
Psychological Test and Assessment Modeling, Volume 64, 2022 (1), 65-86 

Comparison of Different Approaches to 

Dealing with Guessing in Rasch Modeling 

 

Hong Jiao1 

Abstract 

This study compared three approaches to dealing with guessing in Rasch modeling: explicit 

modeling of guessing effects, correction of guessing effects, and the Rasch model which does 

not model guessing explicitly. The extended Rasch model explicitly includes a lower asymptote 

parameter in the Rasch model to account for guessing. Parameter estimation was explored using 

a Bayesian approach for the extended Rasch model with guessing. Further, model parameter 

estimates were compared with those from the Rasch model and the Rasch model with the cor-

rection procedure for guessing effects under different study conditions. The results indicated 

that the true model parameters could be well recovered by the Bayesian estimation method 

developed in OpenBUGS. Ignoring guessing in general led to the overestimation of test infor-

mation, underestimation of item difficulty, and misrepresentation of the maximum test infor-

mation location. 
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The Rasch model (Rasch, 1960) is widely applied in test or instrument development 

and item response data analysis. In the Rasch model, the probability of a correct re-

sponse to an item is related to an examinee’s latent ability and one item characteristic, 

item difficulty. Setting constraints on item parameters including uniform item dis-

crimination (1), zero low asymptote (no guessing), and unity upper asymptote (no 

slipping), the Rasch model possesses some unique characteristics such as sufficiency, 

separability, and consistency, different from other item response theory (IRT) models 

that other non-Rasch models do not possess. More specifically, raw scores are suffi-

cient statistics for person parameter estimation. As highlighted by one reviewer, ac-

cording to Anderson (1973) and Fischer (1974), only in the Rasch model, both model 

parameters can be estimated by the conditional maximum likelihood (CML) estima-

tion method (Scheiblechner, 2009). However, in real testing situations, aberrant item 

response behaviors such as guessing and slipping may be present due to a variety of 

reasons. Low ability examinees may attain a correct response to an item whose diffi-

culty is above their ability level due to guessing (McDonald, 1967, p. 67). In the Rasch 

modeling framework, guessing is treated as an unexpected response. It is either elim-

inated from model parameter estimation (Linacre, 2000) or utilized to identify misfit 

persons (Smith, 1993; Wright, 1991). Artner (2016) compared five fit indexes in de-

tecting person misfit in the Rasch model. Guessing is one of the responding behaviors 

simulated for misfit. 

Guessing may occur as random guessing or smart guessing. Random guessing makes 

use of no prior information or information from the test and blindly chooses a response 

to an item (Roger, 1999). An example is in a speeded test, examinees may randomly 

select a choice due to running out of time (Wise & Demars, 2005). If examinees lack 

of motivation in taking the test or the items are too difficult, they may randomly select 

an option as well. Assuming randomly guessed items are multiple-choice items, ex-

aminees with low ability may still have the chance of guessing the item correct, 1/m, 

where m is the number of options. Other times, examinees may guess smartly based 

on partial knowledge or synthesizing information from other sources such as prior 

knowledge or information in the item like wording cues, cues in item stems or distrac-

tors or other items on the test to remove least attractive distractors and increase their 

chance of a correct response (Lord, 1983; McDonald, 1989; Roger, 1999). In general, 

guessing affects the ability parameter estimation (Dinero & Haertel, 1977; van de 

Vijver, 1986) and item difficulty parameter estimation (Dinero & Haertel, 1977; Pel-

ton, 2002).  

Researchers explored different approaches to correcting (e.g., Choppin, 1983; Lina-

cre, 2008) or modeling different types of guessing effects (e.g., Barton & Lord, 1981; 

Birnbaum, 1968; Cao & Stokes, 2008; Keats, 1974; San Martin, Del Pino, & De 

Boeck, 2006 ; Weitzmen, 1996). One method corrects the guessing effect by setting 

the pseudo-guessing parameter to a fixed value (most often an inverse of the number 

of options) for all items in the Rasch model (Barnes & Wise, 1991; Divgi, 1984; Smith 

