
Psychological Test and Assessment Modeling, Volume 65, 2023 (1), 145-178 

Predicting Problem-Solving Proficiency 

with Multiclass Hierarchical Classification 

Using Process Data: A Machine Learning 

Approach 
 

Qiwei He1, Qingzhou Shi2, Elizabeth L. Tighe3 

 

1 Educational Testing Service 
2 College of Education, University of Alabama 
3 Department of Psychology, Georgia State University 

Abstract 

Increased use of computer-based assessments has facilitated data collection processes that cap-

ture both response product data (i.e., correct and incorrect) and response process data (e.g., 

time-stamped action sequences). Evidence suggests a strong relationship between respondents’ 

correct/incorrect responses and their problem-solving proficiency scores. However, few studies 

have reported the predictability of fine-grained process information on respondents’ problem-

solving proficiency levels and the degree of granularity needed for accurate prediction. This 

study uses process data from interactive problem-solving items in the Programme for the Inter-

national Assessment of Adult Competencies (PIAAC) to predict proficiency levels with hierar-

chical classification methods. Specifically, we extracted aggregate-level process variables and 

item-specific sequences of problem-solving strategies. Two machine learning methods – ran-

dom forest and support vector machine – affiliated with two multiclass hierarchical classifica-

tion approaches (i.e., flat classification and hierarchical classification) were examined. Using 

seven problem-solving items from the U.S. PIAAC process data sample, we found that the hi-

erarchical approach affiliated with any machine learning method performed moderately better 

than the flat approach in proficiency level prediction. This study demonstrates the feasibility of 

using process variables to classify respondents by problem-solving proficiency levels, and thus, 

supports the development of tailored instructions for adults at different levels. 

Keywords: multiclass hierarchical classification, flat classification, machine learning, process 

data, problem-solving proficiency, PIAAC 
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1 Introduction 

Increased use of computer-based assessments has facilitated data collection processes 

that record not only response data (i.e., correct and incorrect) but also granular process 

data (e.g., time-stamped action sequences) (Goldhammer et al., 2013; He et al., 2021). 

Interactive items in low-stakes, large-scale educational assessments are designed to 

provide scenario-based tasks and, as such, to better reflect what individuals know and 

can do in the 21st century (Ulitzsch et al., 2021). For example, the Programme for the 

International Assessment of Adult Competencies (PIAAC; OECD 2016) and the Pro-

gramme for International Student Assessment (PISA; OECD 2014, 2017) both con-

tain complex and interactive problem-solving items that reflect skills needed in daily 

life. Process data (e.g., keystroke inputs, mouse clicks) often capture information 

about the naturally occurring behaviors that respondents display during interactions 

with digital problem-solving tasks (e.g., Eichmann et al., 2020; Goldhammer et al., 

2014; von Davier et al., 2019). 

Data stored in log files, referred to as process data in the present study, are able to 

describe when and how respondents employ actions to solve interactive tasks (He et 

al., 2021). Recent evidence has revealed a strong relationship among respondents’ 

behavioral patterns, problem-solving strategies, and proficiency scores (e.g., He et al., 

2019; He & von Davier, 2016; Liao et al., 2019; Tang et al., 2020). However, few 

studies have reported the predictability of fine-grained process information on re-

spondents’ problem-solving proficiency levels and the degree of granularity required 

for accurate prediction. This quantified information would assist in developing more 

tailored instruction (e.g., specific instructions to guide low-skilled adults to use basic 

email functions such as reply, reply to all, and provide more advanced instruction for 

relatively high-skilled adults to identify key information when searching webpages) 

to help improve respondents’ problem-solving proficiency levels.  

In this paper, we use process data from seven PIAAC Problem Solving in Technology 

Rich Environment (PSTRE) items to demonstrate the predictability of process data on 

adults’ problem-solving proficiency levels with supervised machine learning meth-

ods. Specifically, we used random forest (RF) and support vector machines (SVM) 

affiliated with two multiclass hierarchical classification approaches (i.e., flat classifi-

cation and hierarchical classification). Both aggregate-level process variables (i.e., re-

sponse time, number of actions, and time to the first action) and item-level process 

variables (i.e., sequence similarity and efficiency) that specify problem-solving strat-

egies with action sequences were used in this study.  

 

1.1 Problem-solving proficiency in PSTRE 

PIAAC was administered in over 30 countries between 2012 and 2017 with a focus 

on adults aged 16 to 65 years old. PIAAC consists of an extensive background survey, 

which includes a wide range of socio-demographic information from respondents 
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(e.g., educational attainment, immigrant status, labor market status, information on 

familiarity with information, communication, and technology (ICT), and the use of 

digital technologies at work and in everyday life) as well as literacy, numeracy, and 

PSTRE assessments (Schleicher, 2008). 

Problem-solving proficiency, captured in the PIAAC PSTRE domain, is defined as 

“using digital technology, communication tools, and networks to acquire and evaluate 

information, communicate with others, and perform practical tasks” (OECD, 2009, p. 

9). In other words, this domain does not focus specifically on assessing computer lit-

eracy or basic ICT skills, but rather encompasses the active construction of strategies, 

goals, and planning that adults need to solve complex problems in personal, civic, and 

working environments that require the use of digital technologies (OECD, 2009).  

There are three primary dimensions underlying the construct of PSTRE: (1) cognitive 

dimensions, which include planning, goal setting and progress monitoring, self-organ-

izing, acquiring and evaluating information, and using information; (2) task-specific 

dimensions, which include items that require single or multi-steps, implicit or explicit 

problem prompts, and single or multiple constraints; and (3) technology dimensions, 

which includes email, web, and/or spreadsheet digital environments. These dimen-

sions characterize the plethora and complexity of the skills that feed into digital prob-

lem-solving. For example, a PSTRE item may ask an adult to engage in online shop-

ping by reviewing and clicking on webpages that follow specific criteria (e.g., identi-

fying customer service for return policy; see an example item in Figure 1). This single 

item includes a simulated web environment and an email environment (technology 

dimension), multiple steps to complete (clicking through multiple webpages; task-

specific dimension), and acquiring, evaluating, and making use of information from 

the various webpages to meet the specified criteria (cognitive dimension). In addition, 

this item assumes that the respondent can integrate basic ICT skills (e.g., clicking on 

different web pages, identifying a newly received email) and foundational literacy 

skills (e.g., reading the item prompt to understand the criteria and email content). 

There are four proficiency levels specified in PSTRE: Below Level 1 (the lowest 

level), Level 1, Level 2, and Level 3 (the highest level)1. In accordance with the 

PSTRE task design framework (OECD, 2009, 2012), adults performing at PSTRE 

proficiency Below Level 1 (0 to 240 score points) are only able to complete tasks that 

involve the use of a single function within a generic interface to meet one explicit 

criterion without any categorical, inferential reasoning, or transforming of infor-

mation. At this level, few steps are required and no subgoal has to be generated. Adults 

who perform at Level 1 (241 to 290 score points) can solve tasks that typically demand 

the basic use of widely available and familiar technology applications, such as email 

or a web browser, which involve few steps and a minimal number of operators. At 

this level, there is still little navigation required to access the information, and the 

 

1 The proficiency level corresponds to the item difficulty level in PIAAC, which was derived by a linear 

transformation from the item parameters into the performance score scale. See more details in the PIAAC 

technical report (OECD, 2016). 
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problem may be solved regardless of a respondent’s awareness and use of specific 

tools and functions. Adults performing at PSTRE proficiency Level 2 (291 to 340 

score points) can solve tasks that typically require the use of both generic and more 

specific technology applications (e.g., online form, spreadsheet), which involve mul-

tiple steps and operators (e.g., extract information from a spreadsheet and then input 

the useful information into an email environment). Some navigation across pages and 

applications is required to solve problems at this level. In addition, Level 2 adults need 

to demonstrate the ability to apply tools to resolve complex problems. For the highest 

level, PSTRE Level 3 (341 to 500 score points), adults can solve tasks with the use of 

both generic and more specific technology (e.g., reserve a meeting room online). At 

this level, tool usage (e.g., sorting and searching functions in the spreadsheet environ-

ment) is required to solve the items. Adult respondents must use clear self-defined 

subgoals to solve the task, especially because many of the tasks have unexpected out-

comes and impasses (e.g., taking the time conflict and room capacity into considera-

tion when booking a meeting room online). The hierarchical structure of the PSTRE 

proficiency levels allows us to characterize adults’ response profiles and test-taking 

behaviors by two levels, namely, a binary classification, high proficiency (Level 2/ 

Level 3) and low proficiency (Below Level 1/Level 1) groups at the first level, and 

four PSTRE proficiency groups (i.e., Below Level 1, Level 1, Level 2, and Level 3) 

at the second level under the high and low categories correspondingly.    

