to Categories 2, 3, and 4 satisfied monotonicity as-

sumption; however, in Categories 0 and 1, violation of monotonicity is observed at 

the lower end of the dimension, indicating that students with higher writing ability 

were given lower ratings and students with lower writing scores received higher 

scores. Any violations of monotonicity assumption, in performance-based assessment 

such as writing, on different components are more likely to be ascribed to the multi-

dimensional nature of the latent trait (Baghaei, 2021; Effatpanah & Baghaei, 2021; 

Effatpanah, Baghaei, & Boori, 2019). In fact, a student may possess higher ability in 

a particular component, say grammar, but does not have adequate competency in an-

other component, such as vocabulary. 

More importantly, each rating category should represent the most probable rating 

score for writers at particular positions of the writing ability continuum. The proba-

bility of receiving higher ratings should increase as the writing ability levels of stu-

dents increase. For the first rating category (0), it is expected to be the most probable 

for writers with the lowest writing ability level, and as the writing ability of students 

increases, the probability of receiving category (0) should decrease. The probability 

of the lowest category should be near 1 at the lowest end of the writing ability contin-

uum. Category 1 should be the most probable category for low-ability writers and 

become less probable as the writing ability of the examinees increases. Category 2 

should be the most probable for writers with medium levels of writing ability and be 

less probable for writers below and above this ability range. Category 3 should be the 
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most probable for writers at medium to higher levels of writing ability. And finally, 

Category 4 should be the most probable for writers with the highest writing ability 

level. The probability of the highest category should be near 1 at the highest end of 

the writing ability continuum and should approach zero at the lowest levels of the 

continuum. Therefore, an ideal rater characteristic curve should resemble several suc-

cessive dispersed and peaked curves across all levels of the writing ability continuum, 

each representing a category and a class of writers based on their writing ability levels. 

For instance, the performance of Rater 1 and Rater 2 on lexical resource component 

as illustrated in Figure 1 is examined. For Rater 1, category 0 is the most probable 

category for writers with expected scores between 1 and 8, and is less probable with 

the increase of writing ability across the continuum. The probability of category 0 is 

exactly 1 at the lowest end of the continuum. For writers with expected scores above 

8 (e.g., between 9 and 17), Category 1 is more likely and its probability decreases as 

the level of writing ability increases. The probability of receiving category 2 is more 

probable for writers with expected scores between 12 and 19. This category is obvi-

ously flimsy because its probability is lower than the probability of Category 1 along 

the continuum. Students with writing ability levels between 9 and 23 have higher 

probabilities to receive Category 1 than Category 2. Except for the range of 17 to 19, 

Category 2 is never more likely than Category 1. For expected scores between 14 and 

24, Category 3 becomes more probable, and with increased levels of writing ability, 

its probability decreases. Finally, examinees with expected scores above 25 are more 

likely to receive Category 4. The probability of category 4 is near 1 at the highest end 

of the continuum and is near 0 at the lowest end of the continuum. On the other hand, 

for Rater 2, category 0 is more probable for writers with expected scores in the range 

of 1 to 6, and becomes less probable as the writing ability increases along the contin-

uum. The probability of category 0 is less than 1 at the lowest end of the continuum. 

Category 1 has higher probabilities for writers with expected scores between 7 and 

15, and as the level of writing ability increases, its probability decreases. Writers with 

expected scores between 9 and 15 have higher probabilities to receive rating 2 (Cate-

gory 2). Similar to Rater 1, Category 2 for Rater 2 does not properly operate because 

its probability is lower than the probability of Category 1 across the entire length of 

the continuum. It seems that Category 2 is not effective and raters could not distin-

guish between 4 rating categories. This problem is observed for the other rater char-

acteristic curves on different writing components or items. Therefore, one way for 

solving this problem is to merge Categories 1 and 2. Category 3 is more probable for 

writers with expected scores between 10 and 25. After expected score of 25, category 

4 becomes the most probable rating category, whose probability is near 0 at the lowest 

end of the continuum and is near 1 at the highest end of the continuum. 

