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Abstract: 

In data contaminated by method effects, common systematic variation is inhomogeneous re-

quiring that attribute-related common systematic variation is in structural investigations dis-

criminated from other variation. In the reported study, CFA measurement models dealing dif-

ferently with such inhomogeneity were compared with respect to their performance in investi-

gating data contaminated by either speededness or high subset homogeneity. For this purpose, 

structured random data with five different levels of speededness respectively subset-homoge-

neity were generated and investigated. The investigations were conducted by the one-factor 

congeneric and tau-equivalent CFA models, as well as the bifactor CFA model designed as 

mixture of tau-equivalent and fixed-links models. In data with speededness the congeneric 

model indicated good model fit while the tau-equivalent model showed sensitivity for the effect. 

In data with subset-homogeneity both models showed sensitivity. Only the bifactor model ac-

counted for the common systematic variation and discriminated well between the attribute and 

method effects. 
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Introduction 

This essay reports research addressing the question whether confirmatory factor anal-

ysis (CFA) is suited for discriminating different types of common systematic variation 

in considering different CFA measurement models. Since CFA is designed according 

to the model-fit approach (Gumedze & Dunne, 2011; Jöreskog, 1969, 1970) that high-

lights the correspondence of the model and data, it does not comprise discrimination 

as one of its primary properties. CFA in the first place means checking whether the 

latent variable(s) of the measurement model account(s) for the common systematic 

variation of data that is due to individual differences in the attribute measured by the 

scale employed in data collection. This implicitly means that common systematic var-

iation is assumed to be homogeneous so that discrimination is not necessary. Most 

CFA measurement models perform on the basis of this assumption (Alwin & Jackson, 

1980; Graham, 2006).   

But common systematic variation of data may be inhomogeneous instead of homoge-

neous. While the process of item selection in test construction (Johnson & Morgan, 

2016) may exclude inhomogeneity regarding the attribute, there is the possibility that 

method effects create additional common systematic variation. Method effects are de-

scribed as systematic variation in measurements that is not due to the attribute in-

tended to be measured but to measurement (Maul, 2013; Schweizer, 2020). The 

strongest evidence that method effects contribute to common systematic variation is 

provided by multitrait-multimethod (MTMM) research using multitrait-multimethod 

measurement models (Byrne, 2016). The results of MTMM research suggest that dif-

ferences between observers, instrumentation or the circumstances of measurement can 

lead to extra common systematic variation that may falsely be captured by the attribute 

latent variable of the CFA model. In MTMM research, the MTMM design is basic for 

the discrimination between common systematic variation associated with the attribute 

and common systematic variation due to the method of measurement.    

  Further, there are method effects that do not fit with an MTMM design because they 

cannot be captured by grouping the manifest variables of a CFA model as, for exam-

ple, the item-position effect (Knowles, 1980; Kubinger, 2008) or the speededness of 

tests (Oshima, 1994). The item-position effect and speededness are effects that unfold 

toward the end of a sequence of items. The item-position effect steadily increases and 

is accepted as a regular nuisance that needs to be controlled in experimental research. 

The control of speededness is more demanding since this effect follows a non-linear 

course (Ren et al., 2017). Besides inhomogeneity of common systematic variation in-

volving all manifest variables of a CFA model, there are the cases of inhomogeneity 

restricted to subsets of manifest variables as, for example, the wording effect (DiSte-

fano & Motl, 2006). The most extreme case of inhomogeneity of common systematic 

variation is the phenomenon referred to as correlated residual (Landis et al., 2009) 

including two items of a scale that correlate to a much higher degree among each other 

than the remaining items. 
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Discrimination between different types of common systematic variation using CFA 

models is well-established in MTMM research (Byrne, 2016). There is also some re-

search demonstrating that the bifactor CFA model enables the discrimination of com-

mon systematic variation due to the attribute from common systematic variation due 

to the item-position effect (e.g., Ren et al., 2012; Thomas et al., 2015). Even there is 

the proposal to transfer the experimental approach of dealing with the position effect 

to the field of differential research (Goodhew & Edwards, 2019).  

Less well established is discrimination when the additional common systematic vari-

ation is due to speededness or high subset homogeneity although the efficiency of the 

bifactor model with respect to data displaying these effects has already been studied. 

Regarding speededness, it has been demonstrated that, when using a latent variable 

reflecting the distribution of processing speed as part of a CFA measurement model, 

it is possible to account for the common systematic variation due to speededness (e.g., 

Ren et. al., 2017). Regarding subset homogeneity, there is already some evidence of 

the feasibility of representing subsets of two highly correlated manifest variables by 

a latent variable in order to overcome the inhomogeneity due to the different types of 

common systematic variation (Schweizer et al., 2023).     

