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Abstract 

The results of low-stakes assessments are sensitive to individuals’ persistence in maintaining a 

constant level of effort and precision over the course of a test. In this paper we present an item 

response theory (IRT) model that includes test-taking persistence as an additional latent varia-

ble. The proposed model is a continuous variant of the HYBRID IRT model. In contrast to 

Yamomoto’s (1989) HYBRID model, our model allows for nondeterministic changes from so-

lution to guessing behavior. Our model assumes that, over the course of a test, individuals might 

change their response behavior from solution behavior to random guessing behavior. Individual 

differences in the turning points are used to assess persistence. Individual differences in persis-

tence can be correlated with proficiency, as well as with additional individual-level covariates. 

The new model is specified as a multilevel mixture IRT model and can be estimated by means 

of marginal maximum likelihood via the expectation maximization algorithm. The model was 

scrutinized in a simulation study that showed that the continuous HYBRID model provides 

good results in a variety of conditions. An empirical application provided further support for 

the model’s utility because the essence of test-taking persistence was replicated in two test 

forms assessing science achievement. 
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For proficiency tests administered under low-stakes conditions there is ample evi-

dence that individuals reduce their test effort over the course of a test (Meyers, Miller, 

& Way, 2009). Research on rapid guessing behaviour (RGB; Wise & Kong, 2005) 

indicates that the reduction of effort is reflected in an increasing prevalence of RGB, 

which means that items presented later in a test are more likely to be guessed (Lindner, 

Lüdtke, & Nagy, 2019; Wise, Pastor, & Kong, 2009). As such, individual differences 

in the onset point of guessing behaviour might be regarded as an indicator of individ-

uals’ test-taking persistence (cf. Debeer, Buchholz, Hartig, & Janssen, 2014).  

Many popular item response theory (IRT) models that deal with the declining proba-

bilities of correct responses over the course of a test do not recur on changes in re-

sponse strategies (e.g., Debeer & Janssen, 2013), although this idea is not new in IRT. 

Yamamoto (1989) proposed the HYBRID model, which combines the two-parameter 

logistic (2PL) IRT model for solution-based responses with a latent class analysis 

model for guessed responses. The HYBRID model assumes deterministic (i.e., sud-

den) changes from solution to guessing behaviour. However, at least in the area of 

low-stakes tests, a continuous decrease in the probability of solution behaviour ap-

pears to be more realistic (e.g., Goegebeur, De Boeck, Wollack, & Chen, 2008).  

In the present article we present a continuous version of Yamamoto’s (1989) HYBRID 

model, which we denote by the abbreviation C-HYBRID. The new model relaxes the 

assumption of a deterministic switching point from solution to guessing behavior. The 

model is specified as a multilevel mixture model (MMM) that can be estimated by 

software packages for multilevel latent variable modeling such as Mplus (Muthén & 

Muthén, 1998-2017), Latent Gold (Vermunt & Magidson, 2013), and JAGS (Plum-

mer, 2017). The MMM framework allows for extensions that, for example, enable 

covariate relationships with the switching point to be studied.  

In the next section we introduce the conceptual aspects of guessing behaviour on 

which the HYBRID and the C-HYBRID models build. We then present both models 

and discuss the specification and estimation of the C-HYBRID model with the Mplus 

software. These sections are followed by a simulation study and an application of the 

model to real data. We end the article by summarizing the results and discussing ex-

tensions to the suggested MMM framework.  

 

 

Solution and Guessing Behavior in Proficiency Tests 

In our framework the probability of a correct response of individual i (i = 1, 2, …, N) 

to a dichotomously scored item j (j = 1, 2, …, J), 𝑃(𝑌𝑖𝑗 = 1) is represented as  

𝑃(𝑌𝑖𝑗 = 1) = 𝑠𝑖𝑗𝑟𝑖𝑗 + (1 − 𝑠𝑖𝑗)𝑔𝑗  , (1) 

where 𝑟𝑖𝑗 ∈ [0,1] denotes the probability that individual i knows the response to item 

j, 𝑠𝑖𝑗 ∈ [0,1] is the probability that i applies a solution strategy to item j (i.e., she or 

he does not guess), and 𝑔𝑗 ∈ [0,1] is the success probability of solving the item j by 
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guessing. The 𝑔-term is assumed to be person-independent because we assume a pure 

random guessing process. 

Equation 1 is quite general. For example, it reduces to the one- or two-parameter lo-

gistic model (1PL or 2PL) when, for each i and j, 𝑠𝑖𝑗  is fixed to one, and 𝑟𝑖𝑗  is specified 

according to a 1PL or 2PL model. In addition, Equation 1 results in a three-parameter 

logistic model (3PL) when the 𝑔-terms are fixed to one (𝑔𝑗 = 1 for all j = 1, 2, …, J), 

and the 𝑠-terms are not allowed to differ between individuals (𝑠𝑖𝑗 = 𝑠𝑗 for all i = 1, 2, 

…, N) (e.g., von Davier, 2009).  

Other IRT models build upon all components included in Equation 1. For example, 

Mislevy and Verhelst (1990) suggested a model in which 𝑟𝑖𝑗  is represented by the 1PL 

model, and the probabilities of solution behavior, 𝑠𝑖𝑗 , are restricted to be constant 

within individuals, so that individuals either show solution behavior on all items or 

guess all items in a test (i.e., 𝑠𝑖𝑗 = 𝑠𝑖  for all j = 1, 2, .., J with 𝑠𝑖 = 0, 1). The authors 

suggested fixing the 𝑔-terms to the success probabilities expected under pure random 

guessing. Yamamoto (1989) suggested the HYBRID model, where 𝑟𝑖𝑗  is represented 

by a 2PL structure, and the 𝑔-terms of Equation 1 can be either fixed or freely esti-

mated. In the HYBRID model, 𝑠𝑖𝑗  can vary across items within individuals. However, 

the probabilities are restricted to be either zero or one (𝑠𝑖𝑗  = 0, 1), and only irreversible 

switches from solution to guessing behaviour over the course of a test are allowed. 

Therefore, individuals’ switching points to guessing behaviour can be regarded as in-

dicators of their test-taking persistence. However, the assumption of a sudden switch 

appears to be too rigid, especially in low-stakes testing situations. In such situations, 

it appears more reasonable to assume smooth declines of 𝑠𝑖𝑗  over the course of a test.  

 

 

The HYBRID Model and the Continuous HYBRID Model 

In the following sections we introduce the HYBRID model in a parameterization that 

differs from Yamomoto’s (1989) original formulation. We do so to better outline the 

connection between the HYBRID model and the subsequently introduced C-HYBRID 

model.  

 

The HYBRID Model 

One possibility to distinguish solution from guessing behaviour is to introduce a latent 

class variable 𝐶𝑖𝑗 that is allowed to vary between individuals and items. The value of 

𝐶𝑖𝑗 indicates whether individual i responds to item j by applying solution (𝐶𝑖𝑗 = 1) or 

random guessing behaviour (𝐶𝑖𝑗 = 0). This means that the component 𝑠𝑖𝑗  of Equation 

1 corresponds to the probability of person i belonging to the class 𝐶𝑖𝑗 = 1 when 
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working on item j, 𝑃(𝐶𝑖𝑗 = 1) = 𝑠𝑖𝑗 . Based on the latent class variable, we can define 

the success probabilities as  

𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 1) = 𝑟𝑖𝑗  ,

𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0) = 𝑔𝑗  .
 (2) 

The success probabilities under solution behaviour are represented by a 2PL model:  

𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 1) =
exp(𝛼𝑗𝜃𝑖 − 𝜈𝑗)

1 + exp(𝛼𝑗𝜃𝑖 − 𝜈𝑗)
 , (3) 

where 𝛼𝑗 is an item discrimination, 𝜈𝑗 is an item threshold parameter, and 𝜃 is the 

continuous proficiency variable. Thresholds can be converted to item difficulties as 

𝛽𝑗 = 𝜈𝑗 𝛼𝑗⁄ .  

Under guessing behaviour, the probability of a correct response corresponds to 

𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0) =
exp(−𝜈𝑗)

1 + exp(−𝜈𝑗)
 , (4) 

which means that the success probabilities under random guessing could be item-spe-

cific. Such differences might, for example, arise when multiple-choice items differ in 

their number of response options. Indeed, in the case of multiple-choice items, we 

propose fixing the 𝜈-parameters because random guessing implies a “blind” selection 

of response options (Rogers, 1999). For an item j with 𝐾𝑗 response options, the success 

probability under random guessing corresponds to 𝑔𝑗 = 1 𝐾𝑗⁄ , which implies a 𝜈-pa-

rameter (Equation 4) of 𝜈𝑗 = log(𝐾𝑗 − 1). 