& Fujimoto, 2011; Wainer & Wright, 1980). All these studies found that the Rasch 

model with fixed lower asymptote increases the ability parameter estimation accuracy 

compared with the Rasch model ignoring the guessing effect. Another correction 
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procedure is the CUTLO correction procedure implemented in WINSTEPS (Linacre, 

2008) that eliminates an examinee’s item response when the examinee’s ability esti-

mate is lower than the item difficulty estimate with a certain logit unit defined by 

CUTLO, so that the response will not contribute to the estimation of item difficulty 

parameter (Detail of the CUTLO procedure can be found in the WINSTEPS manual 

or at http://winsteps.com/winman/cutlo.htm). This procedure is consistent with Wal-

ler’s ability removing random guessing model (e.g., Waller, 1973; 1989) and Chop-

pin’s procedure (1983). 

Modeling guessing has been approached from two perspectives: one treats guessing 

as a psychometric property of an item while the other treats guessing as a person char-

acteristics and guessers and non-guessers are assumed from different latent popula-

tions. When guessing is modeled as an item property, the common approach is to 

include a lower asymptote parameter in the item response theory (IRT) model such as 

Keats’ generalized Rasch model for guessing (Keats, 1974), the three-parameter lo-

gistic (3PL) IRT model (Birnbaum, 1968) and the four-parameter logistic (4PL) IRT 

model (Barton & Lord, 1981). Wise and DeMars (2006) developed the effort-moder-

ated model. If an examinee’s response time is longer than the threshold, the model 

reduces to the 3PL IRT model. Otherwise, the model reduces to a constant probability 

model with the reciprocal of the number of response options as the guessing probabil-

ity. Some other researchers (Nedelsky, 1954; San Martin, Del Pino, & De Boeck, 

2006; Thissen & Steinberg, 1984) view that guessing is associated with an examinee’s 

ability, and proposed ability-based guessing models. Other researchers (Hessen, 2004; 

2005) consider that guessing depends on item difficulty and reparameterize item re-

sponse theory models as constant latent odds-ratio models.  

Cao and Stokes (2008) developed three mixture IRT models to accommodate different 

types of guessing behaviors by grouping guessers and non-guessers into different la-

tent classes.  One of their models assumes that examinees respond depending on their 

ability up to a certain item, and guess thereafter. An item location threshold is esti-

mated for each examinee, indicating the item number at which guessing starts. This 

piecewise formulation of the item response modeling applies to the speeded test sce-

narios (Yamamoto, 1995). Another model assumes that examinees respond to easy 

items based on their ability and guess randomly on difficult items. This is a testwise 

skill often recommended to examinees to maximize their test performance. The third 

model accommodates guessing due to low motivation. It assumes that the guessers 

will make decreasing effort as they proceed through the test. These models classify 

each examinee into guesser and non-guesser classes and measure the degree of guess-

ing behavior.  

It is worthy of note that the inclusion of a lower asymptote parameter in the Rasch 

model is not limited to modeling the guessing effect. A non-zero lower asymptote in 

IRT modeling could model other pseudo-guessing effects which may lead to spuri-

ously high scores when examinees correctly respond to difficult items which are above 

their ability levels. This may occur when examinees engage in cheating, answer cop-

ying, or know the correct answers to some items due to item disclosure (Chen & Jiao, 
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2012). In psychological tests, examinees may fake responses due to social desirability 

which will lead to a lower asymptote larger than zero. 

This study focuses on one modeling approach, the extended Rasch model for guess-

ing, which explicitly includes a lower asymptote parameter in the Rasch model to 

account for the guessing or pseudo-guessing effect. This Rasch model plus a lower 

asymptote does not any longer possess the unique characteristics of the Rasch model 

as described above and the CML estimation method no longer works.  This explicit 

approach follows the conceptualization and parameterization of the guessing or 

pseudo-guessing effect in the standard non-Rasch IRT modeling framework though 

other modeling approach is possible. It explores the model parameter estimation for 

the extended Rasch model for guessing (Kubinger & Draxler, 2007; Linacre, 2002) 

using a Bayesian approach. Further a simulation study and a real data analysis are 

conducted to compare this explicit modeling approach with a correction approach 

which is the same as the CUTLO correction procedure in WINSTEPS and the Rasch 

model in terms of item difficulty and ability parameter estimation.  

