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Abstract 

The present study investigates how simple measurement effects influence factor variances in 

CFA. The considered measurement effects refer to a) deviations from the expected dispersion 

of data and b) the number of manifest variables (e.g., items of a scale) loading on a factor while 

the underlying data structure is kept constant. In this investigation, the factor variance is con-

ceptualized as the scaled variance parameter of the model-implied covariance matrix of the 

Maximum Likelihood approach. The results of model analyses and a simulation study revealed 

that the modification of the breadth of data dispersion and the number of manifest variables 

systematically influenced scaled factor variances despite the constancy of the latent structure. 

Furthermore, the results revealed that the effects on the factor variance could be eliminated by 

either estimating factor variances using standardized data or by standardizing estimated factor 

loadings before their conversion into factor variances. 
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Factor variances have so far not played a major role in the investigation of the struc-

ture of data since the customary measurement model of confirmatory factor analysis 

(CFA) is a one-factor model (Brown, 2015; Graham, 2006). In structural investiga-

tions using this model, fit indices provide sufficient information for evaluating the 

model. However, the situation is about to change since CFA models including two or 

more factors have become available and popular such as the multitrait-multimethod 

models (Byrne, 2016) and the bifactor model (Reise, 2012). Although fit indices still 

provide important information for evaluating models including two or more factors, 

they are not especially well suited for determining for how much of the systematic 

variation of data individual factors account. One-factor models and models including 

two factors can be compared by using differences between 2s and some fit indices 

as, for example, Comparative Fit Index (CFI) and Root Mean Square Error of Ap-

proximation (RMSEA) (Cheung & Rensvold, 2002). But, their utility for quantifying 

the individual factors’ contribution is limited since fit statistics reflect model-data fit 

in the first place but not the systematic variation for which a factor accounts.    

The factor variance reflects the amount of systematic variation of data for which a 

factor accounts if the factor variance is defined in the traditional way as sums of 

squares of factor loadings. This may not be immediately obvious since factor loadings 

are not known as measures of the spread of scores, such as variances (Vogt & Johnson, 

2015). However, it is established that squares of factor loadings reflect the proportion 

of the variance of a manifest variable that this variable has in common with the factor. 

So, factor variances are rooted in the variances of manifest variables which reflect the 

spread of participants’ scores.  Although such factor variances and factor loadings are 

closely linked, the attention in factor analysis so far has been almost exclusively on 

factor loadings (Widaman, 2018).    

The disregard of factor variances in CFA may be due to the way of its integration into 

the model of the covariance matrix as a variance parameter (Gumedze & Dunne, 2011; 

Jöreskog, 1970). Variance parameters serving as factor variances need additional 

specification to serve well for this purpose. There are three ways of specifications that 

are known as scaling methods (Little, Slegers, & Card., 2006). First, there is reference-

group scaling meaning that the variance parameter is set equal to one. It is mostly used 

for investigating the difference between the factor variances of the reference group 

and other groups. Second, there is the marker-variable method that requires fixing one 

factor loading to the value of one while the other factor loadings and the variance 

parameter are estimated. Though, in this case, the variance parameter is estimated, its 

estimate heavily depends on the selected marker variable, that is, on the variable with 

the fixed factor loading (e.g., Gonzales & Griffin, 2001; Steiger, 2002). Third, there 

is the criterion-based method of which the main characteristic is a criterion number. 

It requires the standardization of the factor loadings in such a way that they either add 

up directly to the criterion number (Little et al., 2006) or that the squares of the factor 

loadings add up to the criterion number (Schweizer, 2011). Equivalence of the esti-

mate of the factor variance and the sum of squared factor loadings is reached by se-

lecting one as the criterion number for the sum of squared factor loadings (Schweizer 

& Troche, 2019).  
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Appropriately scaled factor variances yield estimates of factor variances that are in 

line with the traditional definition as the sum of squared factor loadings. But, it is still 

possible that a distortion originates in the variances of the scores giving rise to the 

manifest variables that means a deviation from what is expected. Such distortion can 

impair their use for representing the amount of systematic variation for which the fac-

tors account and for comparing different factors by their factor variances. The com-

parison of variances is of interest as part of invariance analysis (Schmitt & Kuljanin, 

2008; Thompson, 2016) across different populations or different measurement proce-

dures representing the same latent construct.   