In Yamomoto’s (1989) HYBRID model, class membership is handled in a determin-

istic way by introducing an individual’s specific switching point 𝐷𝑖  that indicates the 

item up to which the individual i has applied a solution strategy. The variable 𝐷 is 

integer valued in the range of 1 ≤ 𝐷 ≤ 𝐽, and is related to latent class membership as  

𝐶𝑖𝑗 = 1, if 𝐷𝑖 ≥ 𝑗 ,

𝐶𝑖𝑗 = 0, if 𝐷𝑖 < 𝑗 .
 (5) 

Equation 5 means that the value of 𝐷𝑖  refers to the last item in the sequence on which 

individual i has shown solution behaviour. At the minimum value of 𝐷𝑖 = 1 the indi-

vidual has started to guess after the first item, whereas at the maximum value of 𝐷𝑖 =
𝐽 the individual has shown solution behavior on all items. Because Equation 5 repre-

sents a deterministic assignment of individuals to the response modes, the switching 

point variable can by itself be considered as a between-individual latent class variable 

that replaces the within-individual latent class variable 𝐶𝑖𝑗  .  

A problem faced in applications of the HYBRID model stems from the large number 

of latent classes that make it necessary to estimate J – 1 latent class proportions. As a 

solution, Cao and Stokes (2008) applied a probability function to the distribution of 

𝐷 that allows the latent class proportions to be expressed as a function of two param-

eters. A second challenge in applications of the HYBRID model is the estimation of 
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the joint distribution of latent variables. Following the advice of Yamamoto and Ever-

son (1997), List, Robitzsch, Lüdtke, and Nagy (2017) specified 𝜃 to be linearly related 

to 𝐷 (i.e., the longer an individual exhibits solution behaviour, the higher or lower 

their proficiency is expected to be).  

 

The Continuous HYBRID Model 

The C-HYBRID model shares two assumptions of the HYBRID model, namely (1) 

the distinction between two types of response behaviour, and (2) the serial order of 

item responses. Our model builds upon the latent class variable 𝐶𝑖𝑗 (Equation 2) and 

describes the responses given under the two response modes as in the HYBRID model 

(Equations 3 and 4). The key difference to the HYBRID model is that we assume a 

stochastic relationship between class membership and switching points. To this end 

we introduce a continuous latent variable 𝛿 that represents individual differences in 

test-taking persistence. Formally, 𝛿𝑖 indicates the (switching) point in the test where 

individual i has an equal probability of showing either solution or guessing behaviour. 

The persistence variable 𝛿 is related to the probability of solution behavior as  

𝑃(𝐶𝑖𝑗 = 1) =
exp[𝜆(𝛿𝑖 − 𝑗)]

1 + exp[𝜆(𝛿𝑖 − 𝑗)]
 . (6) 

Equation 6 includes a discrimination parameter 𝜆 that relates the difference 𝛿𝑖 − 𝑗 to 

the probability of showing solution behavior. When 𝛿𝑖 = 𝑗, an equal chance of apply-

ing either a solution strategy or a guessing strategy to item j exists. For positive dif-

ferences 𝛿𝑖 − 𝑗 > 0, the probability of providing a solution-based response dominates, 

whereas in the opposite case of 𝛿𝑖 − 𝑗 < 0, the probability of an individual providing 

a random guess is higher. The parameter 𝜆 controls how quickly individuals are ex-

pected to switch from the solution to the guessing mode. Because the persistence var-

iable and the items’ positions are given on the same scale, 𝜆 has two interpretations, 

which do not contradict each other. First, for a fixed value of 𝛿, 𝜆 stands for the change 

in the log-odds of applying solution behaviour when moving from item j to the next 

item 𝑗 + 1. Second, for item j, 𝜆 represents the difference in the log-odds of working 

in the solution state for two individuals who differ by one unit in 𝛿. Therefore, we 

refer to 𝜆 as a parameter that refers to the process discrimination. 
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𝜆 = 0.2 𝜆 = 0.5 𝜆 = 2.0 

   

𝜆 = 0.2, 𝜈𝑗 = −1 𝜆 = 0.5, 𝜈𝑗 = −1 𝜆 = 2.0, 𝜈𝑗 = −1 

   

𝜆 = 0.2, 𝜈𝑗 = 0 𝜆 = 0.5, 𝜈𝑗 = 0 𝜆 = 2.0, 𝜈𝑗 = 0 
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𝜆 = 0.2, 𝜈𝑗 = 1 𝜆 = 0.5, 𝜈𝑗 = 1 𝜆 = 2.0, 𝜈𝑗 = 1 

   

 

 

Figure 1 

Upper panels: Probabilities of solution behavior by item position. Lower panels: Probabilities 

of correct response by item position. Examples for different levels of process discrimination 

(𝜆; columns) for easy, intermediate, and hard items (𝜈; rows). Probability curves for three 

different levels of proficiency (𝜃) and two levels of persistence (𝛿) 

 

 

When 𝜆 is large, almost all individuals with a value of 𝛿 slightly higher than j (for 

instance, 𝛿𝑖 = 𝑗 + 0.33) apply a solution strategy to item j and randomly guess the 

responses to all items that follow j. In this case, individuals are expected to suddenly 

switch from the solution-based response state to the guessing state (as assumed in the 

HYBRID model). In contrast, when 𝜆 is small, only a slightly higher proportion of the 

individuals with the aforementioned value of 𝛿 shows solution behaviour rather than 

guessing behaviour on item j, while for the following items, the proportion of guessed 

responses exceeds the proportion of solution-based responses. This means that, for a 

fixed level of 𝛿, the C-HYBRID model predicts the prevalence of guessed responses 

to increase over the course of the test without precluding solution-based responses in 

item positions higher than the individuals’ values of 𝛿. The upper panels in Figure 1 

exemplify the role of the process discrimination parameter 𝜆 by means of plots of the 

probabilities of solution behaviour for two levels of test-taking persistence 𝛿. Note 

that although item positions are discrete, the probabilities of providing a solution-

based response in each position are connected to highlight the logistic shape of their 

evolvement across positions. The value of 𝛿 describes the point over the course of a 

test at which solution behaviour is expected to occur with a probability of 0.5, whereas 

𝜆 represents the steepness of the curves at this point.  
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The C-HYBRID model states that, in the solution-based state, the probabilities of cor-

rect responses depend on the individuals’ proficiencies, 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 1) (Equation 

3) and that, in the guessing state, they correspond to the chance level of success, 

𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0) (Equation 4). Because the latent class variable is stochastically 

related to persistence (upper panels in Figure 1), the model implies that, for a given 

combination of 𝜃𝑖 and 𝛿𝑖, the probability of a correct response to item j is in between 

the values of 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 1) and 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0) (Equation 1). This issue is 

visualized in the lower panels in Figure 1, which include examples of the probabilities 

of correct responses for three levels of proficiency (𝜃), which are combined with two 

levels of persistence (𝛿). To highlight the key aspects, the panels refer to a situation 

where all item discriminations and item difficulties take the same values. As shown 

in Figure 1, 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 1) and 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0) are the boundary values of 

the probabilities of correct responses, the value of 𝛿 indicates the position in the test 

in which the probability lies exactly in the middle of the boundary values (Equation 

1), and the process discrimination parameter 𝜆 controls how quickly the boundary 

values are approached. As shown in the figure, this interpretation does not depend on 

the items’ difficulties. However, the items’ difficulties, together with the individuals’ 

proficiencies, determine the value of 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 1). For easy items, 𝑃(𝑌𝑖𝑗 =

1|𝐶𝑖𝑗 = 1) is larger than 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0) for almost all individuals. In this case, 

low levels of persistence imply declining solution probabilities over the course of the 

test for almost all individuals. In hard items, low persistence can be associated with 

increases in performance in individuals with low proficiencies because 𝑃(𝑌𝑖𝑗 =

1|𝐶𝑖𝑗 = 1) can be smaller than 𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0). Therefore, the C-HYBRID model 

appears to be more difficult to estimate in tests composed of many hard items. We 

investigated this issue in a simulation presented in the later parts of the article. 

Multilevel Mixture Model Specification in Mplus. IRT models can be formulated and 

estimated as multilevel models with item responses represented in a long format (e.g., 

Van den Noortgate, De Boeck, & Meulders, 2003). The item responses of each indi-

vidual i are stacked in a J × 1 vector 𝒚𝑖 and are regressed on J variables that indicate 

the items to which the responses in 𝒚𝑖 belong. The main effects of the item indicators 

represent item thresholds, and their interaction effects with the proficiency variable 

represent item discriminations. The multilevel setup can be extended to a MMM by 

the inclusion of an item-level latent class variable. Asparouhov and Muthén (2008) 

have shown how the 3PL model can be specified, and Pokropek (2016) has demon-

strated how item-level covariates can be used to predict latent class membership.  

The C-HYBRID model can be estimated on the basis of the typical MMM setup, for 

example, by using the Mplus software. However, in our experience, at least when the 

Mplus software is used, the inclusion of item indicators and their interactions drasti-

cally increases the computational burden and therefore leads to long estimation times. 