 

The Extended Rasch Model for Guessing 

The Rasch model includes one item parameter and one latent ability parameter to de-

scribe the probability of a correct response to an item as follows.  

                                   𝑃 (𝑥𝑖𝑗|𝑏𝑖 , 𝜃𝑗) =
1

1+𝑒𝑥𝑝(−(𝜃𝑗−𝑏𝑖))
.   (1) 

Keats (1974) introduced a constant guessing parameter as a lower asymptote into the 

Rasch model to take account of the guessing behavior. The constant guessing param-

eter is equal to the reciprocals of the number of options in the multiple-choice items. 

This approach has been utilized in other extended Rasch model such as the multipli-

cative Rasch model (Smith & Fujimoto, 2011) to account for guessing. Keats’ gener-

alized Rasch model for guessing is mathematically represented as in equation 2. 

                      𝑃 (𝑥𝑖𝑗|𝑏𝑖 , 𝑐 , 𝜃𝑗) = 𝑐 +
1−𝑐

1+𝑒𝑥𝑝(−(𝜃𝑗−𝑏𝑖))
.   (2) 

Or alternatively, 𝑙𝑜𝑔(
𝑃𝑖𝑗−𝑐

1−𝑃𝑖𝑗
) = 𝜃𝑗 − 𝑏𝑖, where 𝑃 (𝑥𝑖𝑗|𝑏𝑖 , 𝑐 , 𝜃𝑗) represents the condi-

tional probability of a correct response for examinee j with ability 𝜃𝑗 to  item i with 

item difficulty 𝑏𝑖 and guessing parameter 𝑐 , constant across all items. In educational 

tests, the presence of the guessing effect may be related to the non-zero probability of 

getting an item correct when a person’s ability is asymptotically getting to − . In 

psychological tests, the parameter may represent the probability of endorsing an item 

when a person’s possession of the latent trait asymptotically goes to − . Keats’ 

generalization of the Rasch model for guessing retains the additivity property of the 

standard Rasch model (Keats, 1974), that is, the item and person parameters are sep-

arable into additive components (White, 1976). Though there is no consistent 
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maximum likelihood estimates (Colonius, 1977), Keats’ generalization of the Rasch 

model for guessing have the sufficient statistics property when the guessing parame-

ters are constant across all items (Linacre, 2002). Linacre (2002) developed the max-

imum likelihood estimator for the ability parameter for this quasi-Rasch model which 

allows varying guessing values for different items as presented in equation 3 and later 

developed an approximation of the guessing parameter based on the parameter esti-

mates from an initial analysis using the Rasch model (Linacre, 2004).            

                             𝑃 (𝑥𝑖𝑗|𝑏𝑖 , 𝑐𝑖 , 𝜃𝑗) = 𝑐𝑖 +
1−𝑐𝑖

1+𝑒𝑥𝑝(−(𝜃𝑗−𝑏𝑖))
.   (3) 

As illustrated above, the idea of the Rasch model with guessing parameters is not new; 

several researchers (e.g., Keats, 1974; Kubinger, 2005; Linacre, 2002, 2004; Weit-

zman, 1996) explored adding a guessing parameter in the Rasch model to accommo-

date the guessing effect. As reported in Kubinger and Draxler (2007), Puchhammer 

(1989) explored the joint maximum likelihood estimation of the Rasch model for 

guessing. As expected, the joint maximum likelihood estimates are inconsistent for 

the number of fixed items. The item difficulty parameters are biased and the guessing 

parameter estimates are not accurate when the number of examinees is fewer than 500. 

Kubinger and Draxler (2007) explored constraining the standard 3PL IRT model in 

BILOG MG 3 (Zimowski et al., 2003) to estimate the parameters for the Rasch model 

for guessing using the marginal maximum likelihood estimation method. They fo-

cused on the fit comparison between the Rasch model and the Rasch model for guess-

ing. They concluded the use of the Rasch model for guessing could save more items 

into the item pool as the Rasch model for guessing provided better fit. This current 

study explored a Bayesian approach to estimate model parameters for the extended 

Rasch model for guessing as presented in equation 3 (Linacre, 2002). Further, model 

parameter estimates were compared with those from the Rasch model which does not 

explicitly model the guessing effect and the Rasch model with guessing correction 

which is the same as the CUTLO procedure implemented in WINSTEPS under dif-

ferent study conditions. 
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Method 