 

Figure 1.  

An example PSTRE item 

 

Note. An example item with an online shopping web environment from the Education and 

Skills Online Assessment, which shares the item interface structure with the PIAAC item 

design.  
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1.2 Exploring PSTRE proficiency with process data 

As noted above, the complexity of defining adults’ PSTRE proficiency brings new 

challenges in how we measure problem-solving skills, which calls for more data-

driven evidence to describe the interactive problem-solving process that goes beyond 

response data alone (correct/incorrect on the task). As suggested by many recent stud-

ies (e.g., Gao et al., 2022; He et al., 2019b; Ulitzsch et al., 2022a), process data may 

be more appropriate to fully describe adults’ behaviors and strategies during interac-

tive tasks, such as PIAAC PSTRE items.  

Much of the past process data research focuses on a single PSTRE item and compares 

respondents’ strategies across different respondent groups by performance (i.e., suc-

cess or failure) or demographics (e.g., gender, age, occupation, country). For example, 

Liao et al. (2019) focused on a particularly difficult PSTRE item (U02) and described 

the top action sequences (e.g., view folder, go to web environment, click cancel but-

ton) and how often each action was performed by respondents with different back-

ground characteristics (e.g., educational attainment, income). Results indicated differ-

ences by background characteristics, such that those with higher educational attain-

ment and higher incomes made clearer goals to solve the item (based on which actions 

they undertook and applied) and were more likely to use pertinent actions to help solve 

the item (e.g., sorting and help actions). In another example, He and von Davier (2015, 

2016) examined strategies on a single PSTRE item across countries. The higher per-

forming group was characterized by more frequent use of the searching/sorting tool, 

whereas the lower performing group was more likely to engage in random clicks and 

use the help function frequently. In addition, the researchers reported that the lower 

performing group presented more hesitative behaviors, such as clicking the “cancel” 

button more frequently when approaching the next item. Xiao et al. (2021) applied 

hidden Markov models on time-stamped action sequence data to identify the latent 

states and transitions between states underlying the problem-solving process on two 

PIAAC PSTRE items. The groups with correct responses on both items were more 

engaged in the tasks (e.g., significantly longer action sequences) and used efficient 

tools more frequently to solve the tasks (e.g., using sorting and searching functions in 

a spreadsheet). In contrast, the group with incorrect responses was more likely to use 

shorter action sequences and exhibit more hesitative behaviors (e.g., clicking on the 

cancel button before heading to the next item or repeatedly selecting and canceling 

the sorting function). Most recently, Ulitzsch et al. (2022b) explored the early predict-

ability of behavioral outcomes on interactive tasks with early-window clickstream 

data. These data can give insight into a respondent’s progression through an item that 

ultimately leads to an incorrect response, for example, skipping an item immediately, 

pausing and then skipping an item, clicking and completing half of the item, or click-

ing through a series of screens and ultimately ending up selecting the incorrect answer. 

Based on derived features related to the occurrence, frequency, sequentiality, and tim-

ing of performed actions from early-window clickstreams, the authors used extreme 

gradient boosting to dynamically classify respondents who have a high probability of 

being out of track when solving a PSTRE task. These examples demonstrate the utility 
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of using process data to gain deeper insights into the strategies and processes of re-

spondents on complex PSTRE items. 

Some recent studies have also explored the possibility of identifying respondents’ 

general behavioral features across several items. These studies have examined the 

consistency of respondents’ behavioral patterns and strategies under various condi-

tions. For example, Tang et al. (2020) explored process data from 14 PIAAC PSTRE 

items to extract latent variables through a multidimensional scaling framework and 

computed a dissimilarity measure to quantify the discrepancy between response pro-

cess pairs. The authors found that a substantial amount of information was preserved 

in the process data and was predictive of demographic characteristics (age, gender) 

and adults’ basic literacy and numeracy skills with a high accuracy rate. He et al. 

(2021) developed two process indicators (i.e., sequence similarity and efficiency) 

across different items that described the similarity and efficiency of respondents’ ac-

tion sequences against predefined sequences and reported high associations of these 

two features with problem-solving proficiency. Chen et al. (2019) proposed a model-

based approach for the dynamic prediction of behavioral outcomes under different 

interactive environments. More specifically, the authors proposed to include features 

as time-varying covariates in an event history model, which at any given time during 

the solution process can be used to predict outcomes of the solution process (i.e., suc-

cess or failure and time spent on the task). Finally, Xiao and Liu (2023) extended the 

method proposed in Chen et al. (2019) by defining the easiness parameter from the 

task level to the state level and adding the task’s process characteristics into consid-

eration.  

All of these examples show the enormous potential of process data variables to predict 

PSTRE proficiency in addition to the information provided by the response data. Pro-

cess data are highly informative in describing patterns of behaviors from different 

dimensions, including engagement, efficiency, response patterns, and strategies, 

which to some degree may be indicative of the extent to which adult respondents do 

or do not struggle with complex PSTRE tasks. For example, many low-skilled adults 

face challenges with basic technology skills, foundational literacy and numeracy 

skills, and/or problem-solving skills (Vanek, 2017). Therefore, process data may help 

identify breakdowns throughout the problem-solving process for these adults that 

would not be possible with response data (correct/incorrect) alone. This would enable 

researchers to develop better digital assessments tailored to low-skilled adults as well 

as education systems to tailor and integrate explicit digital problem-solving instruc-

tional practices to better equip these adults for the workforce and using technology in 

daily life (Cummins et al., 2019; Vanek, 2017).   
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1.3 The present study 

The purpose of this paper is to demonstrate the predictivity of process data on PSTRE 

proficiency levels by highlighting a prediction process using supervised machine 

learning methods affiliated with hierarchical classification approaches. Specifically, 

we address two research questions:  

(1) Can the process variables accurately predict adults’ PSTRE proficiency 

levels? Which variable(s) are the most important in the prediction pro-

cess?  

(2) How do the four classification models perform in predicting PSTRE 

proficiency levels? From a technical perspective, are the model perfor-

mances significantly different from each other?  

 

The remainder of this article is structured as follows. In Section 2, we introduce the 

dataset, process variables, and machine learning methods (RF and SVM) with an af-

filiation of two classification approaches (i.e., flat and hierarchical classification). In 

Section 3, we present the performance results of the four models and report the most 

important process variables in the prediction process. Finally, in Section 4, we discuss 

the implications of our findings and provide an outlook for further development of 

prediction models using process data. 

 

2 Method 

2.1 Data 

In this study, we used response and process data from seven items that were adminis-

tered in the second cluster of PIAAC PSTRE (PS2) with a focus on the U.S. sample. 

A total of 1,338 adult respondents were available in the PS2 module. To evaluate 

classification performance and to avoid confusion from missing values, we only in-

cluded adults who responded to all seven items in the PS2 module (N = 935). Based 

on PSTRE proficiency score thresholds2 on the first PSTRE plausible value3, the sam-

ple consisted of 49.3% in the low PSTRE proficiency group (i.e., Below Level 1 and 

 

2 Performance on PSTRE can be categorized into four levels: Below Level 1 (0–240), Level 1 (241–290), 

Level 2 (291–340), and Level 3 (341–500). For more details, refer to OECD (2016). 