Another issue that has to be taken into consideration is that CFA measurement models 

(Alwin & Jackson, 1980; Graham, 2006) can include two different types of factor 

loadings: free factor loadings and fixed factor loadings that may be differently suited 

for the discrimination of types of common systematic variation. In the case of free 

factor loadings, the latent variable is expected to account for the complete common 

systematic variation (Jöreskog, 1971) whereas in the other case, the fixation of factor 

loadings restricts the latent variable in accounting for the complete common system-

atic variation.      

The research that is described in the following sections investigated the efficiency of 

CFA models with free and fixed factor loadings in discriminating between common 

systematic variation associated with the attribute and common systematic variation 

due to speededness on one hand and due to high subset homogeneity on the other 

hand.  

 

The Outset 

The CFA measurement model with free factor loadings is the congeneric CFA meas-

urement model that is a one-factor model (Brown, 2015; Jöreskog, 1971). The version 

for centered data is given by  

 attribute attribute= +x λ δ    (1) 

where x is the p  1 vector of centered manifest variables representing the observa-

tions, attribute is the p  1 vector including the factor loadings that quantify the rela-

tionships of the attribute latent variable and the manifest variables, attribute is the latent 
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variable representing the attribute, and δ  is the p  1 vector of residuals that quanti-

fies the influences that are unique for each manifest variable. Free factor loadings are 

parameters included in attribute that are estimated in addition to the parameters included 

in δ . These characteristics are shared with the common-factor model of exploratory 

factor analysis (Lawley & Maxwell, 1971).   

A basic characteristic of fixed factor loadings is that they are restricted. Mostly the 

sizes of fixed factor loadings are restricted to correspond while the overall size is es-

timated. For example, the tau-equivalent CFA measurement model (Graham, 2006) 

requires the estimation of the general factor loading that serves as estimate for all 

factor loadings. We represent it by the symbol . Therefore, our formalization of the 

concept of the tau-equivalent measurement model includes attribute1 instead of attribute:    

 attribute attribute = +x 1 δ  (2) 

where x is the p  1 vector of centered manifest variables representing the observa-

tions, attribute is the general factor loading, 1 is the p × 1 unit vector, attribute is the latent 

variable representing the attribute and δ  is the p × 1 vector of residuals. The tau-

equivalent CFA measurement model implicitly assumes that the latent variable 

equally relates to all manifest variables and suggests the interpretation that all items 

(→ manifest variables) used in data collection show the same degree of discrimina-

tion. 

The fixed-links CFA measurement model (Schweizer, 2006) in a way extends the tau-

equivalent CFA measurement model to be applicable for investigating experimental 

effects. The extension consists in replacing the unity factor, 1, by a p × 1 vector, υ

experimental_effect, that includes numbers representing partial hypotheses on the relation-

ships of manifest variables and the latent variable reflecting the expected experimental 

effect. Replacing them by numbers characterizing a method effect turns υ experimental_ef-

fect into υ method_effect for investigating the presence of common systematic variation 

due to a method effect:  

 method_effect method_effect = +x υ δ  (3) 

where x is the p  1 vector of centered manifest variables representing the observa-

tions, method_effect is the parameter serving as the general factor loading, υ method_effect 

is the p × 1 vector specifying the assumed relationships of manifest variables and the 

latent variable, method_effect is the latent variable representing the method effect and δ  

is the p × 1 vector of residuals.  

Since the tau-equivalent model and the fixed-links model include restrictions, they are 

not suited to account alone for the complete common systematic variation of data in 

cases of inhomogeneity. In such a case the replacement of a one-factor CFA model 

by the bifactor model (Reise, 2012) is required. One component of this bifactor model 
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may be specified according to the tau-equivalent model and another one according to 

the fixed-links model so that   

 attribute attribute method_effect method_effect method_effect   = + +x 1 υ δ  . (4) 

In Equation 4 x reflects available observations, attribute is the parameters servings as 

general factor loading regarding the attribute, 1 is the p × 1 unity vector, attribute is the 

latent variable representing the attribute, method_effect is the parameter servings as the 

weight regarding the influence of the method effect, υ method_effect is the p × 1  vector 

including numbers representing the assumed effect, method_effect is the latent variable 

representing the method effect, and δ  is the p × 1 vector of residuals.   