Distortion of factor variances can occur in the sense of squeezing or stretching of the 

dispersions of data represented by manifest variables from which factors are extracted 

(Vogt & Johnson, 2015). Such distortion can happen in the context of measurement 

and when participants’ attributes are transformed into numbers. First, the situation of 

measurement can influence how participants respond to items. For example, partici-

pants may feel encouraged to express extreme positions in one situation or to the con-

trary in another one. Second, changes of sample characteristics can cause deviations. 

While one sample may show a range restriction regarding the property of interest, 

another sample may show a wide dispersion. Third, there may be procedural specific-

ity due to the specific mode of assessment as, for example, is obvious in attention 

assessment using a paper-and-pencil test on one hand and a psycho-motor task on the 

other hand. Further, ceiling and bottom effects can exert an influence on the disper-

sion. The use of range-restricted response formats is especially susceptible to this type 

of deviation. Next, a sample may include outliers that heavily influence the dispersion 

of data. Finally, we like to point to possible modifications of the dispersion due to 

changes in the coding system and eventually necessary non-linear transformations.        

A distortion of the dispersion can mean squeezing or stretching in the sense of a de-

viation from what is considered as the latent dispersion. In this way increased or de-

creased variances may lead to incorrect conclusions regarding the factors’ accounts of 

systematic variation of data. Systematic differences in variation that are characteristic 

of types of instruments can become apparent as method factors in CFA based on, for 

example, a multitrait-multimethod (MTMM) design (Byrne, 2016). Such MTMM in-

vestigations can disclose specificities of information processing due to variations of 

instruments, observers, and occasions (Biesanz & West, 2004).   

Furthermore, the reliability of measurement scales is well-known to depend on the 

number of items they are composed of. This dependency suggests another source of 

influence on factor variances. Increasing the number of parallel items is known to 

increase the reliability of the corresponding scale. The Spearman-Brown formula en-

ables the estimation of the consequence of such an increase (Greer & Liu, 2016). The 

possibility to enlarge the reliability by increasing the number of items suggests in-

completeness in capturing relevant systematic variation of data. An implication is that 

more items may lead to larger factor variances. Another implication is that the switch 

from a substantial to a zero factor loading in a specific sample in the sense of 
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differential item functioning (French & Holmes, 2016) means a decrease of factor 

variance in the specific sample.  

While the idea of factor variances rooted in the variances of manifest variables and of 

moderation by factor loadings is well established, the suspected influences of variance 

sizes of manifest variables and variable numbers on factor variances still requires sys-

tematic study. This is especially important because the effect of the underlying struc-

ture of data also needs to be considered. In the following the arguments are presented 

in a formal way and a simulation study is reported to strengthen the considerations by 

empirical evidence.    

 

 

The Scaling of Variances of Latent Variables 

This section introduces the scaling of factor variances. It is necessary since scaling 

establishes the stable ground for further investigations focusing on the dependency of 

factor variances on the dispersion of data and the number of variables. Scaling occurs 

within the framework of the model of the covariance matrix (Gumedze et al., 2011; 

Jöreskog, 1970) associated with the CFA measurement models (Graham, 2006). In 

the case that the measurement model includes one factor (= latent variable), it is the 

model of the p × p covariance matrix, 
ppinΣ , that is defined as  

θλ'λΣ +=      (1) 

where  is the p × 1 vector of factor loadings, 
0  the variance parameter, and 

 the p × p diagonal matrix of residuals. A multiplicative relationship between factor 

loadings and the variance parameter characterizes this model. This multiplicative re-

lationship gives rise to what is called a constancy framework (Schweizer, Troche, & 

DiStefano, 2019). Given p × 1 vector  scalar  and constant 0c  , this framework 

states that 'λλλ'λ
*** =  if λλ

* c=  and  = 2c/1*
. This means that  stays 

constant while there is a systematic change from the combination of  and  to the 

combination of  and  . Estimation of  and  must precede the computation of  

and  . All available scaling methods can be described within this framework.  