3 The plausible value in PIAAC was derived from the population model that combined information from 

both the sample’s survey and demographic background and response information. In order to highlight 

the classification performance of process data, in this study, we only used the first one out of ten plausible 

values derived from repetitive estimations in PIAAC. This approach helped place the respondents in a 

unique labeled category, thus enabling comparisons among machine learning methods affiliated with flat 

and hierarchical approaches. For more details of plausible values, refer to PIAAC technical report in 

OECD (2016).  
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Level 1) and 50.7% in the high PSTRE proficiency group (i.e., Level 2 and Level 3). 

It is noted that the sample sizes in Below Level 1 and Level 3 were imbalanced and 

relatively small, 8.8% and 6.4% of the whole sample, respectively. 

Table 1 displays the sample demographic profiles split by the four PSTRE proficiency 

levels. The sample was relatively balanced in terms of gender, with 53% self-reporting 

as female. One interesting note was that females were over-represented in the low 

proficiency group (Below Level 1 and Level 1), nearly 10% higher than the male 

group. Approximately half of the sample attained a level of education higher than a 

high school diploma. Adults with lower educational attainment (i.e., high school and 

below) represented a larger proportion in the low proficiency group. The average age 

of the sample was 38 (SD = 13.9), with older adults over-represented in the Below 

Level 1 proficiency group (M = 45 years old) and slightly younger adults in the Level 

2 proficiency group (M = 36 years old). Comparative data on the self-reported use of 

digital technologies at work and at home revealed positive associations with respond-

ents’ PSTRE proficiency levels. The lowest value of ICT at Home (1.80) and ICT at 

Work (1.59) was reported in the Below Level 1 group, whereas the highest value was 

reported in the Level 3 group. 
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Table 1 

Sample Description by PSTRE Proficiency Levels (N=935) 

 

 

2.2 Instrument 

As mentioned above, this study only included the seven items from the PS2. The ra-

tionale for this was to include the items in which the predefined action sequences had 

already been fully validated by item developers and content experts at the time that 

we developed this study. The predefined action sequences were critical in developing 

new process variables across items in this study, which is described in detail in section 

2.3. These items were administered to the respondents in a fixed order, and there were 

no limits on time or solutions imposed. Of the seven items, three are dichotomous and 

four are polytomous. Table 2 summarizes the content, difficulty, and environments of 

 Below Level 1 Level 1 Level 2 Level 3 Total 

N (%) 82 (8.8) 379 (40.5) 414 (44.3) 60 (6.4) 935 (100) 

Gender 

     

Female (%) 40 (8.1) 227 (45.8) 201 (40.5) 28 (5.6) 496 (100) 

Male (%) 42 (9.6) 152 (34.6) 213 (48.5) 32 (7.3) 439 (100) 

Education 

     

Less than high 
school (%) 

12 (16.7) 35 (48.6) 25 (34.7) 0 (0) 72 (100) 

High school (%) 41 (11.7) 167 (47.9) 133 (38.1) 8 (2.3) 349 (100) 

Above high 
school (%) 

29 (5.7) 176 (34.3) 256 (49.9) 52 (10.1) 513 (100) 

Age      

Mean 45.01 38.82 36.23 38.97 38.23 

SD 13.48 14.77 12.95 12.2 13.91 

ICT Home 

     

Mean 1.80 2.23 2.55 2.71 2.37 

SD 0.88 0.88 0.98 0.58 0.94 

ICT Work 

     

Mean 1.59 2.09 2.37 2.45 2.23 

SD 0.82 1.10 1.14 1.02 1.11 

Note. PSTRE proficiency score is categorized into four levels: Below Level 1 (0–240), Level 1 (241–290), 
Level 2 (291–340), and Level 3 (341–500). 
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each item. The third and fourth columns illustrate the item difficulty score and its 

corresponding PIAAC PSTRE proficiency level. The most difficult items were clas-

sified at Level 3, and the easiest were classified at Level 1. It is important to note that 

the difficulty parameter of each item was calibrated by the response data only. In other 

words, the high-difficulty item was not necessarily the one with the most complicated 

interactive interface or which required a longer time or more action sequences to 

solve. For example, U02 and U11b are both high-difficulty items at Level 3. However, 

item U02 involves more complicated procedures and requires respondents to switch 

between web and email environments, whereas item U11b only involves a single en-

vironment with a straightforward email interface design. To complete these two items, 

on average, adults used 4.7 minutes and 66.2 actions on U02 but used only half the 

amount of time and much fewer actions, that is, 2 minutes and 36 actions, to complete 

U11b. The last three columns in Table 2 present the environments (i.e., email, web, 

and spreadsheet) of each item. In the PS2 module, three PSTRE items involve multiple 

environments, whereas four items involve only one environment.    

 

Table 2 

Item Content, Difficulty Level, and Environments of the Seven PIAAC PSTRE Items in 

PS2 

 

Item 

ID 
Item Content Score Level 

Number 

of RS 

 
Environments 

 

 
Email Web 

Spread-

sheet 

 

U19a Club Membership 268 1 4  X  X  

U19b Club Membership 296 2 4    X  

U07 Book Order 305 2 2   X   

U02 Meeting Room 346 3 5  X X   

U16 Reply All 286 1 16  X    

U11b Locate Email 355 3 18  X    

U23 Lamp Return 321 2 1  X X   

Note. The score thresholds to difficulty levels follow the rule: Below Level 1 (0–240), Level 1 (241–290), 

Level 2 (291–340), and Level 3 (341–500). For more details, refer to OECD (2016). RS indicates the pre-

defined action sequences (i.e., reference sequences) for each item. 
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2.3 Process variables 

We extracted three aggregate-level process variables and two item-level process var-

iables for prediction models in this study. The three aggregate-level process variables 

included total response time (T), number of actions (including keystrokes) (A), and 

time to the first action (F), which have been widely used in recent studies to describe 

respondents’ test-taking behaviors in reading, math, complex problem solving, and 

collaborative problem solving (e.g., de Boeck & Scalise, 2019; Engelhardt et al., 2019; 

Goldhammer et al., 2014; Han et al., 2019; He et al., 2022; Liao et al., 2019; Stadler 

et al., 2019) and to enhance latent ability estimation in psychometric joint modeling 

(e.g., Lu et al., 2020; Qiao et al., 2022; Zhang et al., 2022). 

The two item-level process variables were derived from fine-grained action se-

quences, specifically by computing the sequence distance between individual action 

sequences and the predefined (reference) ones established by item developers and 

content experts. These distance measures facilitate the development of new indicators 

that characterize the behavior of respondents across items (He et al., 2021). In this 

study, we extracted two indicators, similarity and efficiency, which have been previ-

ously proposed by He et al. (2019, 2021). We extracted these indicators by computing 

the distance measures between the observed and the reference sequence with the long-

est common subsequence (LCS) method. The LCS of a set of sequences is a subse-

quence whose length equals the maximum number of actions that are shared, in se-

quential order, with the reference sequences. (See algorithms for computing LCS in 

Appendix A. For more details about the LCS method see He et al., 2021; Sukkarieh 

et al., 2012). 

The indicator similarity captures how much, on average, a respondent’s sequence de-

viates from a reference sequence (or the closest reference sequence in the case of items 

designed to have multiple reference sequences) predefined by item developers and 

content experts. For each item, similarity is defined as the ratio between the length of 

LCS (i.e., 𝑙𝑒𝑛(𝐿𝐶𝑆)) and the length of the reference sequence (i.e., 𝑙𝑒𝑛(𝑅𝑆)). The 

higher the ratio, the more similar the observed sequence is to the reference sequence. 

The indicator efficiency measures a respondent’s ability to solve items using the min-

imum possible number of actions and is operationalized by the number of actions un-

dertaken by a respondent over the number of actions contained in the reference se-

quence. High efficiency indicates that there are no or few excess (redundant) actions. 