As a solution to this problem, we propose a rearrangement of the input data that avoids 

the use of item indicator variables. In our setup the item responses are organized in a 

diagonal format. Each individual i’s responses are represented in a matrix 𝒀𝑖 of order 
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J × J. The elements of this matrix are denoted as 𝑦𝑖𝑗𝑘, with missing responses in the 

off-diagonal entries (j  k). Individuals’ arrays of item responses are augmented by an 

additional column in which the item positions are coded (vector 𝒍𝑖). In order to avoid 

empirical identification problems arising from the fact that guessing behavior typi-

cally does not occur in the first positions of a test, we suggest treating the very last 

position J as the reference position (i.e., 𝑙𝑖𝐽 = 0), and expressing the remaining posi-

tions as 𝑙𝑖𝑗 = 𝐽 − 𝑗. Table A1, presented in Appendix A, provides an example of a 

data array for one individual. 

The next step is to accommodate the measurement Equations 3 and 4 to fit into the 

MMM framework. To this end, we specify the item parameters to be located on the 

item level (within-individual level), and the proficiency variable to be located on the 

(between) individual level. To this end, Equation 3 is modified to  

𝑃(𝑌𝑖𝑗𝑘 = 1|𝐶𝑖𝑗 = 1) =
exp(𝛼𝑘𝑤𝑖𝑗 − 𝜈𝑘)

1 + exp(𝛼𝑘𝑤𝑖𝑗 − 𝜈𝑘)
 ,  (7) 

where 𝛼𝑘 = 𝛼𝑗 and 𝜈𝑘 = 𝜈𝑗 for j = k , whereas Equation 4 is changed to  

𝑃(𝑌𝑖𝑗 = 1|𝐶𝑖𝑗 = 0) =
exp(𝛼̃𝑘𝑤𝑖𝑗 − 𝜈𝑘)

1 + exp(𝛼̃𝑘𝑤𝑖𝑗 − 𝜈𝑘)
 , (8) 

with 𝛼̃𝑘 = 0 for all k = 1, 2, …, J and 𝜈𝑘 = 𝜈𝑗 for j = k. 

In Equations 7 and 8, the terms 𝑤𝑖𝑗  stand for the individual i’s scores on a variable 

that is fully determined by a J × 1 unit vector 𝒖𝑖 with elements 𝑢𝑖𝑗 = 1: 

𝑤𝑖𝑗 = 𝜃𝑖𝑢𝑖𝑗  , (9) 

which means that the proficiency variable 𝜃 is represented by a random effect located 

at the between-individual level. In order to ensure model identification, we specify 𝜃 

to follow a standard normal distribution (𝜇𝜃 = 0 and 𝜎𝜃
2 = 1). 

In the MMM specification, latent class membership is modelled as  

𝑃(𝐶𝑖𝑗 = 1) =
exp(𝜏 + 𝜆𝑙𝑖𝑗 + 𝜁𝑖)

1 + exp(𝜏 + 𝜆𝑙𝑖𝑗 + 𝜁𝑖)
 ,  (10) 

where 𝜏 is a logistic regression intercept, and 𝜆 is a logistic regression weight that 

corresponds to the process-discrimination parameter of Equation 6. Finally, 𝜁𝑖  is a 

normally distributed individual-specific disturbance with mean of zero and variance 

𝜎𝜁
2. In our setup, 𝜃 and 𝜁 are specified to follow a bivariate normal distribution with 

zero mean vector and a partially structured covariance matrix: 

[
𝜃
𝜁
] ~𝐵𝑉𝑁 ([

0
0
] , [

1
𝜌𝜃,𝜁𝜎𝜁 𝜎𝜁

2]).  

Note that Equation 10 does not refer to the 𝛿-variable of Equation 6. It rather includes 

a rescaled version of 𝛿, which might be defined as 𝛿𝑖
∗ = 𝜏 + 𝜁𝑖 , such that 
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𝛿𝑖 = 𝐽 +
𝜏 + 𝜁𝑖

𝜆
. (11) 

Therefore, the estimates derived in the MMM can be converted to receive the mean 

and variance of the 𝛿-variable (Equation 6), with mean given by  

𝜇𝛿 = 𝐽 +
𝜏

𝜆
 ,  (12) 

and variance represented as 

𝜎𝛿
2 =

𝜎𝜁
2

𝜆2
.  (13) 

The C-HYBRID model can be estimated by marginal maximum likelihood (MML) 

via the expectation maximization (EM) algorithm. MML estimation follows from the 

procedures outlined by Vermunt (2003). The log-likelihood to be maximized is given 

by   

log 𝐿 = ∑ log 𝑃(𝒀𝑖|𝒍𝑖)

𝑁

𝑖=1

 . (14) 

As only the diagonal entries of 𝒀𝑖 include information, Equation 14 is equivalent to 

the log-likelihood expression in which item responses are represented in a J × 1 vector 

𝒚𝑖. Therefore, the likelihood of the data remains the same regardless how item re-

sponses are organized.  

The case-wise likelihood function provided by the C-HYBRID model can be written 

as 

𝑃(𝒀𝑖|𝒍𝑖) = ∫ ∫ [∏ 𝑃(𝑌𝑖𝑗 = 𝑦𝑖𝑗|𝑙𝑖𝑗 , 𝜃, 𝜁; 𝜳)

𝐽

𝑗=1

]

𝜁𝜃

𝑓(𝜃, 𝜁; 𝜳)𝑑𝜃𝑑𝜁 , (15) 

where 𝜳 refers to the collection of model parameters.  

Special Cases of the C-HYBRID Model. The C-HYBRID model assumes a positive 

process discrimination parameter (𝜆 > 0). When the 𝜆-parameter is zero, the persis-

tence variable is not defined (Equation 11), and in the case of a negative 𝜆-parameter, 

the 𝛿-variable would not match our interpretation of test-taking persistence (i.e., the 

probability of solution behaviour would increase over the course of the test). How-

ever, in the MMM setup presented, different special cases of the C-HYBRID model 

can be formulated by imposing specific parameter constraints. 

First, as already explicated, the C-HYBRID model includes the 2PL model as a special 

case. The 2PL model can be deduced by fixing the 𝜈-parameters (Equation 8) to an 

arbitrary value, the process discrimination to 𝜆 = 0, the variance and the covariance 

of the disturbance to 𝜎𝜁
2 = 𝜌𝜃,𝜁𝜎𝜁  = 0, and the logistic intercept to a large positive 

value, such as 𝜏 = 30 (Equation 10). These restrictions imply that all responses reflect 

solution behaviour.  
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Second, when the 𝜆-parameter is fixed to a very high positive value, the C-HYBRID 

model becomes similar to Yamamoto’s (1989) HYBRID model in the sense that 

switches from solution to guessing behaviour can be considered to be deterministic 

(Figure 1). However, this version of the HYBRID model assumes a bivariate normal 

joint distribution of proficiency and switching points to guessing behaviour, whereas 

in typical applications of the HYBRID model, different distributional assumptions are 

imposed (e.g., List et al., 2017).  

Third, when 𝜆 is fixed to zero, when the variance of 𝜁 is fixed to a very large value, 

and when the covariance 𝜌𝜃,𝜁𝜎𝜁  is fixed to zero, the item-level latent class variable 𝐶 

is essentially turned into a between-individual latent class variable (Asparouhov & 

Muthén, 2008). In this model a subset of individuals is expected to show solution 

behaviour on all items, whereas a second group is expected to guess all responses. 

This model reflects a 2PL version of the guessing mixture model of Mislevy and Ver-

helst (1990). An interesting variant of this model arises when the (co-)variance struc-

ture of 𝜁 is freely estimated. In this case, 𝜁 governs individual differences in the pro-

pensity of guessing any item in the test. 

Fourth, when the variance of the individual-level component 𝜁 (including 𝜌𝜃,𝜁𝜎𝜁) is 

fixed to zero, the model turns into a constrained variant of the four-parameter logistic 

model (4PL; Barton & Lord, 1981). Referring to Equation 1, the lower probability 

asymptote of a correct response is given by (1 − 𝑠𝑗)𝑔𝑗, whereas the upper asymptote 

corresponds to 𝑠𝑗 + (1 − 𝑠𝑗)𝑔𝑗. When 𝜆 is different from zero, the 𝑠-terms have a 

logistic relationship with item positions. 

Taken together, the MMM framework in which the C-HYBRID model is specified is 

flexible, as it allows a variety of models that appear as special cases to be specified. 

Not all special models are substantively appealing in every application but the con-

strained models might serve as a statistical benchmark that could be used to scrutinize 

the C-HYBRID model. 