The constancy framework suggests that parameter estimation does not guarantee that 

the variance parameter () is in line with the traditional definition of the factor vari-

ance as the sum of squared factor loadings although this is desirable. To achieve esti-

mates of variance parameters that are in line with the traditional definition, we start 

with the formal representation of the traditional definition: let 
0 represent the 

factor variance and 1, …, p the factor loadings. Then, the traditional definition of 

the factor variance is given by  
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( )λλ'trace2 == 
i

i
   .  (2) 

The latter part of Equation 2 lacks a variance parameter that is necessary to associate 

the argument of the trace to the first part of the right-hand side of Equation 1. But, if 

the variance parameter is scaled according to the reference-group method ( = 1), 

there is still correspondence to the sum of squared factor loadings: 

( ) =
i

i

2trace λ'λ     (3) 

Finally, the traditional definition of the factor variance is characterizing the product 

of the vectors of factor loadings and the variance parameter that is also part of the 

model of the covariance matrix (Equation 1): 

( )λ'λ trace2 == 
i

i
.    (4) 

Thus, the input to the trace operator corresponds to the first component of the right-

hand part of Equation 1. This means that it is possible to obtain the factor variance 

according to the traditional definition from information provided by CFA. 

However, Equation 4 enables the estimation of   in an indirect way only. To estimate 

   directly that means parameter estimation so that   = , an additional step is nec-

essary that makes use of the constancy framework. This step proceeds from given 

estimates of factor loadings, i (i = 1,…, p), that is, from estimates obtained on the 

basis of reference-group scaling ( = 1). Subsequently, scalar 0c  is computed so 

that  

( )  ==
i

i
i

i
c

2*21      (5) 

(that means criterion-based scaling) with ( )22* c
ii

 = . The constancy framework 

requires introducing modified factor loadings in the right-hand part of Equation 4. 

These factor loadings have to be complemented by a modified variance parameter: 

 2c/1=*
. Next, Equation 4 can be re-written as  

( )'λλ ***trace  = .    (6) 

Since  * is a scalar and ’ = 1 (Equation 5), equality of   and  * is reached:  

( ) ****trace  == 'λλ .   (7) 

In sum, starting with estimating factor loadings under the condition of  = 1 and pro-

ceeding with estimating  * under the condition that factor loadings are fixed to cor-

respond to
*

i
  (i = 1,…, p) finally yields the factor variance,  *, that is in line with its 

traditional definition as the sum of squared factor loadings ( ). 
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The Effect of Modifications of the Data Dispersion  

This section addresses the consequences of influencing the dispersion of data in the 

sense of squeezing or stretching. This means that it is investigated whether and how 

squeezing or stretching the dispersion of manifest variables influences factor vari-

ances.  

Let 𝑠𝑖𝑖  (i = 1,…,p) be the variance of the ith manifest variable taken from the main 

diagonal of the empirical p × p covariance matrix, S, and 
ii

 (i = 1,…,p) an entry of 

the main diagonal of the corresponding p × p model-implied covariance matrix, , 

that is the result of fitting  to S, by an established estimation method so that  

( )
iiiiiiiiii

s  += 'with    (8) 

The right-hand part reveals the assumed underlying structure according to Equation 

1. An exact correspondence of sii and ii is not assumed because of random influences 

that can cause deviation between sii and ii impairing model fit in CFA.  