Efficiency is defined as the ratio between the length of LCS (i.e., 𝑙𝑒𝑛(𝐿𝐶𝑆)) and the 

length of the observed sequence (i.e., 𝑙𝑒𝑛(𝑂𝑆)) and measures the degree to which the 

LCS and the actual observed sequence overlap. A ratio close to 1 implies that a large 

proportion of the LCS can be matched with the OS, namely, the respondent solving 

the problem in an efficient way without performing too many actions that do not be-

long to the reference sequence. 

As shown in the fifth column in Table 2, it is noted that the predefined action se-

quences do not have to be unique in order to successfully solve an item. In the PS2, 
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only one item (U23) has a single unique predefined action sequence to solve the item, 

all of the others have multiple solutions. Item U11b represents the maximum number 

of available predefined action sequences, with 18 available solutions to successfully 

solve the item. It is possible to adapt the LCS method to fit situations in which multiple 

solutions for a task exist: in these contexts, the reference sequence that generates the 

longest LCS when paired with the observed sequence would be retained as the solu-

tion path that the respondent was most likely to follow (He et al., 2021). For example, 

when identifying key information in a spreadsheet item, respondents are allowed to 

use either the searching or sorting function. Therefore, there could be at least two 

predefined reference sequences: one which uses the search function (RS_Search), and 

the other which uses the sorting function (RS_Sort). The LCS would be calculated by 

matching the individual action sequence with these two predefined reference se-

quences, respectively, thus, derived as two LCSs (e.g., LCS1_search and LCS2_sort). 

The longer LCS within the two, for instance, LCS2_sort, would indicate that the ob-

served action sequence shares higher similarity with RS_Sort. Therefore, we would 

assume that this respondent was more likely to use the sorting function strategy, and 

hence, we would use the LCS2_sort against RS_Sort to calculate the similarity and 

efficiency for this respondent on this specific item.  

Positive correlations have been reported between similarity and task completion in 

previous studies (e.g., Hao et al., 2015; He et al., 2021), whereas efficiency has been 

found to be negatively correlated with PSTRE proficiency scores (e.g., He et al., 2021; 

Ulitzsch et al., 2022a). This suggests that it is challenging to achieve high proficiency 

scores in an efficient way, that is, minimizing the number of redundant or useless 

actions to solve digital tasks successfully. 

 

2.4 Multiclass hierarchical classification 

Multiclass classification is the single-label problem of categorizing instances into pre-

cisely one of several (more than two) classes. Hierarchical classification is a system 

of grouping things according to a hierarchy. In the field of machine learning, hierar-

chical classification is sometimes referred to as instance space decomposition, which 

splits a complete multiclass problem into a set of smaller classification problems. It is 

different from the multi-label classification, in which the labels are nonexclusive and 

there is no constraint on how many classes the instance can be assigned to. In the 

current study, each respondent was labeled as only one class (i.e., Below Level 1, 

Level 1, Level 2, and Level 3) based on response data on PIAAC PSTRE items. These 

labels were set as a “gold standard” in the classification evaluation. We explored two 

multiclass hierarchical approaches to examine the prediction performance of process 

data affiliated with RF and SVM techniques.  
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2.4.1 Flat approach 

The flat classification approach, which is the simplest one in handling hierarchical 

classification problems, completely ignores the class hierarchy, typically predicting 

only classes at the leaf nodes. This approach behaves like a traditional classification 

algorithm during training and testing. However, it provides an indirect solution to the 

problem of hierarchical classification, because, when a leaf class is assigned to an 

instance, one can consider that all of its ancestor classes are also implicitly assigned 

to that instance. However, this very simple approach has the disadvantage of having 

to build a classifier to discriminate among a large number of classes (all leaf classes), 

without exploring information about parent-child class relationships present in the 

class hierarchy. Panel (a) in Figure 2 illustrates this approach used in the current study. 

Starting from the “root” level, the flat classification approach trains the data by four 

classes (i.e., Below Level 1, Level 1, Level 2, and Level 3) with equal weights at one 

time without taking the higher hierarchy level (high and low) into consideration.  

 

2.4.2 Hierarchical approach 

The hierarchical approach (also known as a top-down approach) considers the tree-

based structure in the dataset and exploits the local information on relationships 

among different levels. In the current study, we used the local classifier per node ap-

proach, which consists of training one binary classifier for each node of the class hi-

erarchy. Panel (b) in Figure 2 shows the tree structure following a hierarchical ap-

proach. The training phase consisted of two levels: in the first level, we trained the 

classifier to distinguish the high and low proficiency groups, and then within the high 

and low group (parent node), respectively, we trained the classifier for the second 

level, that is Below Level 1 and Level 1 (binary child nodes) under the low proficiency 

group, and Level 2 and Level 3 (binary child nodes) under the high proficiency group. 

In the testing phase, the system first predicts its first level class, and then it uses that 

predicted class to narrow the choices of classes to be predicted at the second level, 

and so on, recursively, until the most specific prediction is made (for more details 

about hierarchical classification see Koller & Sahami, 1997; Silla & Freitas, 2011).  

However, the hierarchical approach has two issues that need to be further considered: 

error propagation and overfitting. The first problem arises from the fact that we are 

chaining decisions and thus, propagating the error to each subsequent step. The sim-

plest procedure for avoiding this problem consists of blocking, in which entering the 

next step of prediction can only happen if we achieve sufficient confidence in the 

prediction of the previous node. This will lead to cases where our predictions are not 

as informative as possible (i.e., predicting only a higher node of the tree), but they will 

not be as error prone. In this study, we set the confidence threshold as 0.8 in the 
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prediction of the first level4 (high/low); that is, both positive predictive value (PPV) 

and negative predictive value (NPV) were required to be at least 0.8 to continue the 

prediction to the second level. Otherwise, the prediction in this instance will be 

blocked at the first level and only output the class as high or low and will be labeled 

as non-classification in the second level.   

The second problem of overfitting is common to all types of classification problems, 

but it is particularly pressing in the hierarchical case. When we navigate our hierar-

chical structure, we are reducing the amount of data present in each step (because we 

are only focusing on a subset of potential outcomes). The problem can arise whenever 

we start training classifiers based on a small dataset (i.e., with a small number of ob-

servations). The probability increases that our statistical modeling of that category 

becomes very strict since each observation is a major contributor, which can lead to 

poor generalization performance. We monitored the possible overfitting issue in 

model training by dynamically checking the training predictive accuracy in both flat 

and hierarchical approaches and by employing the nested cross-validation method to 

reduce potential overfit in training, which is explained further in section 2.6.   

 

Figure 2.  

An illustration of flat classification and hierarchical classification approaches 

 

 

4 The confidence threshold is usually set at 0.8 in psychology and psychiatry prediction tests. The PPV 

means the percentage of a case predicted as a positive test and actually is positive. The NPV is just the 

opposite. The PPV and NPV are considered acceptable in the range of 0.8 to 1.0. We set 0.8 as the thresh-

old in the first level to maximize (but within an acceptable range) case prediction reaching the second 

level where a more accurate prediction of case labels can be achieved. This threshold could be adjusted 

as needed in real practice. It is recommended to set a range of thresholds and to provide complete infor-

mation for diagnosis or screening (for more details, refer to Dietterich, 1998; He et al., 2012, 2017). 
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2.5 Supervised machine learning 

Supervised machine learning methods aim to train algorithms that map feature vectors 

to labels based on input-output pairs and infer this function to classify new data or 

predict class labels for unseen instances. For the present study, the goals of supervised 

machine learning were specified as training classifiers based on respondents’ behav-

ioral patterns (e.g., process variables) to match the class labels (i.e., PSTRE profi-

ciency levels), thus, accurately predicting class labels (e.g., proficiency levels) for 

new process data collected under similar settings. We employed two commonly used 

and well-functioned machine learning methods, RF and SVM, affiliated with different 

hierarchical classification settings to predict respondents’ proficiency levels with their 

process data. 