 

 

A Simulation Study 

The main goal of the simulation study was to examine the C-HYBRID model’s capa-

bility of recovering the data-generating parameters in a variety of conditions that are 

likely to be encountered in practice (different sample sizes, levels of test difficulty, 

and proportions of guessed responses). In order to keep the simulation manageable, 

we decided to focus on the bias and the accuracy of parameter estimates, including 

the item parameters, the parameters pertaining to the persistence variable (i.e., process 

discrimination parameter 𝜆, and the mean and the variance of the 𝛿-variable), and the 

relationships of test-taking persistence with proficiency and a covariate. We did not 

evaluate the accuracy of the standard errors and the inferences based on them (e.g., 

coverage rates). This endeavour would have required a much larger number of repli-

cations, each involving additional and time-consuming computational effort to 
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calculate the standard errors. Given the large number of conditions, the additional 

burden could not be handled with the available resources. 

The second goal of the simulation was to study the impact of neglecting guessing 

behaviour by using a misspecified 2PL model. We chose the 2PL model for two rea-

sons. First, this model is probably the IRT model most commonly used in large-scale 

assessments. Therefore, evaluating the robustness of the 2PL model’s results in face 

of guessing behaviour is also of substantive interest. Second, the 2PL model is a nat-

ural competitor to the C-HYBRID model, as it is a special case of it. For this reason, 

we also examined whether the models can be distinguished on the basis of the Bayes-

ian information criterion (BIC), which has been recommended to evaluate (multilevel) 

mixture IRT models (Li, Cohen, Kim, & Cho, 2009; Sen, Cohen, & Kim, 2019).  

We assumed a multiple-choice test with five response options per item, such that the 

probability of randomly guessing the correct response was 𝑔𝑗 = .20 for all items. In 

line with our former arguments, we fixed the parameter 𝜈𝑗 (Equation 4) to result in the 

theoretical success probability under random guessing [i.e., 𝜈𝑗 = log(5 − 1) for all j 

= 1, 2, …, J]. An example of an Mplus input file that includes one covariate is pro-

vided in the Appendix B.  

 

 

Low Persistence  

(15% Guessed Responses) 

Intermediate Persistence  

(10% Guessed Responses) 

High Persistence  

(5% Guessed Responses) 

   

 

Figure 2 

Evolvement of solution behaviour by percentiles of persistence as specified in the simulation 

study in conditions reflecting low, intermediate, and high persistence. 

 

 

We simulated data reflecting 18 different conditions with R = 100 replications per 

condition in a test consisting of J = 40 items. The first factor manipulated was the 

level of test-taking persistence. We specified three different scenarios in which ap-

proximately 15%, 10%, and 5% of item responses were guessed in the total sample. 
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To this end we set the mean of the 𝛿-variable to 𝜇𝛿 = 40.0, 45.5, and 51.0, respectively. 

The standard deviation of the 𝛿-variable was set to 𝜎𝛿  = 16, and the process discrim-

ination was set to 𝜆 = 0.3 in all conditions. Figure 2 presents the progression of solu-

tion behaviour used in this simulation.  

The second factor manipulated was the difficulty of the test. Here, we specified tests 

with average item difficulties of 𝛽̅ = −0.5, 0.0, and 0.5 (easy, intermediate, and hard). 

Item difficulties were drawn from a standard normal distribution in the intermediate-

difficulty condition and were then shifted upward and downward in the remaining two 

conditions. Item discriminations were drawn from a uniform distribution and were set 

to be invariant across conditions. We manipulated the difficulty factor because it is 

plausible that test-taking persistence is better identified in relatively easy tests. In such 

cases, the change from solution to guessing behaviour is accompanied by stronger 

performance declines (Figure 1). The data-generating item parameter values are given 

in Table 1. 

The third factor manipulated was sample size. We considered two scenarios with N = 

1,000 and N = 2,000. These sample sizes are rather small for typical large-scale as-

sessments.  

The correlations between the proficiency variable 𝜃, the persistence variable 𝛿, and 

the covariate 𝑥 were set to 𝜌𝜃,𝛿  = 0.4, 𝜌𝜃,𝑥 = 0.3, and 𝜌𝛿,𝑥 = 0.4, respectively. These 

variables were repeatedly (i.e., R = 100 times) sampled from a multivariate normal 

distribution and were used to generate item responses with success probabilities as 

represented in the C-HYBRID model. Within each condition, the C-HYBRID model 

was estimated two times: one time without the inclusion of the covariate, and one time 

in which the covariate was included in the model. The data-generating population val-

ues were used as starting values in the simulation without considering multiple ran-

dom starting values, as it is common practice when fitting mixture models (Lubke & 

Muthén, 2005). Our decision to do so was motivated by our desire to save computa-

tional time. In a number of replications, we checked whether our procedure coincided 

with the results obtained by using multiple starting values, and found this to be the 

case. 

All parameter estimates 𝜓̂ were examined with respect to average bias, defined as  

𝐵𝑖𝑎𝑠(𝜓) =
∑ (𝜓̂𝑟 − 𝜓)𝑅

𝑟=1

𝑅
 , (16) 

and with respect to the root mean square error (RMSE): 

𝑅𝑀𝑆𝐸(𝜓) = √∑ (𝜓̂𝑟 − 𝜓)
2𝑅

𝑟=1

𝑅
 . (17) 
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Table 1 

Population Values of Item Parameters used in the Simulation Study by Level of Test Difficulty 

(Easy, Intermediate, and Hard). 

 

 All 

Tests 

Easy 

Test 

Interm. 

Test 

Hard 

Test 

 All 

Tests 

Easy 

Test 

Interm. 

Test 

Hard 

Test 

Item 𝛼𝑗 𝛽𝑗 𝛽𝑗 𝛽𝑗 Item 𝛼𝑗 𝛽𝑗 𝛽𝑗 𝛽𝑗 

1 0.61 -0.85 -0.35 0.15 21 0.54 -2.01 -1.51 -1.01 

2 1.18 1.01 1.51 2.01 22 1.05 -0.92 -0.42 0.08 

3 0.75 0.38 0.88 1.38 23 0.62 -2.25 -1.75 -1.25 

4 0.88 -0.28 0.22 0.72 24 1.12 1.66 2.16 2.66 

5 1.41 -1.70 -1.20 -0.70 25 1.22 -0.59 -0.09 0.41 

6 0.75 -1.21 -0.71 -0.21 26 0.90 -1.84 -1.34 -0.84 

7 1.41 0.48 0.98 1.48 27 1.37 0.58 1.08 1.58 

8 1.32 -2.66 -2.16 -1.66 28 0.87 -0.66 -0.16 0.34 

9 1.01 -1.29 -0.79 -0.29 29 0.51 -0.22 0.28 0.78 

10 0.82 -0.78 -0.28 0.22 30 1.36 -1.13 -0.63 -0.13 

11 0.68 0.06 0.56 1.06 31 0.83 -1.06 -0.56 -0.06 

12 1.18 -1.58 -1.08 -0.58 32 0.95 -0.99 -0.49 0.02 

13 0.76 1.25 1.75 2.25 33 1.10 -0.53 -0.03 0.47 

14 1.05 0.29 0.79 1.29 34 1.36 -1.48 -0.98 -0.48 

15 0.51 -0.47 0.03 0.53 35 0.97 0.84 1.34 1.84 

16 1.20 -0.34 0.16 0.66 36 1.44 0.70 1.20 1.70 

17 0.66 -0.15 0.35 0.85 37 0.98 -0.08 0.42 0.92 

18 1.27 -0.72 -0.22 0.28 38 1.46 -1.38 -0.88 -0.38 

19 0.78 -0.41 0.09 0.59 39 0.55 0.21 0.71 1.21 

20 1.25 0.13 0.63 1.13 40 1.07 -0.02 0.49 0.99 

 

Note. αj = Item discriminations, βj = Item difficulties (βj = νj αj⁄ ). 

 

 

To study the impact of neglecting guessing behaviour on the individuals’ proficiency 

estimates, we compared the proficiencies implied by the 2PL model with the popula-

tion distribution that was simulated to be in accordance with the C-HYBRID model. 

To this end, we sampled N = 100,000 proficiency and persistence scores (𝜃 and 𝛿) 

from a bivariate normal distribution as specified in each simulation condition (i.e., 

three persistence levels times three test-difficulty levels). For each individual combi-

nation of 𝜃𝑖 and 𝛿𝑖, we then estimated the proficiency score expected for the 2PL 

model, 𝜃̂𝑖2𝑃𝐿 , by minimizing the loss function 
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∑{logit[𝑃(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝛿𝑖)] −  logit[𝑃(𝑌𝑖𝑗 = 1|𝜃̂𝑖2𝑃𝐿)]}
2

𝐽

𝑗=1

, (18) 

where 𝑃(𝑌𝑖𝑗 = 1|𝜃𝑖 , 𝛿𝑖) was defined on the basis of the population values of the C-

HYBRID model. In contrast, 𝑃(𝑌𝑖𝑗 = 1|𝜃̂𝑖2𝑃𝐿) was based on the average parameter 

estimates given by the 2PL model at a sample size of N = 2,000. As the values of 𝜃̂𝑖2𝑃𝐿 

were not on the metric of the original 𝜃-variable, the estimates 𝜃̂𝑖2𝑃𝐿  were equated to 

the metric of 𝜃 by utilizing a quadratic loss function of the form 

∑{logit[𝑃(𝑌𝑖𝑗 = 1|𝜃̂𝑖2𝑃𝐿)] −  logit[𝑃(𝑌𝑖𝑗 = 1|𝜃̂𝑖2𝑃𝐿
∗ )]}

2

𝐽

𝑗=1

, (19) 

where 𝑃(𝑌𝑖𝑗 = 1|𝜃̂𝑖2𝑃𝐿) was derived on the basis of Equation 18, and 𝑃(𝑌𝑖𝑗 =

1|𝜃̂𝑖2𝑃𝐿
∗ ) was based on the population values of the item difficulties and discrimina-

tions. This procedure allowed us to derive values of 𝜃̂2𝑃𝐿
∗  that were on the same metric 

as the original 𝜃-variable. Differences between the means and dispersions of 𝜃̂2𝑃𝐿
∗  and 

the population values (0 and 1) estimate the bias in estimated population means and 

dispersions that is caused by the misspecification of the 2PL model. 