Furthermore, the slope or steepness of the rater characteristic curves give information 

on discrimination power of items and categories. Unlike parametric IRT models 

which provide a single item discrimination index, the non-parametric estimation of 

item characteristic curve allows practitioners to both track the changes in item dis-

crimination across the expected latent trait continuum and visually compare all items 

with respect to their discrimination power at various levels of the latent trait because 
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the non-parametric estimation of item characteristic curve does not impose a particular 

shape for curves (Rajlic, 2020). In the case of rater-mediated assessment, item dis-

crimination indicates the rate at which the probability of assigning rating scores to 

students’ writing performance changes given students’ writing ability levels. The 

steeper the rater characteristic curves, the better the items or the rating categories can 

differentiate between writers with various writing ability levels. For illustrative pur-

poses, as demonstrated in Figure 1, rater characteristic curves for Rater 1 on gram-

matical range and accuracy show that the rater could better discriminate between writ-

ers with various levels of writing ability in Categories 0, 1, and 4 compared to Rater 

1, especially with expected scores ranging from 5 to 9. In contrast, Rater 2 was able 

to differentiate between writers in Categories 2 and 3, especially with expected scores 

in the range of 10 to 14.  
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Figure 1.  

Rater Characteristic Curves (RCCs) for the Two Raters on the Five Writing Compo-

nents. TA = Task Achievement, CC = Cohesion and coherence, LR = Lexical Re-

source, and GA = Grammatical Range and Accuracy. 

 

4.2 Tetrahedron Plots 

Figure 2 gives (regular) tetrahedron simplex plots for the two raters on lexical resource 

and grammatical range and accuracy components. Tetrahedron plots are only used for 

items with more than 3 or 4 categories or options. At each side of the tetrahedron, only 

categories with the highest probabilities are presented, and the highest probabilities 

are normalized to offer a simple representation (Mazza et al., 2014). A curve with 

three colors is observed inside the tetrahedron. Each color shows a specific trait level; 

blue points indicate high trait levels, green points show medium trait levels, and red 

points represent low trait levels. These trait levels are simply the values of evalpoints 

divided into three equal groups. As Mazza et al. (2014) note, an essential requirement 

of a reasonable category or item is that the sequence of points terminates at or near 

the highest category or the correct response. For space considerations, the tetrahedron 

plots for only two writing components as illustrated in Figure 2 are presented. The 
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five categories with the highest probabilities are shown at each side of the tetrahedron 

and as Category 2 has the least probability, it is not illustrated on the tetrahedron. This 

can be considered as evidence that the raters could not effectively make a distinction 

between the rating categories, that is, they did not effectively use Category 2 in their 

ratings. With regard to the lexical resource and grammatical range and accuracy com-

ponents, the performance of the two raters shows that the sequence of points starts 

from category 0 (vertex), passes options 1, 3, and moves toward option 4, suggesting 

that with the increased levels of writing ability, the probability of receiving higher 

ratings increases as well. Another issue in the analysis of tetrahedron is the length of 

the curve. There should be a distance between the examinees with the highest and the 

lowest trait levels. In Figure 2, the ratings of the two raters on lexical resource and 

grammatical range and accuracy rating components are satisfactory because the ex-

aminees with the highest writing levels are far from those with the lowest writing 

levels and the length of the curve is not short, but it ends at or near the highest cate-

gory. Furthermore, the spacing of the points indicate the speed at which the probabil-

ities of rating categories change. As Figure 2 shows, the ratings of the raters on the 

two components indicate a good performance because as writing ability increases, the 

probability of assigning higher rating categories increasingly changes.  