 

2.5.1 Random Forest 

The RF algorithm (Breiman, 2001), an extension of the classification and regression 

tree (CART), is a random ensemble of multiple trees. This algorithm increasingly ad-

justs itself by randomly combining a predetermined number of single tree algorithms. 

By aggregating the prediction results obtained from individual trees, the forest reduces 

prediction variance and improves overall prediction accuracy (Dietterich, 2000). 

The complexity of the random forest algorithm is characterized by combinations of 

two hyperparameters, number of trees (𝑛𝑡𝑟𝑒𝑒) and number of predictor variables used 

to grow a tree (𝑚𝑡𝑟𝑦). Empirical studies (Breiman, 2001; Janitza & Hornung, 2018; 

Mitchell, 2011) reveal that 𝑚𝑡𝑟𝑦 and 𝑛𝑡𝑟𝑒𝑒 are more influential than other factors in 

controlling the complexity of the random forest algorithm. In this study, the size of a 

tree (i.e., the number of generations or the total number of nodes) was not restricted, 

and the number of branches used at each split was fixed at 2. We focused on exploring 

the combinations of 𝑚𝑡𝑟𝑦 and 𝑛𝑡𝑟𝑒𝑒, where 𝑛𝑡𝑟𝑒𝑒 =  100, 300, 500, and 𝑚𝑡𝑟𝑦 =
 4, 6, 8, 10, 12. The tuning results showed that  𝑛𝑡𝑟𝑒𝑒 = 100 and 𝑚𝑡𝑟𝑦 = 4 produced 

the highest and most stable predictive accuracy rate in the flat approach. The hyperpa-

rameters were marginally increased to 𝑛𝑡𝑟𝑒𝑒 = 300 and 𝑚𝑡𝑟𝑦 = 8 in the hierarchical 

approach to achieve the most optimal results. Therefore, we set these two sets of hy-

perparameters in RF to report the prediction rate. 

 

2.5.2 Support Vector Machine 

The SVM (Vapnik & Lerner, 1963) uses a kernel function to create an optimal bound-

ary (maximal margin hyperplane) that classifies the dataset in different regions. The 

maximal margin hyperplane is generated by maximizing the margins, or the distance 

of the vectors from the hyperplane, and the data points closest to the hyperplane (i.e., 

the support vector points that determine the hyperplane’s position and orientation).  
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The function of kernel is to take data as input and transform it into the required form. 

In this study, we tried both linear and nonlinear kernel functions in the SVM classifier, 

including linear kernel, polynomial kernel, Gaussian radial basis function (RBF), and 

sigmoid kernel, to explore the underlying structure of process information. Table 3 

presents the kernel functions and their corresponding equations and parameters to be 

estimated.  

 

Table 3 

Kernel Functions (Linear, Polynomial, RBF, and Sigmoid) 

Kernel Function Equation Parameters 

Linear 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖𝑥𝑗 N/A 

Polynomial 𝑘(𝑥𝑖 , 𝑥𝑗) = [𝑐𝑜𝑒𝑓 + 𝛾(𝑥𝑖𝑥𝑗)]𝑑 𝛾, 𝑑, 𝑐𝑜𝑒𝑓 

RBF 𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖−𝑥𝑗‖
2
) 𝛾 

Sigmoid 𝑘(𝑥𝑖 , 𝑥𝑗) = tanh(𝛾(𝑥𝑖𝑥𝑗) + 𝑐𝑜𝑒𝑓) 𝛾, 𝑐𝑜𝑒𝑓 

Note. 𝑥𝑖 , 𝑥𝑗 are observations in the dataset, 𝑐𝑜𝑒𝑓 indicates coefficient, 𝑑 indicates degree of polyno-

mial. 

 

Besides choosing the best-fit kernel function, two hyperparameters, regularization 𝐶 

and 𝛾, also need to be carefully tuned to optimize the performance of the SVM clas-

sifier. The 𝐶 regularization parameter represents how much misclassification of the 

training data is allowed in the model. By changing the regularization parameter, we 

can increase or decrease the error in classifying training data by changing the width 

of the margin. The 𝛾 parameter decides how much influence the data points at a certain 

distance from the hyperplane will have. If gamma is high, then nearby points will be 

considered. If gamma is low, far away points will have an influence too. 

We used grid search cross-validation to tune the SVM hyperparameters, that is, to test 

all possible combinations of the values, 𝐶 and 𝛾 under each kernel model, and get 

accuracies for each combination of hyperparameters and choose the one that performs 

the best. In the current study, we set 𝐶 =  {0.1, 1, 10, 100}, gamma = {1, 0.1, 0.01, 

0.001} and the kernel function as {linear, polytomous, RBF, Sigmoid}. The hyperpa-

rameter tuning results showed the combination of 𝐶 = 0.1, 𝛾 = 0.1 with 𝑘𝑒𝑟𝑛𝑒𝑙 =
𝑅𝐵𝐹 produced the highest predictive accuracy rate. Therefore, we will fix this optimal 

setting for the SVM prediction report. This hyperparameter setting was retained in 

both flat and hierarchical approaches with the SVM model. 
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2.6 Analytic strategy 

We first trained RF and SVM models affiliated with the flat approach by directly map-

ping the 35 process variables (five process variables by seven items in total) to four 

labels (Below Level 1, Level 1, Level 2, and Level 3). We then trained the two machine 

learning methods affiliated with the hierarchical classification by two levels. In the test-

ing process, we input the test instances from the root and used the labels at the final leaf 

node as the final predicted label in both flat and hierarchical classification. However, 

the test data only needed to be predicted once at one level in the flat approach, whereas 

the data had to be predicted twice at two levels in the hierarchical approach.   

Given concerns about the small sample sizes in the two extreme groups, Below Level 1 

and Level 3, we employed a stratified nested cross-validation approach. Nested cross-

validation has an outer loop with 𝑘 folds for model evaluation and an inner loop that 

splits each of the 𝑘 outer folds into 𝑙 inner folds used for hyperparameter tuning. As 

suggested by Raschka (2018), for very small datasets, it is recommended to use a larger 

𝑘 in 𝑘-fold cross-validation for evaluating the generalization performance. We increased 

the parameter setting to 𝑙 = 20 inner folds and 𝑘 = 10 outer folds. It resulted in approx-

imately 85% of data in the training set, 5% in the validation set for parameter tuning, 

and 10% in the test data to check the generalizability of the trained models.  

The model evaluation was conducted on four classification settings: RF-flat, RF-hierar-

chical, SVM-flat, and SVM-hierarchical. We monitored six performance metrics, over-

all classification accuracy, sensitivity, specificity, PPV, NPV, and F-score derived from 

the confusion matrix (see Figure 3) alongside the area under the receiver operating char-

acteristic curve (AUC ROC) values. All analyses were conducted in R version 4.1.1 (R 

Core Team, 2021) with R package caret (Kuhn, 2008) 6.0-93 version. 

 

Figure 3.  

Confusion matrix and derived evaluation metrics 
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3 Results 

3.1 Statistical distributions of the process variables 

We extracted 35 process variables as input features in prediction models. Table 4 re-

ports the statistical distributions of process variables by each item. A further compar-

ison between the high and low proficiency groups is plotted in Figure 4. On average, 

respondents spent at least two minutes completing one PSTRE item. The high profi-

ciency group spent more time on difficult items (e.g., U02 and U11b) than the low 

proficiency group. On average, the low proficiency group spent 30 seconds longer 

solving the first two items than the high proficiency group, which may suggest that 

the low proficiency group requires more time to familiarize themselves with the test-

ing environment. We also found that respondents on average engaged in at least 20 

actions to solve one PSTRE item and used significantly more actions for challenging 

items. The high proficiency group usually used longer action sequences to solve each 

item relative to the low proficiency group, especially when the item involved multiple 

environments (e.g., U02) or required free text inputs (e.g., U16). We found that on 

average respondents spent more time initiating their first interaction at the beginning 

of the testlet and gradually reduced this time spent for the remaining items. Adults in 

the low proficiency group spent approximately 20 seconds longer than the high profi-

ciency group on the first two items (e.g., U19a and U19b) to get acquainted with the 

task environment.  