 

Some Considerations Regarding the Data Structure  

Investigating the appropriateness of measurement models for discriminating types of 

common systematic variation requires data that allow for at least two types of common 

systematic variation. One type of common systematic variation has to be the attribute 

common systematic variation while the other type can be the common systematic var-

iation of a method effect. In a simulation study, this requires the mimicking of the 

selected method effect in data generation.  

The first method effect (speededness) is taken from the set of end-of-scale effects that 

comprises effects with an increasing probability to influence the outcome of assess-

ment along the sequence of items of a scale. These effects are either obvious in miss-

ing data or alternatively in random responses. For example, there is the effect due to 

a time limit in testing that leads to missing data if the participant’s speed of cognitive 

processing is insufficient (Oshima, 1994; Partchev et al., 2013). But some participants 

who are about to run out of time in completing the items may not simply go on as long 

as possible. Instead they may resort to the response strategy titled rapid guessing 

(Wise, 2017) leading to random responses. Decline of the motivation and fatigue to-

ward the end of a scale may also lead to this type of response.   

We concentrate on the end-of-scale effect that appears to have attracted most attention 

in science so far that is the speed-related missing data effect observable if participants 

perform as they are instructed to do but are not fast enough. We refer to it as the 

speededness condition. Systematic variation due to speed-related missing data is not 

at random (Little & Rubin, 2019) and may not be captured by the latent variable of a 

model representing the attribute measured by the scale. Research demonstrates that 

this effect can be represented by a latent variable reflecting the distribution of missing 

data (Borter et al., 2023; Ren et al., 2017). This knowledge can be used to simulate 

data including a speed-related missing data effect. An increase following the curve 

characterizing the cumulative normal distribution (function gtrajectory) must character-

ize not only the simulated data but also the fixations serving as factor loadings on the 

latent variable representing this effect (ith factor loading i, i = 1,…, p): 
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i = gtrajectory(i) . 

The other method effect selected for this study is frequently reported and commonly 

referred to as correlated residuals (Landis et al., 2009). Since a basic characteristic of 

the model-fit approach excludes correlations of residuals, we prefer to address this 

method effect as high subset homogeneity. The set of manifest variables displaying 

this effect can be perceived as a set composed of at least two non-overlapping subsets 

({{X1, …, Xp-2}, {XK, XL}}) that differ according to the sizes of their intercorrelations: 

rKL > rij . 

Correctly conceptualized, such a method effect can be captured by an additional latent 

variable of a bifactor model (Schweizer et al., 2023), that is, each subset can be as-

sumed to give rise to its own common systematic variation. To mimic this method 

effect means generating data matrices including one or a few pairs of columns with 

especially large intercorrelation(s) while the correlations among the remaining col-

umns are smaller. We refer to data with the described characteristic as subset-homo-

geneity condition. 

 

 

The Empirical Section 

The empirical section reports a simulation study that served the aim to investigate 

whether the described CFA models were appropriate for discriminating between two 

types of common systematic variation when data with inhomogeneous common sys-

tematic variation were to be investigated. The data for this study were generated to 

display either the speededness or subset-homogeneity conditions in considering dif-

ferent levels reaching from no effect to a large effect.  

 

Method  

The two data conditions outlined in the previous section gave rise to two parts of the 

study report. Each condition included five levels, and the number of data matrices 

created and investigated was 500 at each level. The generation of data according to 

the speededness condition was accomplished in the following way: in the first step, 

500 × 13 matrices including normally distributed random data [N(0,1)] were generated 

on the basis of a relational pattern by means of PRELIS (Jöreskog & Sörbom, 2001). 

The off-diagonal entries of the relational pattern corresponded and were selected to 

give rise to expected factor loadings of 0.35 while the diagonal entries were one. In 

the next step, the effect of speededness, that is, information on omissions due to lack 

of enough processing speed, was integrated into the matrices. The following columns 

were selected for the onsets of the speed effect conditions: the seventh (80 percent), 

eights (60 percent), ninth (40 percent) and tenth (20 percent) columns.   
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Figure 1 illustrates the expected numbers of omissions in a sample of 500 observations 

for the various items position and levels, as they were realized in the study. Next, 

zeros were inserted in the matrices at randomly selected rows for representing omis-

sions. Zeros representing omission in zero-standardized data could be expected to re-

duce the common systematic variation associated with the attribute systematically. In 

addition, the distribution of zeros across the item positions was expected to create 

additional common systematic variation that indirectly represented processing speed 

and provided the basis for what was captured by the speededness latent variable (for 

more information see Borter et al., 2023; Ren et al., 2017). Finally, the data matrices 

were transformed into covariance matrices.     