 

Results 

Convergence and Separability from the 2PL Model. All models converged. However, 

for the C-HYBRID model in the easy-test conditions at a sample size of N = 1,000, 

six replications provided anomalous item parameter estimates for one item with a very 

low difficulty, which indicated that virtually all individuals who employed a solution 

strategy provided correct responses. These results reflected empirical identification 

problems rather than shortcomings of the C-HYBRID model. Therefore, the six rep-

lications were replaced with new draws. In all replications, within each of the 18 con-

ditions, the BIC was in favor of the C-HYBRID model (results available upon re-

quest). 

Item Parameter Estimates. Figures 3 and 4 provide displays of the bias and RMSEs 

of the item discriminations (Figure 3) and the item difficulties (Figure 4) derived from 

the C-HYBRID and the 2PL models. In the C-HYBRID model, item bias did not ex-

ceed |10%| in any condition, whereas the item parameters taken from the 2PL model 

were strongly biased. In the case of the discrimination parameters (Figure 2), some 

estimates for items with large population parameters located near to the end of the test 

provided by the C-HYBRID model were associated with somewhat higher levels of 

bias in the easy-test-low-persistence condition at a sample size of N = 1,000. In the 

case of the 2PL model, bias was not affected by sample size, but was found to be 

related to the level of persistence and test difficulty. Interestingly, the more difficult 

the test was, the more discrimination parameters on average were underestimated by 

the 2PL model.  
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In the case of the C-HYBRID model, the precision of the discrimination parameter 

estimates appeared to be a function of the number of solution-based responses. As 

such, RMSEs decreased at higher levels of persistence and in the larger samples. In 

the 2PL model, precision appeared to mainly reflect the degree of model misspecifi-

cation. In the 2PL model, RMSEs decreased at higher levels of persistence but were 

not affected by sample size. 

In the case of the item difficulty estimates, the results were as follows (Figure 4). The 

C-HYBRID model provided essentially unbiased results in all conditions, whereas the 

2PL model resulted in positively biased estimates. Here, item difficulties were on av-

erage overestimated, whereas the degree of bias depended on the degree of model 

misspecification. The results for the precision of estimates, as measured by the RMSE 

statistic, mirrored the results for the discrimination parameters. In the C-HYBRID 

model, RMSEs decreased as a function of the number of solution-based responses, 

which means that they decreased at higher levels of persistence and in a larger sample 

size. In the 2PL model, precision depended almost solely on the degree of model mis-

specification.   
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Figure 3 

Bias and RMSEs of item discriminations estimated by the C-HYBRID and 2PL models in 

tests of different difficulty, with different sample sizes (N), and different rates of guessing 

behavior (PG). 
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Figure 4 

Bias and RMSEs of item difficulties estimated by the C-HYBRID and 2PL models in 

tests of different difficulty, with different sample sizes (N), and different rates of 

guessing behavior (PG). 
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Assessment of Test-Taking Persistence. We now turn to the C-HYBRID model’s ca-

pability of recovering the process discrimination parameter 𝜆, the means and standard 

deviations of the 𝛿-variable, 𝜇𝛿 and 𝜎𝛿 , and its correlation with proficiency, 𝜌𝜃,𝛿 . As 

can be seen in Table 2, the parameter estimates were essentially unbiased in all con-

ditions. The precision of the estimates, as measured by the RMSE, appeared to depend 

on the number of items solved under guessing behavior. The RMSEs of all parameters 

were smaller when test persistence was on average low and sample size was large.  

Covariate Relationships. Here, we report the results derived on the basis of models 

that were augmented by a covariate. The inclusion of the covariate had a negligible 

effect on the item parameter estimates of the C-HYBRID model, and the precision of 

the estimates improved only slightly by adding the extra information (results available 

upon request). 

Table 3 reports the bias and RMSE statistics of the correlations with the covariate. 

The results obtained by the C-HYBRID model were unbiased. The precision of the 

correlation of persistence with the covariate depended to some degree on the amount 

of guessing behavior and the sample size, such that the precision was higher the more 

responses were guessed. The precision of this correlation also depended on test diffi-

culty, with higher precision being found in easier tests. In the case of the correlation 

of proficiency with the covariate, the precision as measured by the RMSE was only 

affected by sample size.  

The results provided in Table 3 demonstrate that when the 2PL model was used, the 

relationships of proficiency with the covariate were positively biased in certain con-

ditions. The bias and RMSE statistics were affected by the degree of persistence and 

the difficulty of the test. In easy tests, the relative bias reached or even exceeded 20% 

at intermediate or low levels of persistence (10% and 15% guessed responses), and 

was still over 10% in situations with higher test persistence (5% guessed responses). 

In tests of intermediate difficulty, the relative bias was about 20% in conditions where 

15% of the items were guessed, and exceeded 10% at intermediate levels of guessing 

(10% guessed responses). Finally, in hard tests, only conditions with a low level of 

test persistence revealed nonnegligible biases (relative bias greater than 10%). 
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Table 2 

Bias and RMSE of Estimates of Process Discrimination (𝜆), Mean Persistence (𝜇𝛿), Standard 

Deviation of Persistence (𝜎𝛿), and Correlation of Persistence and Proficiency (𝜌𝜃,𝛿). 

 
 Easy Test  Intermediate Test  Hard Test  

 Bias RMSE Bias RMSE Bias RMSE 

15% Guessed Responses; N = 1,000 

𝜆 0.00 0.03 0.01 0.04 0.01 0.05 

𝜇𝛿 0.06 1.18 0.24 1.64 0.18 2.54 

𝜎𝛿 −0.08 1.14 −0.09 1.49 −0.09 1.78 

𝜌𝜃,𝛿 0.00 0.06 −0.01 0.07 −0.01 0.08 

15% Guessed Responses; N = 2,000 

𝜆 0.00 0.02 0.00 0.03 0.01 0.04 

𝜇𝛿 −0.21 0.86 0.11 1.14 −0.02 1.35 

𝜎𝛿 −0.20 0.79 0.00 0.91 −0.11 0.94 

𝜌𝜃,𝛿 0.01 0.05 0.00 0.05 0.00 0.06 

10% Guessed Responses; N = 1,000 

𝜆 0.01 0.04 0.02 0.07 0.02 0.07 

𝜇𝛿 0.32 1.38 0.42 2.01 0.65 3.52 

𝜎𝛿 0.07 1.33 0.09 1.84 0.40 2.55 

𝜌𝜃,𝛿 −0.01 0.07 −0.01 0.07 −0.02 0.10 

10% Guessed Responses; N = 2,000 

𝜆 0.00 0.03 0.01 0.05 0.01 0.05 

𝜇𝛿 0.08 0.92 0.44 1.45 0.67 2.19 

𝜎𝛿 −0.01 0.79 0.25 1.11 0.59 1.74 

𝜌𝜃,𝛿 0.00 0.04 −0.01 0.05 −0.01 0.06 

5% Guessed Responses; N = 1,000 

𝜆 0.01 0.05 0.02 0.09 0.03 0.08 

𝜇𝛿 0.23 1.63 0.26 2.24 −0.01 3.73 

𝜎𝛿 −0.09 1.59 −0.12 1.87 −0.39 2.48 

𝜌𝜃,𝛿 0.00 0.07 0.00 0.08 0.00 0.09 

5% Guessed Responses; N = 2,000 

𝜆 0.00 0.04 0.01 0.06 0.02 0.07 

𝜇𝛿 0.14 0.96 0.26 1.35 0.11 2.26 

𝜎𝛿 0.03 0.88 0.12 1.12 −0.13 1.61 

𝜌𝜃,𝛿 0.00 0.04 0.00 0.05 0.01 0.06 
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Table 3 

Bias and RMSE of Estimated Covariate Correlations with Proficiency (𝜌𝜃,𝑥) and Persistence 

(𝜌𝛿,𝑥) in the C-HYBRID (CH) Model and the 2PL Model (2PL). 