We also obtained two item-level sequence-based indicators, sequence similarity and 

efficiency, by computing the similarity between individual observed sequences and 

predefined action sequence(s). The high proficiency group exhibited higher similarity 

scores across all the items than the low proficiency group, suggesting that the action 

sequences used by the high proficiency group were usually closer to the predefined 

sequences. Interestingly, the low proficiency group exhibited higher efficiency scores 

than the high proficiency group on items with more complex designs and multiple 

environments (e.g., U02 and U23). This may indicate that adults with low proficiency 

intended to use limited actions without engaging in further explorations to arrive at a 

final solution compared to the high proficiency group.   
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Table 4 

Statistical Distributions of Process Variables by PIAAC PSTRE Items in PS2 

Item ID 
Response Time 

(minutes) 

Number of 

Actions 

Time to the First 

Action (seconds) 
Similarity Efficiency 

U19a 2.2 (1.4) 28.7 (19.3) 60.1 (55.8) 0.7 (0.2) 0.4 (0.1) 

U19b 3.8 (2.3) 25.2 (24.7) 41.6 (27.8) 0.7 (0.2) 0.5 (0.2) 

U07 2.2 (1.2) 20.6 (11.5) 40.8 (28.9) 0.7 (0.3) 0.6 (0.1) 

U02 4.7 (3.4) 66.2 (86.9) 36.8 (82.6) 0.5 (0.2) 0.3 (0.2) 

U16 2.8 (1.8) 116.4 (102.5) 29.5 (21.6) 0.6 (0.2) 0.2 (0.2) 

U11b 2.0 (1.5) 36.0 (34.2) 20.9 (19.6) 0.7 (0.2) 0.4 (0.3) 

U23 2.0 (1.9) 29.7 (42.2) 25.2 (18.5) 0.6 (0.3) 0.6 (0.2) 

Note. Displayed values are means and standard deviations of process variables by each PSTRE item. 

The variable, number of actions, includes frequency of keystrokes. 

 

3.2 Predictive accuracy  

To address the first research question, we compared the accuracy prediction rate 

among the four models. Table 5 presents the predictive accuracy and AUC ROC of 

the two machine learning methods affiliated with two hierarchical classification set-

tings based on the average of the ten-fold outer loop cross-validation. The prediction 

rate of process variables with the flat approach was satisfactory at 70%, and the AUC 

ROC was in the good range at around 82%. The predictive accuracy and AUC ROC 

were enhanced to 91% when the multiclass hierarchical approach was used in the 

classification. This result is relatively comparable to the findings in Tang et al. (2020), 

where information from process data demonstrated a predictive accuracy of over 88% 

on the success of solving a PSTRE item, and the out-of-sample correlations with lit-

eracy and numeracy proficiency scores were over 70%. No significant differences 

were found between the RF and SVM methods either affiliated with the flat or hierar-

chal approach. This suggests that these five process variables exhibited high predict-

ability on respondents’ PSTRE proficiency level. The predictive accuracy was found 

to be even higher (by 13%) when the prediction followed the hierarchical approach. 

To monitor the degree of overfitting, we compared the prediction results on both train-

ing and test sets. The prediction results were slightly higher in the training set, but 

within an acceptable difference range between the training and test set accuracy rate 

(<5%) (Tan et al., 2019). This suggests that although these four models showed mar-

ginally overfitting on the training set, the models were still promising in producing 

valid and accurate predictions.  
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Table 5 

Predictive Accuracy of Training and Test Sets in Two Machine Learning Methods Affili-

ated with Two Hierarchical Settings  

 RF-Flat SVM-Flat RF-Hierarchical SVM-Hierarchical 

Training Sets     

Accuracy 0.75 (0.02) 0.72 (0.01) 0.88 (0.03) 0.87 (0.02) 

AUC ROC 0.84 (0.02) 0.82 (0.02) 0.93 (0.02) 0.93 (0.01) 

Testing Sets     

Accuracy 0.70 (0.02) 0.70 (0.01) 0.84 (0.03) 0.83 (0.02) 

AUC ROC 0.83 (0.02) 0.82 (0.02) 0.91 (0.02) 0.91 (0.01) 

Note. AUC ROC indicates the area under the curve of the receiver operating characteristic curve. RF 

indicates random forest, and SVM indicates support vector machine. Displayed values are means and 

standard deviations across all ten outer folds cross-validation. 

 

Figure 5 displays the top 20 variables that contributed to the classification in the RF 

and SVM methods, respectively. The measure of variable importance is based on the 

weighted sums of the absolute regression coefficients. The weights are a function of 

the reduction of the sums of squares across the number of partial least squares com-

ponents and are computed separately for each outcome. Therefore, the contribution of 

the coefficients is weighted proportionally to the reduction in the sums of squares. All 

measures of importance are scaled to have a maximum value of 100. When using the 

RF, we found that the top three process variables were all related to sequence similar-

ity, which suggests that compared with other variables, the indicator similarity was 

most informative in predicting respondents’ proficiency level. This result also implies 

that three items (U02, U23, and U19b) were highly discriminative in distinguishing 

respondents’ behavioral patterns and/or strategies during the problem-solving process. 

We also noticed that 7 out of 20 important variables were related to the time to the 

first action variable, suggesting that this variable was very important in every item in 

the classification. It also indicates that pause time (possibly for reading instructions) 

before conducting the first action could provide critical information to differentiate 

adults at various proficiency levels. The top 20 important variables extracted from the 

SVM classifier were mostly similar to the RF result; however, there were some dif-

ferences in the ranking order. For example, the top three important variables extracted 
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in RF and SVM classifiers were the same, but the sequence similarity in U23 showed 

relatively higher importance in RF compared to SVM, in which sequence similarity 

in U19b ranked second. In addition, process variables related to U07 were ranked 

more important using the SVM classifier. However, these variables were found to be 

highly correlated and therefore, we had to remove the variables with overlapping in-

formation to avoid overfitting. Further, we found that the variables in general show 

higher importance weights using the SVM classifier than the RF classifier. The po-

tential reason could be that for RF, the number of random variables for the hyperpa-

rameter tunings were set as small, fixed numbers (e.g., 𝑛𝑡𝑟𝑦 = 4 𝑜𝑟 8) whereas there 

were no restrictions for SVM for the model training. Therefore, the SVM could benefit 

from using a range of variables to input for parameter tuning.     

 

Figure 5.  

Top 20 most important process variables using RF and SVM approaches 

 

Note. The abbreviations at the end of each variable indicate: A for actions, T for response time, 

F for time to the first action, Sim for sequence similarity, and Eff for sequence efficiency.  

 

We further examined variable dependency by computing bivariate correlations among 

the top 20 important variables. Among the 400 pairs, five pairs (1.5%) had a correla-

tion higher than 0.5 (see Table 6). Interestingly, these high correlations were mostly 

found within one item (e.g., U07, U19) rather than across items. For example, the two 

variables U19aT (total response time in U19a) and U19aF (time to the first action in 

U19a) were highly correlated (𝑟 = .725). This makes sense because these two varia-

bles both contributed to the predictive model but may have overlapping information 

from the timing dimension (e.g., pause time before the first interaction made a large 

contribution to the total response time in U19a, which was the first item in PS2).  
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To control for the dependency of input variables, we excluded four variables (U19aT, 

U07A, U07T, and U23T) from the highly correlated pairs and re-ran the prediction 

analysis. The predictive accuracy had no significant change using RF but there was a 

marginal increase of 0.01 using SVM. This result makes sense because the variables 

removed from the analysis had low importance ranks in RF, and therefore, may not 

contribute much to the prediction. However, the removed variables had higher im-

portance ranks in SVM (e.g., U07A, namely, the number of actions in U07, ranked 

20th in the variable importance in RF but ranked 8th in SVM) and thus, removing these 

may have had a higher impact on the predictive accuracy in SVM.  