 

4.3 Differential Item Functioning (DIF) Analysis  

In addition to rater characteristic curves, the non-parametric estimation of item char-

acteristic curve can also provide information about differential item functioning 

(DIF), which is used in educational and psychological measurement to detect bias at 

item-level. In the non-parametric estimation of item characteristic curve, the presence 

of DIF is identified by inspecting visual representations of item responses or rating 

scores across the relevant groups. Any substantial disparities in the shape of the curves 

across the subgroups and the area between the curves indicate DIF (Rajlic, 2020). In 

rater-mediated assessments, DIF takes place when rating categories do not function in 

a similar way for all writers across different subgroups. DIF exists if writers with the 

identical writing ability levels from different subgroups do not have equal probabili-

ties to receive a particular rating. A biased item or rating category in which the prob-

ability of assigning the category is constantly higher for a particular group across the 

writing ability continuum is called uniform DIF, and when the probability of assigning 

rating categories vary for the relevant groups across the continuum, it is called non-

uniform DIF. 

Figure 3a presents the pairwise expected scores or QQ-plot for the distributions of the 

expected scores for females (on the x-axis) and males (on the y-axis). The horizontal 

and vertical dashed lines, similar to rater characteristic curves, represent the actual 

total scores below which 5%, 25%, 50%, 75%, and 95% of the examinees across the 

two groups fall. If the two groups have an identical performance, the solid diagonal 

line should not significantly deviate from the dotted diagonal line, as a reference 

(Ramsay, 2000); otherwise, the solid line  
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Figure 2.  

Probability Tetrahedrons for the Two Raters on Lexical Resource and Grammatical Range 

and Accuracy Components. Low trait levels are plotted in red, medium in green, and high 

in blue. LR = Lexical Resource and GA = Grammatical Range and Accuracy. 
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Figure 3.  

The Pairwise Expected Scores and (QQ-plot) and Kernel Density Functions for 

Females (blue solid line) and Males (red dotted line) on the Rating Scale 
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will deviate from the reference line, suggesting greater differences in the two distri-

butions. As can be seen in Figure 3a, although males (M) have higher scores in the 

range of 2 to 7 compared to females (F), there is a slight deviation from the diagonal 

line indicating a slight difference in rating performance of the two raters. By marking 

the plot, it turns out that males with a total score of 5 (on the y-axis) received higher 

ratings about 1 or 2 points over females with total scores of 3 or 4 at the same quantile 

position (on the x-axis), representing a negligible difference between the two groups. 

Figure 3b further shows the kernel density function plot (e.g., the total score distribu-

tion) for the two groups. The solid line shows the observed scores for females and the 

dotted line for males. The plot shows that there is a disagreement between the distri-

butions of the total scores across the two groups. Females were given higher ratings 

in the range of 6 to 26 whereas males received higher scores in the range of 1 to 5. 

To compare DIF at the item or category-level, the rater characteristic curves for dif-

ferent rating categories of coherence and cohesion component across the two groups 

as demonstrated in Figure 4 are compared. On the rater characteristic curves, the red 

curves (M) represent the score distributions for male students, the blue curves for fe-

male students (F), and the black curves (the overall curve) for all students. With regard 

to the rating performance of Rater 1 on Category (0), females have a greater probabil-

ity than males at the lower end of the scale (e.g., in the range of 4 to 10 expected 

scores) to receive higher ratings whereas the probability is higher for males than fe-

males at the higher end of the dimension for Rater 2. In relation to Category (1), the 

curves are very similar and close to each other for Rater 1, suggesting the lack of DIF; 

however, for Rater 2, the probability of receiving higher rating scores is higher for 

males along the scale, indicating the presence of uniform DIF. As to the Category (2), 

although the performance of Rater 1 shows a slight difference between the two groups 

in the middle of the scale (e.g., 15 to 20 expected scores), with higher probabilities 

for males, the curves are very similar and close to each other. For Rater 2, the proba-

bility of assigning higher scores is greater for females in the middle and at the higher 

end of the scale, representing differences in rating of this rater across the two groups. 