To investigate the model parameter recovery for the extended Rasch model for guess-

ing, both simulation data and real data were analyzed. In the simulation study, both 

item difficulty parameters and ability parameters were simulated from a standard nor-

mal distribution with a mean of 0 and standard deviation of 1. Two sample sizes were 

specified for the ability parameters: 500 and 1,000. A sample size of 500 is considered 

as an adequate sample size while a sample size of 1,000 is considered as the recom-

mended sample size for the Rasch model. The true difficulty parameters for the sim-

ulated 40 items remained the same across study conditions and replications while the 

ability parameters for the conditions with the same number of persons remained the 

same. The magnitude of guessing was manipulated at three levels, 0.1, 0.2, and 0.3; 

the same values were assigned to all items in each study condition. Smith (2008) sim-

ulated item response data with pseudo-guessing effects paired with item difficulty, 

that is, easy items have lower pseudo-guessing effects and difficult items have higher 

pseudo-guessing effects. This is one special case for all possible pseudo-guessing ef-

fects. In real data analyses, the correlation between item difficulty and pseudo-guess-

ing parameters could be very low (Jiao, Macready, Zhu, & An, 2011; Kubinger & 

Draxler, 2007) when guessing is included as a lower asymptote parameter in the IRT 

models.  Difficult items may have lower pseudo-guessing effects when students lack 

of motivation to take the test. On the other hand, easy items may have higher pseudo-

guessing effects or spuriously higher probability of a correct response due to copying 

and item disclosure. Thus, the use of uniform values for the pseudo-guessing param-

eters helps to better investigate the impact of the guessing effects.  

Item responses were generated based on equation 3 using the true model parameters. 

Item response data were analyzed with six procedures including the extended Rasch 

model for guessing, the Rasch model, and the Rasch model with the CUTLOW cor-

rection by specifying four CUTLOW values: 0.5, 1, 1.5, and 2 (that is, if a person’s 

ability is 0.5 logit unit lower than the item difficulty and this person correctly re-

sponded to the item, the correct response will be considered as due to potential guess-

ing and recoded as missing and will not contribute to model parameter estimation). 

Though Smith (2008) did not find significant impact of guessing on ability parameter 

estimation when comparing the Rasch model estimates and the estimates from the 

CUTLOW procedure in WINSTEPS (Linacre, 2008), he did not include the true 

model in the comparison. Thus, this current study explored the true model estimation 

and compared the estimation errors from the true models and the alternatives. By fully 

crossing the levels of the magnitudes of guessing, sample sizes, and the methods in 

dealing with the guessing effect, thirty-six study conditions were simulated.  

This study developed a Markov Chain Monte Carlo (MCMC) estimation algorithm in 

OpenBUGS 3.2.1 (Lunn, Thomas, Best, & Spiegelhalter, 2000) for the extended 

Rasch model for guessing. The priors for the ability parameter followed a standard 

normal distribution with a mean of 0 and standard deviation of 1. The priors for the 

item difficulty parameters were set normally distributed with a mean of 0 and variance 



Guessing in Rasch Modeling 
71 

of 2. The larger variance served as a relatively less informative but proper prior. The 

priors for the guessing parameter followed a beta distribution with the first shape pa-

rameter   and the second shape parameter 𝛽 specified as follows. When the guessing 

effect was simulated at 0.1, the beta distribution was specified with a 𝛼 of 3 and a 𝛽 

of 19 to obtain a mode of 0.1 (Baker & Kim, 2004).  Beta distributions were specified 

with a 𝛼 of 5 and a 𝛽 of 17 to obtain a mode of 0.2, and with a 𝛼 of 7 and a 𝛽 of 15 to 

obtain a mode of 0.3 respectively (Baker & Kim, 2004). This informative prior for the 

guessing parameters was to remove the potential source of error due to the misspeci-

fication of the priors for the model parameters in the MCMC estimation. The Rasch 

model and the Rasch model with the CUTLO correction procedures were also imple-

mented in OpenBUGS to remove potential differences due to different estimation pro-

grams.   