Both squeezing and stretching that are represented by 
+a  (stretching: a > 1 and 

squeezing: 1 > a > 0) can be expected to modify sii and ii in the following way:  

( )  ( )
iiiiiiiiiiiiii

aaaaaas  +=+= ''with      (9) 

The further reasoning focuses the consequence of squeezing and stretching (a) for the 

factor variance ( ). Implicitly the assumption is made that a is the same for all man-

ifest variables. The reasoning concentrates on the right-hand part of Equation 9. To 

achieve factor loadings that are in line with the definition of factor variances as the 

sum of squared factor loadings,  needs to be fixed to one so that the factor loadings 

can be estimated. This requires associating scalar a with the factor loadings:   

( ) ( )
iiiiiiii

aaaaa  +=+ ''    (10) 

This means that the expected result of estimating factor loadings under the condition 

of  = 1 represented by i
̂  (i = 1,…, p) is related to the original factor loadings in the 

following way:  

ii
a =ˆ     (11) 

This means that the factor variance reflecting squeezing or stretching, 
S&S

 , can be 

detailed as the sum of squared original factor loadings multiplied by a:  
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 ==
i

i
i

i
a 22

S&S
ˆ      (12) 

Furthermore, it is possible to relate the factor variance of squeezed and stretched data, 

S&S
 , to the factor variance of the original data, 

original
 . This just requires replace-

ment of the sum of the right-hand part according to Equation 2:     

originalS&S
 a=      (13) 

This result suggests that there is either an increase or a decrease in factor variance that 

is proportional to the effect of squeezing or stretching as it is represented by a. The 

precondition for the validity of this result is that a is the same for all manifest varia-

bles.  

 

 

The effect of the number of items 

In this section the dependency of the factor variance on the number of items is inves-

tigated since data can show differential item functioning (French & Holmes, 2016) 

that means that some manifest variables may in some samples not load on the factor, 

as is expected. The reasoning proceeds from the assumption that all manifest variables 

show the same variance. Additionally, it makes use of results achieved in investigating 

the effects of squeezing and stretching the variances of manifest variables on the factor 

variance.  

The reasoning starts from the situation of a number of manifest variables loading on 

the same factor that is modified by adding some equivalent manifest variables. To 

formalize this situation, assume a set of m manifest variables that is increased by n 

additional manifest variables loading on the same factor. Equation 2 suggests the sum-

mation of the squared factor loadings to arrive at the factor variance, nm+
 : 

 +==
+

+

n

i
i

m

i
i

nm

i
i

222

nm
    (14) 

In line with the reasoning in the previous section, we switch to an alternative way of 

describing the change from m to m + n manifest variables. This requires the transfor-

mation of the sum (m + n) into scalar 
+a : 

( ) mnma /+= .    (15) 

Scalar a enables treating an increase in number of manifest variables as treating 

stretching and treating a decrease in number as treating squeezing (see Equations 10 

to 12). Thus, the effect of adding or removing manifest variables on the factor variance 

parallels the effect of modifying dispersion on the factor variance. Consequently, the 
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conclusion from the previous section can be adopted: scalar a informs on how the 

original factor variance relates to the factor variance after the change of the number 

of manifest variables. 

 

Standardization for Controlling Differences in Dispersion 

This section addresses possible problems in comparing factor variances of factors ex-

tracted from different data sets because of differences in manifest variables’ variances. 

Such differences can mean distortion leading to incorrect conclusions. Standardiza-

tion focusing dispersion can prevent such distortion. 

Given scalar 
+a  measuring the distortion of dispersion and 

+
i

̂   

(i = 1,…, p) representing the distorted ith factor loading. The modified version of 

Equation 11 enables the achievement of dispersion-standardized factor loading i. It 

is just necessary to shift the square root of scalar a from one side of the equality sign 

to the other:   

ii

a
 ˆ1

=     (16) 

so that  

 







=

i
i

a

2

ˆ1
    (17) 

The validity of Equation 17 depends on whether scalar a correctly reflects the devia-

tion of the variances of manifest variables from 1.00 as standard.  

 

 

The Simulation Study 

A simulation study investigated the influence of the dispersion of data and the number 

of manifest variables on the factor variance using simulated data. There was no sepa-

rate treatment of the effects of dispersion and of the number of variables on factor 

variances since the analysis of their underlying structures already revealed that they 

posed the same problem (Equations 13 and 15). Simulated data with a known under-

lying structure were created for this purpose. The generated data were continuous and 

followed a normal distribution. They were arranged as matrices with different num-

bers of columns, and the entries of the columns were modified to show different de-

grees of dispersion. The factor variance was estimated by a one-factor CFA model 

that provided scaled variance parameters (see Equation 7). Proceeding from the results 
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of analyzing the effects of changing the dispersion of data and number of variables on 

factor variances, the main aim was to check whether the expected effects would hold 

when investigating simulated data. Furthermore, we probed the above-explained pos-

sibility of controlling for the influence of dispersion by standardization.  