The performance of Rater 1 on Category 3 shows that males have greater probabilities 

of obtaining 3 at the lower and higher end of the scale, and females have greater prob-

abilities in the middle of the scale, but these differences are not substantial. For Rater 

2, males have lower probabilities than females on Category 3 of cohesion and coher-

ence component, along most of the latent dimension, especially at the higher end of 

the scale, indicating uniform DIF. That is to say, it shows that Rater 2 tends to be more 

severe for males than Rater 1 in using this category. With respect to Category (4), the 

rating function of Rater 1 demonstrates that from the middle part of the scale, the 

probabilities for females are higher than males, that is, the rater assigned higher ratings 

to females compared to males. However, the performance of Rater 2 shows that the 

probability of receiving rating Category 4 is greater for females at the lower end of 

the dimension, whereas the probability is greater for men at the higher end of the 

continuum, suggesting the presence of non-uniform DIF. 
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Figure 4. 

Rater Characteristic Curves (OCCs) for Females and Males related to Coherence and 

Cohesion (CC) Rating Component 
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Finally, Figure 5 depicts the expected scores plots for the two raters on rating compo-

nents of task achievement and coherence and cohesion across the two groups. On the 

graphs, the expected scores for males are represented by the red curves and for females 

by the blue curves, and for all the examinees by the black curves (the overall curves). 

The vertical dashed lines present the points below which 5%, 25%, 50%, 75%, and 

95% of the examinees fall based on their total scores, and scattered color points on 

the plots represent the observed average scores for all the students grouped on the 

basis of their ordinal ability estimates (which are equally spaced) (Mazza et al., 2014). 

As can be seen, with regard to the rating performance of Rater 1 on the component of 

task achievement, male writers have relatively higher expected scores than females 

across different parts of the writing dimension. The curves at the higher end of the 

scale show that Rater 1 becomes more lenient for males in rating high ability writers. 

However, for Rater 2, the curves are very close and similar, indicating the lack of bias. 

As to the cohesion and coherence component, the performance of Rater 1 shows that 

females have lower expected scores at the lower end of the dimension, but they have 

higher expected scores at the upper end of the dimension, suggesting a slight non-

uniform DIF. In other words, this indicates that the rater has inconsistently rated 

across the two groups. For Rater 2, females have greater expected scores than males 

at the lower end of the dimension, but from the middle part of the continuum, the 

rating performance becomes more consistent. Overall, the DIF plots at both test- and 

item-level reveal that gender is a variable causing DIF in the data.   
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Figure 5.  

Overall Expected Item Score (EIS) and EIS of Females and Males for the Two 

Raters on Task Achievement and Coherence and Cohesion Components. TA = Task 

Achievement and CC = Cohesion and Coherence. 
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5. Discussion  

This study set out to use the non-parametric estimation of item characteristic curve 

using kernel smoothing technique to show the use of visual representations as a diag-

nostic tool for exploring and modeling the scoring patterns of raters’ judgment and 

detecting measurement disturbances or rater effects in educational rater-mediated per-

formance assessments. In previous studies, numerous researchers have explored the 

usefulness of graphical methods based on Mokken Scale Analysis (Mokken, 1971) 

for evaluating rating quality (Wind, 2020; Wind & Patil, 2018; Wind & Schumacker, 

2017, 2018) in practical performance assessment settings and illustrated the value of 

this approach as a complementary technique to other parametric methods, like Many-

Facet Rasch Model, for rating quality analysis. This study expands this line of research 

by using the non-parametric estimation of item characteristic curve. To our best 

knowledge, this study is the first attempt in the literature that employs the non-para-

metric estimation of item characteristic curve to model and monitor rating quality to 

discern idiosyncratic scoring patterns of raters. This research, therefore, makes a con-

tribution to previous studies in applying non-parametric models to rater-mediated ed-

ucational performance assessments in a number of ways. Firstly, the use of the non-

parametric estimation of item characteristic curve has already been limited to some 

practical (Effatpanah & Baghaei, 2022; Meijer & Baneke, 2004; Santor, Ramsay, & 

Zuroff, 1994; Sijtsma et al., 2008) and methodological (Douglas, 1997; Douglas & 

Cohen, 2001; Wells & Bolt, 2008) research in psychological assessments, psycho-

pathology, and quality of life. This study extends the application of the non-parametric 

estimation of item characteristic curve to evaluate rating patterns, by giving only vis-

ual illustrations, and detect rater effects in the context of rater mediated assessments. 