 

 Easy Test  Intermediate Test  Hard Test  

 Bias RMSE Bias RMSE Bias RMSE 

15% Guessed Responses; N = 1,000 

𝜌𝛿,𝑥 (CH) 0.00 0.04 0.00 0.05 0.00 0.05 

𝜌𝜃,𝑥 (CH) 0.00 0.04 0.00 0.04 0.00 0.04 

𝜌𝜃,𝑥 (2PL) 0.07 0.08 0.06 0.06 0.04 0.05 

15% Guessed Responses; N = 2,000 

𝜌𝛿,𝑥 (CH) 0.00 0.03 0.00 0.03 0.00 0.04 

𝜌𝜃,𝑥 (CH) 0.00 0.02 0.00 0.02 0.00 0.02 

𝜌𝜃,𝑥 (2PL) 0.07 0.08 0.06 0.06 0.04 0.04 

10% Guessed Responses; N = 1,000 

𝜌𝛿,𝑥 (CH) 0.00 0.05 −0.01 0.06 0.00 0.07 

𝜌𝜃,𝑥 (CH) 0.00 0.04 0.00 0.03 0.00 0.04 

𝜌𝜃,𝑥 (2PL) 0.06 0.06 0.04 0.05 0.02 0.04 

10% Guessed Responses; N = 2,000 

𝜌𝛿,𝑥 (CH) 0.00 0.03 −0.01 0.04 0.00 0.04 

𝜌𝜃,𝑥 (CH) 0.00 0.02 0.00 0.02 0.00 0.02 

𝜌𝜃,𝑥 (2PL) 0.06 0.06 0.04 0.04 0.02 0.03 

5% Guessed Responses; N = 1,000 

𝜌𝛿,𝑥 (CH) 0.00 0.07 −0.01 0.08 0.00 0.09 

𝜌𝜃,𝑥 (CH) 0.00 0.04 0.00 0.03 0.00 0.04 

𝜌𝜃,𝑥 (2PL) 0.03 0.05 0.02 0.04 0.01 0.03 

5% Guessed Responses; N = 2,000 

𝜌𝛿,𝑥 (CH) 0.00 0.04 0.00 0.05 0.00 0.06 

𝜌𝜃,𝑥 (CH) 0.00 0.02 0.00 0.02 0.00 0.02 

𝜌𝜃,𝑥 (2PL) 0.03 0.04 0.02 0.03 0.01 0.02 

 

 

Proficiency Estimates in the 2PL Model. The means and standard deviations of the 

equated proficiencies 𝜃2𝑃𝐿
∗  (Equations 18 and 19) are reported in Table 4. The degree 

of test-taking persistence affected the means most strongly in the easy-test conditions. 

Here, proficiency means were most strongly underestimated in the presence of a high 

proportion of guessed responses. In hard tests, means were almost unaffected by per-

sistence. Standard deviations showed a different relationship. Here, the impact of test-

taking persistence was strongest in the hard-test conditions and rather negligible in 

the easy-test conditions.  
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Table 4 

Means and Standard Deviations of Proficiencies Expected in the 2PL Model (𝜃2𝑃𝐿
∗ ) by Test 

Difficulty and Level of Test-Taking Persistence (Percentage of Guessed Responses). 

 

 Easy Test  Intermediate Test  Hard Test  

 M (SD) M (SD) M (SD) 

15% Guessed Responses −0.21 (0.96) −0.12 (0.91) −0.02 (0.87) 

10% Guessed Responses −0.14 (0.97) −0.07 (0.94) 0.00 (0.90) 

5% Guessed Responses −0.06 (0.98) −0.03 (0.96) 0.01 (0.94) 

 

 

These results were not unexpected. Guessing is more likely to reduce test performance 

in easy tests than in hard tests because, in easy tests, even individuals with low profi-

ciencies reduce their success probabilities when they guess. This pattern does not hold 

in hard tests because individuals with low proficiencies might even increase their suc-

cess probabilities when they guess. Therefore, means can be expected to be most 

strongly underestimated in easy tests where a large proportion of individuals guess. 

However, in the case of dispersions, the effect is reversed. In hard tests, individuals 

with low proficiencies are likely to improve their test score by guessing, so that indi-

vidual differences in proficiency become blurred.  

 

Summary 

The results of the simulation study provided support for the C-HYBRID model. In the 

conditions studied, the model provided reasonable levels of parameter recovery even 

in samples of N = 1,000 cases and in relatively difficult tests. The C-HYBRID model 

was reliably separated from the 2PL model and prevented biases in item parameter 

estimates that occurred in the 2PL model. In addition, the C-HYBRID model appeared 

as a useful tool for studying the relationships of test-taking persistence with profi-

ciency and other individual covariates. Therefore, the simulation study indicates the 

C-HYBRID model’s potential (1) to examine the prevalence of suboptimal levels of 

test-taking persistence, (2) to study the impact of test-taking persistence on the esti-

mates of item parameters, covariate relationships, and individual proficiencies, and 

(3) to assess the relationships of individual differences in persistence with proficiency 

and covariates. 
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An Empirical Application of the C-HYBRID Model 

In this section we demonstrate the C-HYBRID model’s feasibility on the basis of real 

data. To this end, we compared the results obtained by the C-HYBRID model when 

it was applied to two test forms assessing proficiency in science. Both test forms were 

administered to students from the same population, whereby students were randomly 

assigned to the test forms. If the C-HYBRID model assessed the essence of test-taking 

persistence adequately, it should provide similar estimates of parameters pertaining to 

the persistence variable in each test form.  

The data was taken from the KESS 7 study (Kompetenzen und Einstellungen von 

Schülerinnen und Schülern an Hamburger Schulen zu Beginn der Jahrgangsstufe 7 

[Competencies and attitudes of pupils at Hamburg schools at the start of Grade 7]; 

Bos, Bonsen, & Gröhlich, 2009), which is a low-stakes assessment of seventh-grade 

students conducted in Hamburg (Germany). The school structure in Hamburg is com-

posed of different secondary school tracks, with academic track students typically 

achieving the highest scores in standardized tests (e.g., Maaz, Trautwein, Lüdtke, & 

Baumert, 2008). As the curriculum in the academic track differs in many respects 

from the curriculum in nonacademic tracks (e.g., Baumert, Stanat, & Watermann, 

2006), academic track students were excluded. In addition, we included only students 

who had completed a cognitive ability measure that was based on figural analogies 

tasks (Heller & Perleth, 2000); this measure was used as a covariate. The sample sizes 

for test forms A and B were NA = 2,008 and NB = 1,858, respectively. The groups that 

responded to the different test forms did not differ in the distribution of nonacademic 

school tracks and cognitive ability.  

Both test forms comprised 38 multiple-choice items, each with four response options. 

Of these items, 19 items were included in both test forms in the same positions (6 to 

24). Prior to the analyses, we subjected all items to a conventional 2PL model. Based 

on the results, we eliminated three items with discrimination parameters near to zero 

from the test. One item was common to both test forms, and two items were specific 

to test form A. In the main analyses, we fitted a 2PL model, as well as a C-HYBRID 

model (with success probability under guessing behavior fixed to 𝑔𝑗 = 0.25 for all j = 

1, 2, …, J items) separately to each test form. Both models included the cognitive 

ability measure as a covariate that was allowed to correlate with all latent variables. 

We employed multiple starting values to check whether the best log-likelihood value 

could be replicated. This was the case for both test forms.  

The main question was whether the C-HYBRID model that was fitted separately to 

each test form provided similar estimates of parameters related to the persistence var-

iable. This research question was evaluated on the basis of Wald-𝜒2 tests that were 

used to compare the estimates of the process discrimination parameters (𝜆), of the 

means and standard deviations of the persistence variable (𝜇𝛿 and 𝜎𝛿), as well as of 

the correlations of persistence with proficiency and cognitive ability (𝜌𝜃,𝛿  and 𝜌𝛿,𝑥). 

These analyses were supplemented by a C-HYBRID model that was fitted to the com-

bined sample (NA+B = 3,866). This model not only assumed that the (joint) distribution 
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of the persistence variable was unrelated to the test form, but also that the item pa-

rameters of the common items were invariant across test forms. 

 

Results 

Judged on the information criteria, the C-HYBRID model provided a better fit than 

the 2PL model to both test forms (Table 5). In addition, the C-HYBRID model pro-

vided similar results for both test forms. 

 

 

Table 5 

Model-Data Fit of 2PL and C-HYBRID Models Fitted Separately and Jointly to the Test 

Forms of the Science Test. 