 

Method 

Design. The study design included the dispersion of data as the first independent var-

iable. Three levels of dispersion were realized (s2 = .25, 1.0, 4.0) that could be per-

ceived as outcomes of squeezing or stretching. The number of manifest variables 

served as the second independent variable of the design. There were two levels: 10 

and 20 manifest variables. Furthermore, there was a control variable regarding the 

underlying structure (influence of source) with three expected values for factor load-

ings (weak=.35, medium =.50, strong =.65). The dependent variables of the design 

were the sizes of factor variances and factor loadings.  

Data generation. Data matrices included 500 rows and either 10 or 20 columns and 

were generated by means of three 10  10 relational patterns in the first case and three 

20  20 relational patterns otherwise. The off-diagonal entries of these patterns were 

constructed to be reproducible by factor loadings of 0.35, 0.50 and 0.65 of a one-factor 

CFA model; we referred to them as weak, medium, and strong versions, respectively. 

The diagonal entries of the relational patterns were set equal to one. Each one of the 

six relational patterns served the generation of 500 matrices of continuous and nor-

mally distributed random data [N(0,1)] using PRELIS (Jöreskog & Sörbom, 2001).  

To obtain different degrees of dispersion, the variances of the columns of the data 

matrices were modified. In one set of matrices the mean-centered data were multiplied 

by 0.25 and in another set by 4.00 so that there were three types of dispersion (vari-

ances of 0.25, 1.00 and 4.00). The variance of 1.00 was considered as outset (i.e., no 

distortion of dispersion).  

Model. The confirmatory factor model included one factor (= latent variable). The 

factor was designed to capture the systematic variation due to the latent source of 

responding. Furthermore, there were either 10 or 20 manifest variables. Because of 

the way of data generation, equal-sized factor loadings were expected. To enable the 

estimation of scaled variances, the factor loadings on the factor were constrained. Val-

ues satisfying the following equation were assigned to the factor loadings: 

=
i

i

2

1   

while the variance parameter of the latent variable was set free. Note. Equality of the 

variances of manifest variables is no precondition for scaling.  
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Statistical Investigation. Parameter estimation was conducted using maximum like-

lihood estimation (Schweizer et al., 2023). Covariances served as input to CFA. The 

variance parameter of the model served the estimation of the scaled factor variance. 

The computations were conducted using LISREL software (Jöreskog & Sörbom, 

2006). 

Average factor loadings and factor variances for different degrees of dispersion and 

different numbers of variables were calculated for comparing them with each other 

and with expected values. Furthermore, it was investigated to what extent factor var-

iances and factor loadings reflected the influence of the latent source.  

 

Results  

Results regarding the factor variance. The variances of the latent variable achieved 

in investigating data are reported in Table 1.  

The first to third columns of Table 1 inform about data characteristics due to data 

generation. The first column (dispersion) includes information on the variance of the 

manifest variables, the second column (number) on the number of manifest variables 

and the third column (influence of source) on the control variable that informs about 

the latent source. Next, there is the column providing what was expected regarding 

the factor variance. This column is subdivided into two parts. The first part gives the 

expectations according to Equation 2 and the second one according to Equation 13. 