 

 

Figure 1. Illustration of the distribution of omissions under the levels of the 

speededness condition. 

 

The generation of data according to the subset-homogeneity condition occurred in a 

similar way. A set of five-hundred 500 × 13 data matrices was generated by means of 

a relational pattern that differed from the one used for the speededness condition in 

three spots. The numbers at the intersections of the 2nd row and 5th column, the 7th 

row and 8th column as well as 9th row and 12th column of the relational pattern were 

replaced. The replacements were enlargements that were expected to create the sub-

set-homogeneity condition in the three spots instead of one in order to have a strong 

overall effect. The following increments were selected to establish five levels: 0 (first 

level), 0.20 (second level), 0.25 (third level), 0.30 (fourth level) and 0.35 (fifth level).  

The data were investigated using three CFA models. These models were specified as 

congeneric model (Equation 1), tau-equivalent model (Equation 2) and the combina-

tion of tau-equivalent model and fixed-links model (Equation 3) realized as bifactor 

model (Equation 4). The congeneric model included one latent variable with free fac-

tor loadings while the corresponding variance parameter was set to one so that p factor 
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loadings had to be estimated. The other models included fixed numbers instead of 

parameters while either one or two variance parameters had to be estimated. The fix-

ations for the attribute (tau-equivalent) latent variable were equal-sized numbers. 

Note. Any positive number can be used since the size of this number only influences 

the size of the variance parameter estimate (Schweizer et al., 2019) but not the degree 

of model fit. The fixations for the method effect (fixed-links) latent variable that rep-

resented speededness were selected according to the cumulative normal distribution 

function, that is, they corresponded to the numbers for generating the curves of Figure 

1. Equal-sized numbers surmounting the numbers used for the fixation of the attribute 

(tau-equivalent) latent variable were used as factor loadings on the three factors rep-

resenting subset homogeneity. The latent variables were not allowed to correlate with 

each other to avoid adverse effects on factor variances (Schweizer et al., 2024)       

LISREL software (Jöreskog & Sörbom, 2006) specified to conduct maximum likeli-

hood estimation was selected for the investigation of the generated covariance matri-

ces. The evaluation of model fit occurred using recommended fit indices (established 

fit criteria are provided in parentheses): RMSEA (≤ 0.06), SRMR (≤ 0.08), NNFI (≥ 

0.95), and CFI (≥ 0.95) (see DiStefano, 2016; Hu & Bentler, 1999). We also report 

2s, dfs, and AICs. Means and standard deviations were computed and included in 

tables. Comparisons between models and across levels were accomplished using the 

CFI difference (0.01) and the RMSEA difference (0.015) according to Cheung and 

Rensvold (2002). 

 

Results 

Since the focus was on discrimination between the two types of common systematic 

variation, one-factor models were expected to yield model misfit for larger method 

effects (= highest levels). Otherwise the outcome would imply that there was only one 

type of common systematic variation that was incorrect. Since the data included two 

types of common systematic variation, only the bifactor model that included two latent 

variables, one for each type of common systematic variation, could be expected to 

correctly signify good model fit.       

Results of investigating data with speededness. The fit results of this investigation 

are included in Table 1 that comprises of three sections: the first sections with the 

results obtained by the one-factor congeneric CFA model, the second section with the 

results by the one-factor tau-equivalent CFA model, and the third section with the 

results by the bifactor CFA model specified as two-factor model with fixed factor 

loadings.  

All estimates for the congeneric model regarding the fit indices with a cutoff 

(RMSEA, SRMR, NNFI, CFI) reported in the first section indicated good model fit. 

Comparing the results across the levels revealed only two substantial differences: the 

CFI of the fifth level was substantially smaller than the CFIs of the first and second 

levels. In contrast, only the RMSEA and SRMR results for the tau-equivalent model 
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included in the second section indicated good model fit across all levels whereas good 

NNFI and CFI results were restricted to the level one to three. Further, the RMSEAs 

of levels one to three differed from that of levels four and five while the CFIs of all 

levels differed except of the CFIs of levels one and two. Regarding the last section 

concerning the bifactor model, there were only results for the fourth and fifth levels 

because in the other levels either a second latent variable was not expected (first level) 

or there was no valid/substantial estimate for the speededness latent variable in a large 

number of cases. All estimates for the remaining levels (fourth and fifth levels) indi-

cated good model fit. Further, the RMSEAs and CFIs of this model did not differ from 

the RMSEAs and CFIs of the levels one to three observed for the congeneric and tau-

equivalent models.  