Secondly, while researchers have largely used Mokken Scale Analysis as a non-para-

metric approach and explored the use of this model to evaluate rating quality and 

identify raters with unexpected rating patterns, Mokken Scale Analysis has several 

practical shortcomings for analyzing rating quality. The first limitation is that in 

Mokken Scale Analysis, all items of a scale should possess the equal number of re-

sponse options or categories; however, the non-parametric estimation of item charac-

teristic curve allows items to have different number of categories. It is a common 

practice in performance assessment to give different weights to different rating crite-

ria. For instance, in writing assessment, ‘content’ is always given a higher weight—

with a rating scale ranging from say, 1 to 5—than ‘mechanics’ with a scale ranging 

from say, 1 to 3. This practice makes the scales for items different and unanalyzable 

with Mokken Scale Analysis. The second limitation of Mokken Scale Analysis is that 

the analysis of measurement invariance or DIF is demanding. The commonly used 

computer programs for running Mokken Scale Analysis, including MSP (Molenaar & 

Sijtsma 2000) and the R package mokken (van der Ark, 2012), do not include a pro-

cedure for estimating item response functions across different subgroups. To evaluate 

measurement invariance, item response functions of the subgroups should be sepa-

rately estimated and then plotted on a single graph. The analysis of DIF in the non-

parametric estimation of item characteristic curve, though, is easy to do, and the model 
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can simultaneously estimate item response functions of subgroups and plot them on a 

single graph.  

Similar to Mokken Scale Analysis, the non-parametric estimation of item characteris-

tic curve has the potential to provide an approach to investigate the rating quality of 

raters and consider psychometric characteristics as fundamental prerequisites for ob-

taining sensible interpretations from assessment results. Consequently, any violations 

of the non-parametric estimation of item characteristic curve assumptions can be used 

to specify whether the scoring of raters have psychometrically sensible interpretations 

or require further inspection. To investigate the utility of the non-parametric estima-

tion of item characteristic curve to identify unexpected scoring patterns, different 

graphs were separately examined based on the scoring of two raters using an analytical 

scoring rubric measuring four writing criteria on a five–point scale. As the non-para-

metric estimation of item characteristic curve can provide a variety of exploratory 

plots at test- and item-level as well as across different subgroups, we focused on rater 

characteristic curves, (regular) tetrahedron simplex plots, and DIF. According to Wind 

(2020), since monotonicity is an-easy-to-understand psychometric property to evalu-

ate and interpret with researchers, it can give straightforward information on rating 

quality. In this study, the interpretation of rater characteristic curves showed that alt-

hough the raters, in most cases, adhered to the monotonicity assumption, their perfor-

mance, in some cases, violated the assumption of monotonicity. This indicated fre-

quent inconsistent ratings in which with increased levels of writing ability, the prob-

ability of receiving higher ratings did not increase. The violation of monotonicity in 

educational performance assessment can be due to the complexity and multidimen-

sionality of writing (Baghaei, 2021; Effatpanah & Baghaei, 2021; Effatpanah, 

Baghaei, & Boori, 2019). 

To complement the rater characteristic curves, tetrahedron plots for the raters on two 

rating components were analyzed. The patterns of raters’ scorings at category level 

indicated that although the raters could not efficiently differentiate between the five 

rating categories, especially Categories 1 and 2, there was generally a satisfactory 

functioning of the raters in selecting the appropriate rating category because the as-

sumption of monotonicity held. One possible reason for the inability of raters in draw-

ing a distinction a distinction between Category 1 and 2 may be due to the lack of 

sufficient discussion and explanation on this category in the training session. In other 

words, the raters could not capture relevant aspects of students’ writing performance 

regarding the content of Category 2; therefore, as Kuiken and Vedder (2014) noted, 

they placed more weight on the other categories. Alternatively, the description of Cat-

egory 2 might overlap with the description of the adjacent categories making the dis-

tinction rather difficult.    