Finally, there is the column with the means of the estimated factor variances. The 

standard deviation is added in parentheses.  
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Table 1 

Means and Standard Deviations (in Parentheses) of Estimated Factor Variances sc for 

Degrees of Dispersion, Numbers of Manifest Variables and Influences of latent Source (N 

= 500 Data Matrices) 

Dispersion Items 
Influence of 

source 

Expected variance  

       a, 

Estimated variance 

  (SD) 

0.25 10 Weak 1.22     0.31 0.31  (0.03) 

1.00 10 Weak 1.22     1.22 1.23  (0.14) 

4.00 10 Weak 1.22     4.90 4.92  (0.55) 

0.25 10 Medium 2.50     0.62 0.63  (0.05 

1.00 10 Medium 2.50     2.50 2.51  (0.22) 

4.00 10 Medium 2.50    10.00 10.03  (0.87) 

0.25 10 Strong 4.22     1.06 1.06  (0.08) 

1.00 10 Strong 4.22      4.22 4.23  (0.33) 

4.00 10 Strong 4.22     16.90 16.92  (1.33) 

0.25 20 Weak 2.45     0.61 0.62  (0.06) 

1.00 20 Weak 2.45       2.45 2.47  (0.22) 

4.00 20 Weak 2.45      9.80 9.90  (0.88) 

0.25 20 Medium 5.00     1.25 1.26  (0.10) 

1.00 20 Medium 5.0         5.00 5.04  (0.39) 

4.00 20 Medium 5.00     20.00 20.15  (1.54) 

0.25 20 Strong 8.45      2.11 2.12  (0.15) 

1.00 20 Strong 8.45      8.45 8.48  (0.61) 

4.00 20 Strong 8.45     33.80 33.97  (2.46) 

 

The results showed good correspondence between expectations and observations (last 

two columns) when the dispersion was 1.00.  When the dispersion was either 0.25 or 

4.00 and the expectation was based on Equation 2 that reflected the traditional defini-

tion of the factor variance (first part), there was a large discrepancy. In contrast, in 

expectations according to Equation 13 (second part) there was a good degree of cor-

respondence. The results regarding the number of manifest variables also suggested 

an effect. The switch from 10 to 20 manifest variables led to an increase of the factor 

variance by 100 percent. Furthermore, there was an effect of the control variable (in-

fluence of source). The factor variance increased from weak to medium and further 

on to strong under the condition of a constant number of manifest variables. 

The sizes of the effects of the independent and control variables on factor variances 

are illustrated by bars in Figure 1. 
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A 

 

 

B 

 
Figure 1.  

Illustration of the mean factor variances due to dispersion while controlling for number 

(A) and of the influence of source while controlling for number (B).  
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The bars of Figure 1A represent the effects of the levels of dispersion in combination 

with the levels of numbers of manifest variables. Obviously, there was a non-linear 

increase from weak dispersion to strong dispersion. In contrast, the increase in size 

from 10 to 20 manifest variables is always 100 percent. The bars of Figure 1B depict 

the increases due to the modifications of the influence of the latent source and the 

levels of numbers of manifest variables. The bars suggest linear increases for both the 

influence of the latent source and the numbers of manifest variables.  

In sum, the results corroborated the expected influence of the dispersion of data and 

of the number of manifest variables on the factor variance.  

 

Table 2 

Means of Estimated Factor Loadings for Degrees of Dispersion, Numbers of Manifest 

Variables and Influences of Latent Source Without (n) and With Standardization (s,n)  (N 

= 500 Data Matrices) 

                         Influence                Non-standardized                 Standardized 
Dispersion of source 

n=10 n=20 s,n=10 s,n=20 

0.25 Weak 0.17 0.17 0.35 0.35 

1.00 Weak 0.35 0.35 0.35 0.35 

4.00 Weak 0.70 0.70 0.35 0.35 

0.25 Medium 0.25 0.25 0.50 0.50 

1.00 Medium 0.50 0.50 0.50 0.50 

4.00 Medium 1.00 1.00 0.50 0.50 

0.25 Strong 0.32 0.32 0.65 0.65 

1.00 Strong 0.65 0.65 0.65 0.65 

4.00 Strong 1.30 1.30 0.65 0.65 

 

Results regarding the factor loadings. Table 2 provides results of the investigation 

of how data characteristics influenced the sizes of factor loadings. These investiga-

tions were conducted separately for the non-standardized and standardized factor 

loadings. The first column of Table 2 lists dispersion levels and the second one the 

source levels. Instead of also listing the different numbers of manifest variables, the 

results are presented separately for the two levels. Mean non-standardized factor load-

ings based on 10 and 20 manifest variables are reported in the third and fourth 
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columns, respectively. The fifth and sixth columns include the corresponding stand-

ardized factor loadings.  