In sum, the results for the tau-equivalent model displayed strong sensitivity for inho-

mogeneous common systematic variation whereas the congeneric model only weak 

sensitivity. The bifactor model discriminated well between the two types of common 

systematic variation in the levels where it was applicable.  

Results of investigating data with high subset homogeneity. The report of the fit 

results is included in Table 2 that is structured in the same way as Table 1: the first 

sections includes the results obtained by the one-factor congeneric CFA model, the 

second section the results by the one-factor tau-equivalent CFA model, and the third 

section the results by the bifactor CFA model specified as two-factor model.  

All RMSEAs and SRMRs of the first section indicated good model fit for the conge-

neric model whereas only the first to third levels of NNFIs and CFIs also signified 

good model fit. In comparing RMSEAs and CFIs across the five levels, several 

RMSEA differences and CFI differences reached the significance level suggesting a 

decrease of model fit across the treatment levels. Similar results were observed for the 

tau-equivalent model. All RMSEAs and SRMRs indicated good model fit while re-

garding NNFI and CFI only the estimates for the levels one to three were good. Ad-

ditionally, several of the RMSEA differences and CFIs differences across the five 

levels were substantial and suggested a decrease of model fit. Furthermore, the 

RMSEA and CFI estimates of the congeneric and tau-equivalent models did neither 

differ according to any RMSEA difference nor according to any CFI difference. The 

last section including results for the bifactor model is incomplete since a second latent 

variable was not expected for the first level. All estimates of all fit indices for the 

remaining levels indicated good model fit. Further, the RMSEAs did not differ across 

the levels while regarding the CFIs there were three (marginal) cases. The CFI differ-

ences of the last level and the remaining levels were exactly 0.01.  

In sum, the results for the congeneric and tau-equivalent models displayed sensitivity 

for inhomogeneous common systematic variation and did not differ substantially from 

each other. In contrast, the bifactor model discriminated well between the two types 

of common systematic variation.  
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Table 1  

Results of Investigating Model Fit in Five Sets of Five-hundred 500 × 13 Matrices 

of Structured Random Data under the Speededness Condition  

 

Model type Level 
Analysis 

type 
χ2 df RMSEA SRMR NNFI CFI AIC 

Congeneric 
1 Mean 65.51 65 0.008 0.033 0.998 0.991 117.51 

  SD 11.65  0.010 0.003 0.025 0.013 11.65 

 2 Mean 65.60 65 0.008 0.033 0.998 0.991 117.60 

  SD 11.44  0.009 0.003 0.025 0.013 11.44 

 3 Mean 65.90 65 0.008 0.033 0.997 0.989 117.90 

  SD 12.05  0.010 0.003 0.028 0.015 12.05 

 4 Mean 67.63 65 0.010 0.034 0.992 0.986 119.63 

  SD 12.47  0.010 0.003 0.032 0.019 12.47 

 5 Mean 71.39 65 0.012 0.035 0.982 0.979 123.39 

  SD 13.23  0.011 0.003 0.037 0.024 13.23 

Tau- 
equivalent 

1 Mean 77.10 77 0.007 0.041 0.999 0.991 105.10 

  SD 12.26  0.009 0.004 0.022 0.014 12.26 

 2 Mean 79.15 77 0.008 0.042 0.995 0.989 107.15 

  SD 12.52  0.009 0.004 0.023 0.016 12.52 

 3 Mean 87.05 77 0.014 0.046 0.980 0.977 115.05 

  SD 14.39  0.010 0.005 0.028 0.023 14.39 

 4 Mean 111.63 77 0.029 0.055 0.934 0.934 139.63 

  SD 19.02  0.009 0.006 0.037 0.036 19.02 

 5 Mean 168.46 77 0.048 0.069 0.825 0.827 196.48 

  SD 30.37  0.008 0.007 0.053 0.053 30.37 
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Table 1 continued 

 

Bifactor 11 
Mean 

- - - - - - - 

  SD 
- - - - - - - 

 
22 

Mean 
- - - - - - - 

  SD 
- - - - - - - 

 32 
Mean 

- - - - - - - 

  SD 
- - - - - - - 

 4 Mean 76.31 76 0.008 0.040 0.996 0.987 108.31 

 

 

SD 12.95  0.009 0.001 0.029 0.019 12.95 

 5 Mean 78.41 76 0.010 0.041 0.991 0.983 110.41 

 

 

SD 13.10  0.010 0.004 0.032 0.022 13.10 

 

1 Since a second source of common systematic variation was not expected. the 

bifactor model was not applied under this condition.  
2 No results are reported since in the majority of cases the factor variance of the 

method-effect latent variable was insignificant or negative or error estimates of 

parameters were not provided. 