Furthermore, the performance of raters across the subgroups (males and females) were 

examined. The QQ-plot and kernel density function plot for analyzing DIF at test-

level revealed that the rating quality was invariant across the sub-groups, that is, there 

were no significant differences in rating function of the raters across females and 

males examinees. However, further analysis at item or category level on different 
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rating components showed substantial differences between the rating performance of 

the raters across the subgroups. The results indicated the existence of both non-uni-

form and uniform DIF. This finding suggests different levels of severity or leniency 

in rating performance of raters across the subgroups. 

 

6. Conclusion 

An attempt was made to demonstrate the usefulness of the non-parametric estimation 

of item characteristic curve for graphically investigating the rating quality of raters in 

the context of performance assessments. Overall, findings of the current study high-

light the importance and effectiveness of visual methods for examining rating quality. 

Specifically, the exploratory graphs of the non-parametric estimation of item charac-

teristic curve can present detailed information for further rater training and monitoring 

procedures. The findings of this study have numerous implications for studies related 

to evaluating rating quality in rater-mediated assessment. First, the application of the 

non-parametric estimation of item characteristic curve is useful for analyzing rating 

quality and identifying peculiar scoring patterns with regard to a set of important psy-

chometric characteristics, such as monotonicity and measurement invariance, without 

transforming ordinal ratings to interval measures. In fact, prior to employing a para-

metric model, the use of the non-parametric estimation of item characteristic curve, 

similar to Mokken Scale Analysis, can be considered as an initial step to examine 

measurement properties of a rater-mediated assessment. As argued by Meijer et al. 

(2015, p. 107), “non-parametric approaches are excellent tools to decide whether par-

ametric models are justified. Moreover, given the often no-so-easy-to-interpret fit sta-

tistics for parametric models, non-parametric tools provide a nice extension of the 

parametric toolkit to IRT modeling”. Secondly, the results obtained from the non-

parametric estimation of item characteristic curve can inform stakeholders of score 

interpretations and uses for making inferences and decisions about students in educa-

tional contexts.  

Although the non-parametric estimation of item characteristic curve proved useful in 

identifying peculiar rating patterns in educational performance assessment involving 

a set of raters, the findings of the current study have to be considered with respect to 

some limitations related to non-parametric IRT models. The main limitation of the 

non-parametric estimation of item characteristic curve is that the mere graphical dis-

plays of the method, without giving any numerical values, make a challenge for ana-

lysts to investigate and judge the psychometric qualities of a measure. In fact, because 

there are not specific boundaries or criteria for analyzing graphs, the interpretation 

and detection of rater effects and/or DIF using the graphic method tend to be subjec-

tive or arbitrary to some extent. Furthermore, different plots obtained from the non-

parametric estimation of item characteristic curve fail to clearly distinguish between 

various rater effects, including leniency/severity, centrality/extremity, or accuracy/in-

accuracy. It is thus highly recommended for researchers and practitioners to use the 

non-parametric estimation of item characteristic curve for modeling and evaluating 
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rating quality along with parametric models. Wind (2019a) also acknowledges the 

limitations of non-parametric IRT models, including Mokken Scale Analysis, relative 

to parametric IRT models, which can be extended to the non-parametric estimation of 

item characteristic curves in the following way: 

“the lack of a parametric form prevents [non-parametric IRT] models 

from providing interval-level parameter estimates, such as are needed for 

computer-adaptive assessment procedures, equating, and other paramet-

ric analyses. Whereas parametric IRT models result in interval-level es-

timates that are suitable for such analyses, [non-parametric IRT] models 

do not. Additionally, [non-parametric IRT] models currently do not in-

clude a multi-faceted model similar to the MFR model through which 

analysts could examine more than two facets in a single analysis” (pp. 

18-19).  
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