There were three noteworthy observations: (1) the independent variable dispersion 

showed some degree of covariation with the non-standardized factor loadings of 10 

and 20 manifest variables but no covariation with standardized factor loadings. (2) 

The control variable that was influence of source showed covariation with non-stand-

ardized and standardized factor loadings. But, it was larger in standardized than in 

non-standardized ones. (3) The standardized factor loadings virtually corresponded to 

the expected factor loadings selected for data generation (see method section).  

 

 

Discussion 

Factor loadings and factor variances estimated in conducting CFA and SEM (Brown, 

2015; Kline, 2016) provide information on the amount of systematic variation of data 

captured by the factors of the measurement model. This information can be considered 

complementary to the information on model fit (DiStefano, 2016; Hu & Bentler, 

1999). While model fit informs about the completeness in capturing the systematic 

variation of data, factor loadings and factor variance focus the amount of captured 

systematic variation. A particular property of factor loadings and factor variances is 

that they provide information on parts of a complex model structure. For example, 

there may be several trait and method factors of a multitrait-multimethod model 

(Byrne, 2016), an item-position model (Zeller, Reis, & Schweizer, 2017) or a speed-

effect model (Ren, Wang, Sun, Deng, & Schweizer, 2017) where information on the 

contributions of individual factors is of particular interest.      

The interdependency of parameters of the covariance model has hampered the con-

sideration of the variance parameter as a source of information. The recent availability 

of several scaling methods and analyses of their properties (Little et al., 2006; Klopp 

& Klößner, 2020; Schweizer, 2011; Schweizer et al., 2019) has changed the situation 

since it has become possible to take control of this dependency. Furthermore, since 

factor-analytic methods have become available for decomposing systematic variation 

into parts representing different systematic influences, it is possible and informative 

to learn about the sizes of the parts captured by factors. For example, it might be in-

teresting to compare the sizes of systematic variation due to traits and method effects 

(Campbell & Fiske, 1959). Various method effects can potentially impair measure-

ment and need to be controlled in investigations of the validity of data (Kubinger, 

2008; Maul, 2013; Schweizer, 2020). 

In the simulation study, we investigated the effects of different levels of dispersion 

that could be interpreted as levels of squeezing or stretching (Vogt & Johnson, 2015) 

on the factor variance. The estimated variances showed the expected changes based 

on the analyses of the properties of variances. Although the effect of dispersion was 
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only a simulated effect observed under restricting assumptions, the results made clear 

that the influence of date dispersion on factor variances is an important issue.  

The effect of the number of manifest variables on the factor variance was no surprise, 

as it was in agreement with the definition of factor variances as sums of squared factor 

loadings. The increase in factor variance differed from the increase in reliability pre-

dicted by classical test theory (Johnson & Morgen, 2016).  

A limitation of the reported study is the assumptions that manifest variables do not 

differ in their dispersion and factor loadings. Although in real data manifest variables 

are unlikely to display the same degree of variation regarding dispersion and factor 

loadings, we do not expect that investigations using real data will lead to entirely dif-

ferent results. Another limitation is that effects of non-normality of data in parameter 

estimation that influence the variance parameter (Schweizer, DiStefano, & French, 

2023) are ignored. Furthermore, performance under mis-specifications of models that 

can provide additional important information (Themessl-Huber, 2014) was not con-

sidered. But, it is up to further research to create more flexible predictions of the ef-

fects of dispersion and the number of manifest variables.    

In brief, factor variances are statistics that provide information on the amount of sys-

tematic variation for which factors account. However, factor variances not only reflect 

systematic variation but also show various dependencies, such as data dispersion, the 

number of manifest variables, and the underlying structure including the strength of 

relation between manifest and latent variables. These dependencies must be taken into 

consideration when interpreting factor variances. The standardization of factor load-

ings can help controlling for these dependencies. 
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