 

Discussion 

Discrimination between types of common systematic variation is an issue of relevance 

for the establishment of the construct validity of a scale (Messick, 1981) that is closely 

linked to the multitrait-multimethod approach of investigating the validity of psycho-

logical scales (Campbell & Fiske, 1959). Using multitrait-multimethod CFA models 

for investigating data means discrimination between variation that is due to attributes 

and variation that is due to a characteristic of measurement on the basis of the multi-

trait-multimethod design. Discrimination by the bifactor model serves the exactly 

same aim but not on the basis of a multitrait-multimethod design. It seeks to discrim-

inate common systematic variation into two types, one type that reflects the attribute 

and another type that reflects a characteristic of assessment other than the attribute.  

In contrast, discrimination between different types of common systematic variation is not a 

property of the standard version of confirmatory factor analysis including the congeneric 

measurement model (Brown, 2015; Graham, 2006). The standard version is a one-factor 

model with a latent variable that is designed to account for as much common systematic 

variation as possible. This version can be expected to perform well if there is no other com-

mon systematic variation than common systematic variation due to the attribute that is 



K. Schweizer 
14 

measured. But this condition is unlikely to hold outside of simulation studies since, for ex-

ample, repeated measurements are likely to display an effect that is referred to as sequence 

effect and is routinely controlled in experimental psychology. There is also an abundance of 

evidence of this effect in differential psychology where it is referred to as item-position effect 

(e.g., Kubinger, 2008; Ren et al., 2012; Scharfen, 2018, Zeller et al., 2019).   

 

Table 2  

Results of Investigating Model Fit in Five Sets of Five-hundred 500 × 13 Matrices 

of Structured Random Data under the Subset-Homogeneity Condition  

 

Model 
type 

Level Analy-
sis type 

χ 2 df RMSEA SRMR NNFI CFI AIC 

Congeneric 
1 Mean 65.42 65 0.008 0.033 0.996 0.989 117.42 

  SD 11.65  0.009 0.003 0.025 0.013 11.65 

 2 Mean 74.48 65 0.015 0.035 0.981 0.982 126.48 

  SD 13.26  0.011 0.003 0.025 0.018 13.26 

 3 Mean 91.51 65 0.027 0.039 0.951 0.959 143.51 

  SD 15.21  0.010 0.003 0.028 0.023 15.21 

 4 Mean 117.93 65 0.040 0.044 0.909 0.924 169.93 

  SD 18.49  0.007 0.004 0.033 0.028 18.49 

 5 Mean 154.08 65 0.052 0.049 0.857 0.880 206.08 

 

 

SD 22.75  0.007 0.004 0.040 0.034 22.75 

Tau- 
equivalent 

1 Mean 77.10 77 0.007 0.041 0.999 0.991 105.10 

  SD 12.26  0.009 0.004 0.022 0.014 12.26 

 2 Mean 86.62 77 0.013 0.043 0.983 0.981 114.62 

  SD 13.67  0.010 0.004 0.022 0.019 13.67 

 3 Mean 104.01 77 0.025 0.046 0.957 0.958 132.01 

  SD 15.64  0.009 0.004 0.025 0.024 15.64 

 4 Mean 131.35 77 0.037 0.051 0.920 0.920 159.35 

  SD 18.74  0.007 0.004 0.029 0.028 18.74 

 5 Mean 168.90 77 0.048 0.057 0.873 0.875 196.90 

  SD 18.74  0.007 0.004 0.029 0.028 18.74 



LATENT DISCRIMINATION 
15 

Table 2 continued 

 

Bifactor 11 
Mean 

- - - - - - - 

  SD 
- - - - - - - 

 
2 

Mean 
73.87 76 0.007 0.040 0.999 0.993 107.87 

  SD 
11.99  0.009 0.004 0.018 0.011 11.99 

 
3 

Mean 
73.87 76 0.007 0.040 0.999 0.993 107.87 

  SD 
11.99  0.009 0.004 0.018 0.011 11.99 

 
4 

Mean 
73.51 76 0.007 0.040 1.000 0.993 107.51 

  SD 
11.58  0.008 0.004 0.019 0.011 11.58 

 
5 

Mean 
82.01 76 0.012 0.044 0.987 0.983 116.01 

  SD 
20.42  0.013 0.010 0.030 0.024 20.42 

 

1 Since a second source of common systematic variation is not expected. the bifactor 

model is not applied under this condition.  