 

 # Par. LL AIC BIC SBIC 

Test Form A      

2PL 73 -44486.04 89118.1 89527.2 89295.3 

C-HYBRID 78 -44423.61 89003.2 89440.4 89192.6 

Test Form B      

2PL 77 -43284.32 86722.6 87148.2 86903.6 

C-HYBRID 82 -43195.72 86555.4 87008.7 86748.2 

Combined Sample      

C-HYBRIDA 160 -87619.33 175558.7 176560.3 176051.8 

C-HYBRID (Invariant)B 116 -87637.14 175506.3 176232.4 175863.8 

 

Note. LL = Model log likelihood, AIC = Akaike information criterion, BIC = Bayesian infor-

mation criterion, SBIC = Sample size adjusted BIC, A = The log-likelihood value corresponds 

to the sum of C-HYBRID models fitted separately to each test form, B = The model assumes 

full invariance of common item parameters and the joint distribution of the proficiency, persis-

tence, and cognitive ability variables.  

 

 

The results indicated that, in both test forms, a substantive number of item responses 

reflected guessing behavior (Form A: 16%, Form B: 14%). As shown in Table 6, the 

estimates of the 𝜆-parameters, of the means and dispersions of the 𝛿-variable, as well 

as of the relationship of 𝛿 with proficiency and cognitive ability were similar across 

samples, and no estimate differed significantly between test forms. The results indi-

cated (1) that the probabilities of providing solution-based responses decreased 

smoothly over the course of the test (𝜆-parameters relatively close to zero), and (2) 

that many students did not show low test-taking persistence (means of 𝛿 larger than 

the number of items), although (3) there were clear individual differences in the de-

gree of test-taking persistence (reliable variability in 𝛿). In addition, the results 

showed (4) that students with higher proficiency tended to be more persistent (positive 



The Continuous HYBRID IRT Model     
385 

correlations of 𝛿 with proficiency), and (5) that the same relationship held for cogni-

tive ability (positive correlations of 𝛿 with cognitive ability). 

 

 

Table 6 

Parameter Estimates Taken from C-HYBRID Models Fitted Separately to Test Forms A and 

B, Wald-𝜒2 Test Statistic (df = 1) of Comparison of Separately Estimated Parameters, and 

Parameter Estimates Based on a Fully Invariant C-HYBRID Model Fitted Simultaneously to 

Both Test Forms. 

 

 Test Form A  Test Form B  Compari-

son 

 Joint Estimates  

 Est. (SE) Est. (SE) Wald-𝜒2 Est. (SE) 

𝜆 0.12 (0.02) 0.15 (0.03) 0.83 0.14 (0.01) 

𝜇𝛿 43.99 (3.42) 44.54 (3.69) 0.01 44.40 (1.83) 

𝜎𝛿
A 16.51 (2.27) 16.29 (2.19) 0.01 16.20 (1.36) 

𝜌𝜃,𝛿 0.47 (0.11) 0.37 (0.16) 0.30 0.40 (0.07) 

𝜌𝛿,𝑥 0.24 (0.05) 0.19 (0.05) 0.37 0.20 (0.03) 

𝜌𝜃,𝑥 0.48 (0.03) 0.44 (0.03) 1.12 0.46 (0.02) 

 

Note. A = Comparison of dispersions was carried out on the basis of the standard errors of the 

logarithms of the variance estimates [log(𝜎̂𝛿
2)]. 

 

 

The invariance of results was further supported by a C-HYBRID model that was fitted 

to the combined data. As shown in Table 5, the model fitted to the combined data set 

did not result in a decrement of fit as compared to the overall fit derived on the basis 

of the test-form-specific C-HYBRID models (information criteria derived on the basis 

of the sum of the log-likelihood values of the models fitted separately to each test 

form). The joint model provided more favorable values of information criteria, and 

did not result in a statistically significant decrement of fit as judged on the basis of a 

likelihood-ratio test [𝜒2(df = 44) = 35.61, p = .812]. As expected, the estimates per-

taining to the persistence variable were very close to the estimates derived on the basis 

of the test-form-specific C-HYBRID models (Table 5).  

The upper left panel of Figure 5 provides a graphical description of the evolvement of 

solution behavior as predicted by the C-HYBRID model fitted to the full sample (dis-

plays for various percentiles of the distribution of the 𝛿-variable). A sizable proportion 

of students were expected to show an early reduction in solution behavior. The lower 

left panel in Figure 5 compares the item threshold parameters provided by the 2PL 

model with the estimates derived by the C-HYBRID model. As expected, the more 

closely the items were located towards the end of the test, the more different the 
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parameters provided by the two models were. For these items, most estimates were 

lower in the C-HYBRID model, thereby indicating that the 2PL model might overes-

timate the difficulty of items located in later parts of the test (see also Figure 4). The 

lower right panel of Figure 5 compares the item discriminations provided by the 2PL 

and the C-HYBRID models. The estimates for the items located in the first half of the 

test (Positions 1 to 17) were in good agreement, whereas the estimates for the items 

presented later in the test diverged. This finding is again in accordance with the find-

ings of the simulation study (Figure 3).  

Finally, the upper right panel of Figure 5 compares the proficiency estimates (EAP 

scores) derived on the basis of the 2PL and the C-HYBRID models. Here, proficiency 

estimates from the 2PL model were equated to the metric of the C-HYBRID model 

(Equation 19). Proficiency estimates for students whose persistence was estimated to 

be high showed a high correspondence, but proficiency estimates for students with 

lower levels of persistence were estimated to be lower in the 2PL model. As such, the 

2PL model provided, on average, lower proficiency estimates. Because of the positive 

relationship of proficiency and persistence (Table 6), the systematic discrepancy was 

especially pronounced in students with lower achievement. Again, this finding was in 

line with the results of the simulation study that showed that proficiencies were un-

derestimated by the 2PL model in easy tests (Table 4).  

 

Summary 

The application documented the usefulness of the C-HYBRID model in low-stakes 

assessments. The model provided a strong indication that the performance declines 

were in line with the proposed conceptualization of test-taking persistence. In addi-

tion, the application provided some evidence for the robustness of the C-HYBRID 

model because the estimates pertaining to the persistence variable showed a good 

agreement between two test forms, and the pattern of results referring to the differ-

ences between the 2PL and the C-HYBRID model were well in line with the results 

of the simulation study. The findings once again document that the estimates for items 

located nearer to the end of a test might be biased when a significant proportion of 

individuals start to guess item responses (e.g., Oshima, 1994). 
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Evolvement of Solution Behaviour Proficiency Estimates 

  

Estimates of Item Thresholds Estimates of Item Discriminations 

 

 

 
Figure 5 

Evolvement of solution behavior by percentiles of persistence (upper left panel), comparison 

of proficiency estimates derived by the C-HYBRID and the 2PL model by levels of estimates 

of persistence (upper right panel), comparison of item parameter estimates given by the C-

HYBRID and the 2PL model by item positions (lower left panel: item thresholds, lower right 

panel item discriminations). 

 

 

Furthermore, the application demonstrated the C-HYBRID model’s usefulness for 

studying individual-level correlates of test persistence. Such applications are 
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interesting from an applied perspective because they have the potential to shed light 

on individuals’ reasons for reducing their test effort (e.g., Lindner, Lüdtke, & Nagy, 

2019). In the present case, the results suggest science proficiency to be the more im-

portant factor than general cognitive ability because proficiency correlated more 

strongly with persistence, and the partial correlation between persistence and cogni-

tive ability accounted for science proficiency was close to zero (𝜌̂𝛿,𝑥∙𝜃 = .02). How-

ever, this result certainly does not mean that there are no other individual difference 

variables that have a meaningful relationship with persistence over and above profi-

ciency (e.g., Nagy, Nagengast, Frey, Becker, & Rose, 2019). 

 

 

Discussion 

The aim of the present article was to introduce a further development of the HYBRID 

model that was initially proposed by Yamamoto (1989). The C-HYBRID model re-

laxes the HYBRID model’s assumption of sudden and irreversible switches from so-

lution to guessing behavior that can occur over the course of a test. Our model assumes 

a stochastic relationship between the probability of applying solution (vs. guessing) 

behavior and item position, which means that the model acknowledges that individu-

als might switch back and forth between solution and guessing behavior in a limited 

part of the item sequence of a test. As such, the C-HYBRID model is likely to be 

appropriate for low-stakes tests where individuals might switch to guessing behavior 

for reasons other than running out of time (i.e., test speededness).  

On the item level the C-HYBRID model assumes a gradual reduction in solution be-

havior and allows differences between individuals in the onset of this process. This 

specification is in line with current substantive research. For example, research based 

on self-reports of motivation and effort has found these characteristics to decline over 

the course of a test (Lindner, Nagy, & Retelsdorf, 2018). Similar findings have been 

reported with respect to RGB (e.g., Wise, Pastor, & Kong, 2009), with some findings 

indicating that the onset point of RGB is the main characteristic defining individual 

differences in response time effort (Lindner, Lüdtke, & Nagy, 2019).  