 

3.3 Prediction performance in multiclass hierarchical classification 

To address the second research question, we further evaluated the prediction perfor-

mance of the four models (RF-flat, RF-hierarchical, SVM-flat, and SVM-hierarchical) 

by each proficiency level. As shown in Figure 6, the RF and SVM performances are 

very similar and consistent across all proficiency levels. The major differences in per-

formance between the flat and hierarchical approaches can be seen in the Below Level 

1 group, in which the hierarchical approach resulted in two times higher sensitivity 

(0.62 in both RF and SVM) and F1 scores (0.67 in RF and 0.66 in SVM) compared to 

the flat approach. The PPV was also slightly enhanced from 0.67 to 0.73 when the 

hierarchical approach was employed. On the contrary, the specificity and NPV mar-

ginally dropped from 0.99 to 0.95 and 0.96 to 0.93, respectively, when the hierarchical 

classification approach was employed. These results indicate that the hierarchical ap-

proach performed significantly better than the flat approach in distinguishing the Be-

low Level 1 group from the Level 1 group within the low proficiency group. 

Comparatively, a marginal decrease was found across all performance metrics in 

Level 1 prediction when the hierarchical approach was employed. This implies that 

the better predictive accuracy in the hierarchical approach may have a larger contri-

bution from the extremely low group with a bit of a trade-off from the Level 1 group. 

This also suggests that the behavioral patterns of the respondents in the Below Level 

1 group are more distinguishable from those at Level 1 within the low proficiency 

group when using local classifiers, but the patterns might not be sufficiently robust 

from Level 2 and Level 3. This result echoes previous findings in which similar be-

havioral patterns were found in extremely high and extremely low PSTRE proficiency 

groups. However, these similar patterns were interpreted in completely different ways 

(He et al., 2021). For example, adults in the extremely low proficiency group may use 

longer action sequences for aimlessly clicking around, whereas those in the extremely 

high proficiency group may use longer action sequences to make more meaningful 

explorations to solve complex tasks.  

We also found that the specificity and NPV resulted in marginally higher values in 

the hierarchical approach than in the flat approach for Level 2. This suggests a greater 
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capacity of excluding instances that were not in Level 2 using the hierarchical classi-

fication.  

 

Figure 6.  

Performance metrics by proficiency levels 

 

Note. RF indicates random forest, and SVM indicates support vector machine. PPV indi-

cates positive predictive value. NPV indicates negative predictive value. 

 

Level 3 predictions showed the poorest results regardless of using the flat or hierar-

chical approach. The specificity and NPV were close to perfect values, and the sensi-

tivity and F1 scores were extremely low. This implies that once an instance was la-

beled as Level 3, the confidence in the decision was extremely high to make a correct 

diagnosis. Nevertheless, it was very challenging to identify the adults in Level 3 based 

on the available process variables. This suggests that the behavioral patterns in Level 

3 from the five process variables might not be sufficiently robust to distinguish this 

group. 

In addition, Table 7 presents the prediction performance of the hierarchical approach 

at the first level (i.e., a binary classification of high and low proficiency groups). The 

accuracy was high, around 0.83 in both RF and SVM models. The AUC ROC was 

also excellent, at over 0.90. This result suggests that respondents’ test-taking behav-

iors are sufficiently informative to screen respondents into high or low proficiency 

groups in addition to their final responses. The PPV and NPV were both higher than 
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0.8 at the first level, indicating that the confidence value was higher than the specified 

threshold for blocking at the first level, and there were no non-classified instances at 

the second level. 

 

Table 7 

Prediction Performance at the First Level (High/Low) in Hierarchical Classification 

 RF SVM 

Accuracy 0.826 (0.02) 0.825 (0.01) 

Sensitivity 0.780 (0.01) 0.770 (0.02) 

Specificity 0.859 (0.01) 0.867 (0.01) 

PPV 0.805 (0.02) 0.813 (0.03) 

NPV 0.841 (0.02) 0.836 (0.02) 

F1 0.792 (0.01) 0.790 (0.02) 

AUC ROC 0.904 (0.02) 0.906 (0.01) 

Note. Displayed values are means and standard deviations across all ten 

outer folds cross-validation. RF indicates random forest, and SVM indicates 

support vector machine. PPV indicates positive predictive value. NPV indi-

cates negative predictive value. AUC ROC indicates the area under the curve 

of the receiver operating characteristic curve. 

 

4 Discussion 

In a technology-rich world, digital problem-solving skills are crucial to succeed in 

educational contexts and to meet the demands of 21st-century workplace environ-

ments. Process data provide deeper insights into respondents’ test-taking behaviors, 

problem-solving strategies, and cognitive processes in learning and applying 

knowledge. In this study, we provide new evidence of the high predictability of pro-

cess data to PIAAC PSTRE proficiency levels. We also illustrate how to extract mean-

ingful process variables and conduct multiclass hierarchical classifications with ma-

chine learning methods to predict PSTRE proficiency levels using process data. Com-

pared with the flat approach, the hierarchical classification approach was preferred to 

identify adults with extremely low PSTRE proficiency levels, which helped enhance 

the general predictive accuracy. Under the hierarchical structure, the problem-solving 

behavioral patterns were informative to distinguish the Below Level 1 and Level 1 
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groups, but did not perform well in identifying respondents with an extremely high 

proficiency level (Level 3). This implies greater variability in adults with low PSTRE 

proficiency levels. Low-skilled adults are a heterogenous population demographically 

that often struggle with basic foundational literacy and numeracy skills, basic com-

puter literacy skills, and more complex problem-solving skills. These digital problem-

solving skills are essential for active participation in today’s workforce as well as daily 

living (e.g., responding to emails and using a spreadsheet for budgeting; Cummins et 

al., 2019; Vanek, 2017). Our results indicate that process data may provide more nu-

anced information on the strategies low-skilled adults use during the problem-solving 

process as well as potential breakdowns (e.g., hesitative behaviors, inefficient or re-

petitive behaviors) during the process. These results could inform instructional strat-

egies that could be tailored to help low-skilled adults improve their problem-solving 

skills and test-taking strategies.         

It is noted that the hierarchical classification approach follows a chaining decision 

procedure. Therefore, the error in the upper level may be propagated to the subsequent 

step. In this study, we set the confidence threshold as 0.8, marginally less than both 

the PPV and NPV at the first level. If the threshold is raised to 0.9 or even higher, we 

would expect an increased number of non-classifications in the second level. The in-

stances with lower PPV or NPV at the first level (binary classification between high 

and low groups) would be retained in the first level and not passed to the second level. 

As a result, when excluding the non-classification cases in the second level, the purity 

of correct diagnosis is increased. Thus, sensitivity and specificity in the second level 

would also be enhanced. The set degree of confidence threshold is more dependent on 

the research purposes of a study and tolerance of the non-classification rate by differ-

ent hierarchical levels.  

Flat and hierarchical approaches have different pros and cons. Flat is more straight-

forward and would be preferable when the sample size is small and does not have a 

clear hierarchical structure. The obvious advantage of this approach is its simplicity. 

However, the cons are also apparent. For example, important information from the 

natural hierarchy of the data could have highly valuable classification; however, ig-

noring those parent-child class relationships could reduce prediction performance. 