 

Latent variables can be prevented from accounting for the complete common system-

atic variation by constraining factor loadings. An example of a CFA measurement 

model including such a latent variable is the tau-equivalent CFA measurement model 

(Lord & Novick, 1968, p. 58; Jöreskog, 1970). Factor loadings constrained to equal 

sizes characterize this measurement model. Accounting for method effects typically 

requires sequences of numbers varying in size to reflect the trajectory of the effect for 

replacing factor loadings, as is enabled by the fixed-links model (Schweizer, 2006) 

proposed for representing experimental effects. Discrimination between different 

types of common systematic variation also requires that each one of the targeted types 

of common systematic variation is represented by an own latent variable as part of a 

bifactor model (Reise, 2012).  

Data designed to include additional common systematic variation according to a 

method effect were expected to exclude the observation of good model fit when the 

contribution of the method effect was large and the CFA measurement model included 

one latent variable only. It turned out that neither RMSEA nor SRMR estimates were 

in line with this expectation; only NNFI and CFI estimates displayed some degree of 

sensitivity for method effects. In speededness data the results observed for the tau-

equivalent model corresponded to the expectation. In the highest speededness level 

the NNFI and CFI results for this model indicated bad model fit while the fit results 

for the congeneric model decreased but were still good. When subset homogeneity 

served as method effect, both one-factor models were sensitive for the increasing 
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effect size, and indicated bad model fit in the highest level. Overall, the tau-equivalent 

model seems to be under more conditions sensitive for method effects according to 

NNFI and CFI than the congeneric model. 

The bifactor model led to good model fit under both conditions when it was applica-

ble. Each latent variable accounted well for the corresponding part of the common 

systematic variation. We only applied this model when there was reason for assuming 

that the data included two types of common systematic variation. Otherwise it might 

indicate good model fit but the estimate of the variance parameter for the effect latent 

variable would be insignificant calling the validity of the model into question. That 

actually happened for the applications to data with speededness when the effect size 

was small. Despite this restriction to the applicability, the bifactor model proved to be 

well suited for the discrimination of two types of common systematic variation. These 

results are in line with previous investigations using similar conditions (Borter et al., 

2023; Schweizer et al., 2023).  

A limitation of this study is that the two considered method effects turn out as different 

types of effects. It would be preferable to have two method effects of the same type 

included in this study. Further studies are necessary to find out whether these types 

are general types. Another limitation is that the generated data are continuous and 

normally distributed data that avoids complications with binary data (Schweizer et al., 

2021) but differ from the data investigated in applied studies and previous simulation 

studies.  

As a further limitation with respect to applications, it may be argued that there can be 

other influences leading to what we have referred to as end-of-scale effects that may 

stay undetected in the described way of investigating data. So the additional latent 

variable of a model thought to capture speededness may actually not only account for 

speededness but also for other method effects. Regarding this argument we like to 

highlight that there is the possibility to include several method latent variables into 

the bifactor CFA model in order to also check the presence of further effects. For 

example, the simultaneous presence of the item-position effect and the difficulty ef-

fect in addition to the main effect were confirmed by a bifactor model with two addi-

tional latent variables (Schweizer, Troche et al., 2021). There is also the possibility to 

compare several models with each other were each one includes another method latent 

variable besides the main latent variable. For example, the CFA model including the 

speed-effect latent variable was compared with CFA models including other addi-

tional latent variables representing the difficulty effect, the item-position effect and 

the homogeneity effect (Schweizer, Reiß et al., 2019). Further, it is possible to inves-

tigate how response styles influences speededness (Schweizer et al., 2020).  

Overall this research reveals that the utility of the one-factor measurement models for 

the demonstration of validity depends on the absence of method effects. While fixed 

factor loadings appear to fail under the influence of any method effect, free factor 

loadings seem to tolerate specific kinds of method effects despite an impairment of 

construct validity. In contrast, the bifactor model proves to be suitable for 
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discriminating between different types of common systematic variation under various 

conditions, given that a suitable representation of the method effect is available.   
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Appendix 

1. LISREL Code for the Speededness Study adapted to Covariances Computed from one Set of 

Structured Random Data 

Speededness Study  

DA NI=13 NO=500 MA=CM   

 
LA 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13  

 
CM  

 

  1.3664 
  0.3522  1.3775 

  0.3591  0.3489  1.3583 

  0.3773  0.3334  0.4198  1.3750 
  0.4094  0.3048  0.3699  0.3417  1.4363 

  0.3751  0.4170  0.4590  0.4056  0.3618  1.4023 

  0.3509  0.3252  0.2612  0.4066  0.4610  0.4048  1.7687 
  0.4064  0.2939  0.2474  0.3711  0.3283  0.3652  0.6956  1.6759 