 

Aspects of Empirical Applications 

Besides its connection to well-validated patterns of test-taking behavior, the C-HY-

BRID model has several features that make it interesting for applied researchers. First, 

the model appears to provide results of reasonable accuracy even in samples of modest 

size (N  1,000). We are not aware of how other models perform at this sample size, 

although there is some evidence that mixture models for test speededness perform 

reasonably in samples of N = 2,000 examinees (Suh, Cho, & Wollack, 2012), a sample 

size in which the C-HYBRID model provided good results. However, more simulation 

studies in which the sample size, as well as other factors, is varied are needed to gain 
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a more complete understanding of the model’s behavior. In this vein, further simula-

tions should also examine other aspects, such as standard error bias and coverage 

rates. In addition, future studies might also examine likelihood-based approaches of 

model selection, such as the Lo-Mendell-Rubin Test, which provide p-values that 

could aid decisions in situations where the BIC does not provide a conclusive answer. 

Second, the C-HYBRID model can be estimated on the basis of a single test form. In 

contrast, IRT models for item position effects that have been discussed as a method 

for modeling test-taking persistence (Debeer et al., 2014) require rotated booklet de-

signs in which items are presented in different positions. In addition, such IRT models 

do not built upon the concept of random guessing, which means that item responses 

impacted by low persistence are assumed to depend on proficiency (List et al., 2017). 

In contrast, the C-HYBRID model is not limited to fixed test forms and can be 

straightforwardly altered to accommodate rotated assessment designs. We expect that 

rotated designs can increase the efficiency and precision of the estimates provided by 

the C-HYBRID model (Weirich, Hecht, & Böhme, 2014), although more research is 

needed to explore the potential of more complex designs. 

Other mixture IRT models that have been suggested in the context of test speededness 

can also be estimated on the basis of fixed test forms (e.g., List et al., 2017; Suh et al., 

2012). However, most of these models make assumptions that are unlikely to hold in 

reality, such as assumptions about (1) deterministic change points (e.g., Yamomoto, 

1989), (2) the existence of a single class of guessers with a known onset point of 

performance decline (e.g., Bolt, Cohen, & Wollack, 2002), (3) effects of proficiency 

on the probabilities of correct solutions at low levels of motivation (e.g., Jin & Wang, 

2014), and (4) the same success probability of guessing under solution and guessing 

behavior (e.g., Goegebeur et al., 2008). We believe that the C-HYBRID model has 

desirable features that are not included in other models, although future research 

should more thoroughly compare the existing models, possibly on the basis of existing 

data sets.  

Third, the C-HYBRID model offers the possibility to include individual-level covari-

ates in the model. In the present article we focused on the correlations of covariates 

with persistence. However, the model can be easily altered by specifying covariates 

(including proficiency) to predict persistence. Alternatively, covariates can be ex-

pressed as dependent variables that are predicted by persistence. This feature allows 

the core elements of theories of test-taking motivation to be tested (e.g., Wise, 2017), 

an endeavor that cannot be easily carried out on the basis of existing mixture IRT 

models for test speededness.  

 

Model Extensions and Future Research 

Although we believe that the C-HYBRID model is well suited to a broad array of 

applications, the model is not without restrictions. Many restrictions are a conse-

quence of our desire to keep the model parsimonious, as well as to ensure the 
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interpretability of its key components. However, in certain situations, the model’s re-

strictions might be in conflict with the goals of an investigation.  

We focused on situations in which individuals are regarded as members of one popu-

lation, which means that the model’s parameters are assumed to apply to all subpop-

ulations included in a sample. For example, we treated process discrimination 𝜆 as a 

fixed parameter, so that it reflects a property of the test in a population (similar to an 

item discrimination that represents an item property). However, this restriction can be 

overcome by specifying the C-HYBRID model as a multigroup model that allows for 

group differences in the 𝜆-parameters as well as in the means and (co-)variances of 

the 𝛿-variable. This can be achieved by introducing a between-individual latent class 

variable with known class memberships (e.g., List et al., 2017). In addition, individ-

ual-level latent class membership can be treated as unknown, thereby providing a 

method for dividing the whole population into several subpopulations in which low 

test-taking persistence is reflected in different patterns of performance decline (e.g., 

quicker and slower changes from solution to guessing behavior).  

An alternative way for modeling heterogeneity in process discriminations is to express 

the 𝜆-parameter as a normally distributed random parameter that varies across indi-

viduals. Such models can be estimated, but, in our experience, MML estimation via 

the EM algorithm is computationally very demanding. In addition, the specification 

of 𝜆 as a random parameter comes at the price of blurring the interpretation of the 𝛿-

variable as an indicator of test-taking persistence (i.e., individual turning points from 

solution-based behavior to guessing behavior). Therefore, in order to explore hetero-

geneity in 𝜆, more work is needed to derive a feasible modeling strategy.  

This work should also consider Bayesian estimation techniques as an alternative to 

MML. Bayesian estimation allows for a large number of random effects and may 

therefore provide a feasible route for examining heterogeneity in 𝜆. However, alt-

hough Bayesian estimation has many advantages, it comes at the price of long esti-

mation times. This could render Bayesian estimation impractical in the case of large 

sample sizes, which are typical for large-scale assessments. Therefore, more research 

is needed that compares the MML estimation with the Bayesian estimation proce-

dures.  

We considered only covariates that are located on the individual level. As many re-

searchers are interested in item-level indicators of response behavior (e.g., response 

times), it could be interesting to extend the C-HYBRID model to include such infor-

mation. Pokropek (2016) described a grade-of-membership IRT model that allows 

guessing behavior to be related to response times and is, in some respects, similar to 

the C-HYBRID model. Indeed, recent work has demonstrated that such information 

can be included in the MMM framework in which the C-HYBRID model is specified, 

which means that the C-HYBRID model can be easily extended to include item-level 

covariates (Nagy & Ulitzsch, 2021). 
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Appendix A: Example of the Diagonal Arrangement of Item  

Responses 
 

Table A1 provides an example of the diagonal data array for one individual that is 

used to estimate the C-HYBRID model in the MMM setup. The matrix 𝒀𝑖 of order J 

× J contains the individual i’s item responses with elements denoted as 𝑦𝑖𝑗𝑘. All off-

diagonal entries (j  k) in 𝒀𝑖 are treated as missing (denoted as “-99”). The matrix 𝒀𝑖 

is augmented by a column vector 𝒍𝑖 in which the item positions are coded with entries 

𝑙𝑖𝑗 = 𝐽 − 𝑗.  

 

 

Table A1 

Example of Data Array for one Individual in a Hypothetical Test with J = 30 Items 

 

 𝑦𝑖1 𝑦𝑖2 𝑦𝑖3 ⋯ 𝑦𝑖28 𝑦𝑖29 𝑦𝑖30 𝑙𝑖 

𝑦𝑖1 1 −99 −99 ⋯ −99 −99 −99 29 

𝑦𝑖2 −99 1 −99 ⋯ −99 −99 −99 28 

𝑦𝑖3 −99 −99 0 ⋯ −99 −99 −99 27 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ 

𝑦𝑖28 −99 −99 −99 ⋯ 0 −99 −99 2 

𝑦𝑖29 −99 −99 −99 ⋯ −99 1 −99 1 

𝑦𝑖30 −99 −99 −99 ⋯ −99 −99 0 0 

 
Note. “−99” denotes missing values. 
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Appendix B: Mplus Syntax for Estimating the C-HYBRID Model 

The syntax refers to an application with J = 40 items and one individual-level covari-

ate x. We consider a situation where all items have five response options, and success 

probabilities when guessing are fixed to the value of 𝑔𝑗 = 0.20 for all j = 1, 2, …, J 

items. 

 

Title:      Example of C-HYBRID Model with one Covariate 

Data:       file is Exampledata.dat; 

Variable:   names are case y01-y40 pos x; 

            usevariables are y01-y40 pos x; 

            missing are all (-99); 

            categorical are y01-y40; 

            within are y01-y40 pos; 

            between are x; 

            cluster is case; 

            classes are c(2); 

Analysis:   type is twolevel random mixture; 

            estimator is ml; 

            starts = 80 16; 

            processors = 8; 

            integration = standard(21); 

Model:      %within% 

            %overall% 

            unit by; 

            node by y01-y40; 

            [node@0 unit@1]; 

            node@0 unit@0; 

            [y01$1-y38$1]; 

            theta | node on unit; 

            c#1 ON pos (b); 

            [c#1*0.72770 ] (a); 

            %c#2% 

            node by y01-y40@0; 

            [y01$1-y38$1*1.386] (nu); 

            %between% 

            %overall% 

            theta@1 x (vx); 

            [theta@0 x]; 

            c#1 (v); 

            c#1 with theta (cdt); 

            c#1 with x (cdx); 

            theta with x (ctx); 

Model Constraint: 

            new(md vd sd codt codx cotx); 

            md = a/b + 40; 

            vd = v*(b**(-2)); 

            sd = sqrt(vd); 

            codt = cdt/sqrt(v); 

            codx = cdx/sqrt(v*vx); 

            cotx = ctx/sqrt(vx); 

            nu = ln(4); 

Output:     tech1 tech8;  