The hierarchical approach, though a bit more complicated, may provide better predic-

tion results, especially when there is a hierarchical relationship and a possibility for 

the variables to mix up. The local classifiers approach is highly intuitive and uses the 

hierarchy information in the data while retaining simplicity and generality. However, 

depending on the taxonomy and the method chosen, it may produce a rather bulky 

final model. There is also the problem of error propagation, which occurs when an 

error at one level could influence all the following ones. The results obtained in the 

current study also reiterate the findings from Silla and Freitas (2011), “it seems any 

hierarchical classification approach is overall better than the flat classification ap-

proach, when solving a hierarchical classification problem” (p. 2). Therefore, we rec-

ommend employing a hierarchical classification approach when the data structure 

does show a hierarchical relationship and choosing the simple flat approach when 

there is no clear hierarchical structure found in the dataset.  
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To avoid confusion in prediction performance, the nonresponse data were not in-

cluded in the current study. In the current sample, 87% of nonresponses came from 

the Below Level 1 group. Therefore, the occurrence of nonresponses could be a robust 

classifier to distinguish the Below Level 1 group from the other three groups if we 

were to add this indicator to the prediction model. Further analysis revealed that the 

general predictive accuracy could be improved by five percentage points if the nonre-

sponse behavior patterns (e.g., action sequence as “Start, Next, next_OK”) were taken 

into consideration. It would be interesting to include the time interval between actions 

in the nonresponse behavioral patterns in future studies to better understand the po-

tential reasons for nonresponse. For example, the respondents might quickly skip an 

item because of low engagement or spending more time reading and/or thinking but 

ultimately give up (Ulitzsch et al, 2022a). Analyzing potential nonresponses for the 

low-skilled group would also have important implications for understanding types of 

items that may be too challenging or demotivating, which has implications for test 

development. 

There were two process variables that exhibited robust importance for prediction and 

may warrant further discussion. First, the sequence similarity variable ranked at the 

top of importance and had a high correlation with PSTRE proficiency in He et al. 

(2019a, 2021). The average sequence similarity value across all respondents may in-

dicate how “easy” respondents found optimal solutions to solve an interactive item. A 

higher average value suggests that respondents more easily found optimal solutions, 

indicating that, on average, the action sequences are closer to the predefined se-

quences. Similar to the item parameters in item response modeling (Lord, 1980), the 

sequence similarity measure could be useful in estimating the degree of item com-

plexity and discrimination based on test-taking behaviors and problem-solving strat-

egies during the item solving process. This would provide supplementary information 

to support interactive item and test development. Thus, we recommend including the 

optimal action sequences predefined by item developers and content experts as a 

standard requirement for test development. This information would be beneficial for 

checking the item quality of interactive items, tracking respondents’ problem-solving 

strategies, and providing meaningful prior information for latent ability estimates. 

Second, an aggregate-level process variable, time to the first action, emerged as a 

robust, important variable (in the top 20) in this study. This provides convincing evi-

dence of its importance to proficiency level prediction. Compared with other aggre-

gate-level variables, such as response time and number of actions, which are com-

monly used in process data analysis, we think that time to the first action warrants 

further attention in future studies. The time spent before the first action may indicate 

respondents’ time spent on reading instructions and/or time spent on figuring out how 

to approach the complex task and thus, seems to further differentiate respondents 

based on proficiency levels.   

There are some limitations that merit discussion. First, the sample size is relatively 

small and not balanced across proficiency levels. In particular, the sample size is much 

smaller in the extremely low (Below Level 1) and extremely high proficiency (Level 

3) groups, which may impact classification accuracy in general. We recommend larger 
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sample sizes and including data from multiple countries in future studies. In this study, 

we took the imbalanced sample distribution into consideration by using the stratified 

sampling method when splitting our dataset in nested cross-validation. The imbal-

anced classification could also be handled by adopting alternatives that might result 

in better prediction. For example, the synthetic minority oversampling technique 

(SMOTE, Chawla et al., 2002) could augment data for the smaller class. In this ap-

proach, new examples can be synthesized from existing examples. SMOTE works by 

selecting examples that are close in the feature space, drawing a line between the ex-

amples in the feature space, and drawing a new sample at a point along that line. In 

addition, we only considered one country (the U.S.) in this study. For generalizability, 

future studies should use data from multiple countries and examine potential country 

effects using process data to predict PSTRE proficiency levels.  

Second, the current study only considered five process variables per item in the anal-

yses. Although the process variables showed robustness in the classification, more 

item-specific, fine-grained features, such as n-grams in action occurrences by differ-

ent proficiency groups (He & von Davier, 2015, 2016), could be considered in future 

studies. In addition, the incorporation of cognitive variables (e.g., the time interval 

between actions and pause stages) may also be interesting to examine in future studies 

to improve the prediction model for adults’ PSTRE proficiency levels, especially for 

the extremely high proficiency group.  

Third, we only applied two commonly used machine learning methods with a focus 

on comparing the performance between flat and hierarchical approaches in different 

data structure settings. More robust machine learning methods, including XGBoost 

(Ulitzsch et al., 2022b) and neural networks (Zhu et al., 2016), could be explored in 

future studies. 

In summary, the emergence of interactive item types and growing new analytic tech-

niques are gradually shifting us away from traditional testing formats, both in terms 

of item development and the way items are scored. Process data are critical to under-

standing respondents’ behaviors and strategies on interactive items and are considered 

the new forefront for future large-scale assessments. Further, recent new artificial in-

telligence applications, such as Chat GPT, bring new challenges to test validity, which 

may hinder our ability to know whether items are solved by machines or humans. This 

pressing concern reiterates the importance and urgency of incorporating process data 

into the test design process and evaluating respondents’ latent ability by tracking their 

problem-solving process rather than using the final response (correct/incorrect) only. 

This study provides new evidence about the high predictability of process data and 

recommends hierarchical classification methods to predict problem-solving profi-

ciency using process data. Future research should consider an intensive exploration of 

machine learning methods to incorporate process data into adaptive testing, challeng-

ing other researchers to improve the prediction methods for screening adults by dif-

ferent proficiency levels and integrating the findings from this study into an opera-

tional intake procedure. 
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Appendix A.  

Algorithms to compute longest common subsequences. 
 

The algorithm for identifying the Longest Common Sequence is defined as follows. 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖) and 𝑌 = (𝑦1, 𝑦2 , … , 𝑦𝑗) be two sequences. 𝑥𝑖 and 𝑦𝑗 are ac-

tions contained in 𝑋 and 𝑌, respectively. 𝑋 and 𝑌 are indexed as 𝑋1, 𝑋2, , … , 𝑋𝑖  and 

𝑌1, 𝑌2, , … , 𝑌𝑗  , respectively. Let 𝐿𝐶𝑆 (𝑋𝑖 , 𝑌𝑗) represents the set of longest common sub-

sequence of prefixes 𝑋𝑖 and 𝑌𝑗 . The set of sequences is given as:  

𝐿𝐶𝑆(𝑋𝑖 , 𝑌𝑗) = {

∅, 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0 

𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗−1)^𝑥𝑖 , 𝑖𝑓𝑥𝑖 = 𝑦𝑗

max (𝐿𝐶𝑆(𝑋𝑖 , 𝑌𝑗−1), 𝐿𝐶𝑆(𝑋𝑖−1, 𝑌𝑗)) , 𝑖𝑓 𝑥𝑖 ≠ 𝑦𝑗

   

 (1) 

To find the LCS of 𝑋𝑖 and 𝑌𝑗, compare 𝑥𝑖 and 𝑦𝑗. If they are equal, then the sequence 

𝐿𝐶𝑆 (𝑋𝑖−1, 𝑌𝑗−1) is extended by that element, 𝑥𝑖. If they are not equal, then the longer 

of the two sequences, 𝐿𝐶𝑆 (𝑋𝑖 , 𝑌𝑗−1) and 𝐿𝐶𝑆 (𝑋𝑖−1, 𝑌𝑗) is retained. The length of LCS 

is defined as: 

length (𝐿𝐶𝑆(𝑋𝑖 , 𝑌𝑗)) = {

0, 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0 

 length(𝑖 − 1, 𝑗 − 1) + 1, 𝑖𝑓𝑥𝑖 = 𝑦𝑗  

max(length(𝑖, 𝑗 − 1), length(𝑖 − 1, 𝑗)), 𝑖𝑓 𝑥𝑖 ≠ 𝑦𝑗

  (2) 
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