  0.4004  0.2414  0.2951  0.5311  0.3912  0.4230  0.7460  0.6360  1.6396 

  0.4399  0.3308  0.3440  0.4537  0.3577  0.5206  0.7436  0.6662  0.6477  1.6941 
  0.5118  0.3171  0.4149  0.4767  0.4741  0.4960  0.7795  0.6961  0.7212  0.6698  1.8099 

  0.3220  0.3449  0.4481  0.4329  0.4021  0.5352  0.8225  0.7508  0.6743  0.8054  0.7532  1.8717 

  0.4422  0.3134  0.3443  0.4826  0.3993  0.3548  0.7752  0.7784  0.7786  0.7464  0.8071  0.8742  1.8409 

 

 

MO NX=13 NK=2 TD=FU,FI PH=FU,FI  
 

LK 

Attribute Speed 
 

VA  0.2774 LX 1 1 

VA  0.2774 LX 2 1 
VA  0.2774 LX 3 1 

VA  0.2774 LX 4 1 

VA  0.2774 LX 5 1 
VA  0.2774 LX 6 1 

VA  0.2774 LX 7 1 

VA  0.2774 LX 8 1 

VA  0.2774 LX 9 1 

VA  0.2774 LX 10 1 

VA  0.2774 LX 11 1 
VA  0.2774 LX 12 1 

VA  0.2774 LX 13 1 

 
VA  0 LX 1 2 

VA  0 LX 2 2 

VA  0 LX 3 2 
VA  0 LX 4 2 

VA  0 LX 5 2 
VA  0 LX 6 2 

VA  0.00736 LX 7 2 

VA  0.02945 LX 8 2 
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VA  0.08099 LX 9 2 
VA  0.19144 LX 10 2 

VA  0.36080 LX 11 2 

VA  0.55224 LX 12 2 
VA  0.72160 LX 13 2 

 

FR PH 1 1 
FR PH 2 2 

! FR PH 1 2 

 
FR TD 1 1 

FR TD 2 2 

FR TD 3 3 

FR TD 4 4 

FR TD 5 5 

FR TD 6 6 
FR TD 7 7 

FR TD 8 8 

FR TD 9 9 
FR TD 10 10 

FR TD 11 11 

FR TD 12 12 
FR TD 13 13 

 

OU ML SC IT=1000 AD=OFF ND=3 

 

2. PRELIS Code for the Generation of Structured Random Data Serving as Input to LISREL 

! Generating Multivar. Normal variables  

DA NO=500   

NE V1=NRAND  

NE V2=NRAND  

NE V3=NRAND  

NE V4=NRAND  

NE V5=NRAND  

NE V6=NRAND  

NE V7=NRAND  

NE V8=NRAND  

NE V9=NRAND  

NE V10=NRAND  

NE V11=NRAND  

NE V12=NRAND  

NE V13=NRAND  

NE V14=NRAND  

NE V15=NRAND  

 

NE X1=1.0000*V1 

NE X2=0.0000*V1+1.0000*V2 

NE X3=0.0000*V1+0.0000*V2+1.0000*V3 

NE X4=0.0000*V1+0.0000*V2+0.0000*V3+1.0000*V4 
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NE X5=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+1.0000*V5 

NE X6=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+1.0000*V6 

NE X7=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+1.0000*V7 

NE 

X8=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+1.0000*V8 

NE 

X9=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+0.0000*V8+

1.0000*V9 

NE 

X10=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+0.0000*V8

+0.0000*V9+1.0000*V10 

NE 

X11=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+0.0000*V8

+0.0000*V9+0.0000*V10+1.0000*V11 

NE 

X12=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+0.0000*V8

+0.0000*V9+0.0000*V10+0.0000*V11+1.0000*V12 

NE 

X13=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+0.0000*V8

+0.0000*V9+0.0000*V10+0.0000*V11+0.0000*V12+1.0000*V13 

NE 

X14=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+0.0000*V8

+0.0000*V9+0.0000*V10+0.0000*V11+0.0000*V12+0.0000*V13+1.0000*V14 

NE 

X15=0.0000*V1+0.0000*V2+0.0000*V3+0.0000*V4+0.0000*V5+0.0000*V6+0.0000*V7+0.0000*V8

+0.0000*V9+0.0000*V10+0.0000*V11+0.0000*V12+0.0000*V13+0.0000*V14+1.0000*V15 

 

CO all  

SD V1-V15   

OU RA=RU.txt WI=7 ND=3 XM IX=402 

 