The MCMC iterative algorithm ran two Markov chains in parallel, each starting with 

different initial values supplied by OpenBUGS. Convergence was checked based on 

multiple criteria. The Gelman-Rubin statistic as modified by Brooks and Gelman 

(1998) was used. Convergence can be assumed if R < 1.05 (Lunn et al., 2000). A 

sample check over replications in the study conditions indicated that R was generally 

close to 1 and smaller than 1.05 before 40,000 iterations. The Brooks-Gelman Ratio 

(BGR) diagnostic plots and the trace plots indicated that stability and convergence 

usually occurred between 30,000 and 40,000 iterations. The quantile plots showing 

the running mean with 95% confidence intervals against iteration numbers indicated 

that the running mean and the 95% confidence intervals from the two chains mixed 

very well and reached equilibrium before 40,000 iterations. Other plots including his-

tory and density plots all indicated that the two chains mixed well before 40,000 iter-

ations and reached equilibrium by then. Thus, the first 40,000 iterations were dis-

carded as the burn-in iterations. An additional 10,000 iterations were monitored for 

each chain. The model parameter inferences were made based on a total of 20,000 

samples.  

Simulation for each study condition was replicated twenty times to compute estima-

tion errors in item and ability parameters in terms of bias, standard error (SE), and 

root mean squared error (RMSE) for each of the thirty-six study conditions. The bias, 

SE, and RMSE were computed based on equations 4, 5, and 6 respectively. 

                                           𝐵𝑖𝑎𝑠(𝛽
∧

) =
∑ (𝑁

𝑟=1 𝛽
∧

𝑟−𝛽)

𝑁
,    (4) 

                                           𝑆𝐸(𝛽
∧

) = √1

𝑁
∑ (𝛽

∧

𝑟 − 𝛽̄̂)𝑁
𝑟=1

2

,   (5)  

                                           𝑅𝑀𝑆𝐸(𝛽̂) = √
1

𝑁
∑ (𝑁

𝑟=1 𝛽̂𝑟 − 𝛽)2,   (6) 
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where  is the true model parameter, 𝛽̂𝑟 is the estimated model parameters for the rth 

replication, 𝛽̄̂𝑟 is the average of the estimated model parameters over r replications, 

and N is the number of replications.  The average bias, SE, and RMSE are computed 

by averaging each of the values over all item or ability parameters.  

One real data set from a large-scale science test was analyzed. The analysis of the real 

data was not intended to select a better fitting model, rather to better understand the 

differences in model parameter estimates among the studied procedures. Further, test 

information and test characteristic curves were compared as well. Test information 

for the Rasch model for guessing was derived and is presented in equation 7.  

                     𝐼𝑇(𝜃) = ∑ 𝐼𝑖(𝜃) = ∑
(𝑃𝑖

′(𝜃))2

𝑃𝑖(𝜃)𝑄𝑖(𝜃)
= ∑

𝑄𝑖(𝜃)(𝑃𝑖(𝜃)−𝑐𝑖)2

(1−𝑐𝑖)2𝑃𝑖(𝜃)
,  (7) 

where 𝐼𝑖(𝜃) is the item information function for a specific theta point, 𝑃𝑖(𝜃) is given 

in equation 3, 𝑄𝑖(𝜃) = 1 − 𝑃𝑖(𝜃), and 𝑐𝑖 is the pseudo-guessing parameter for item i. 

Test characteristic curve function is given in equation 8. 

                                                       𝑇 (𝜃) = ∑ 𝑃𝑖(𝜃).   (8) 
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Results 

Simulation Data 

Only significant effects at a significance level of 0.05 with at least small effect sizes 

are reported. Non-significant or significant results with negligible effect sizes are not 

reported. The magnitude of effect size is classified as negligible (f<0.1), small 

(0.1<f<0.25), moderate (0.25<f<0.4), and large (f>0.4) in the analysis of variance. 

 

 

Figure 1. SE and RMSE in the ability parameter estimates. 

Note: Two sample sizes: 500 and 1000; three guessing effects: g=0.1, 0.2, and 0.3. 
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Ability Parameter Estimation. To assure scale identification within a model and the 

comparability of the model parameter estimates from different models and methods, 

ability parameter estimates were rescaled and item parameter estimates were adjusted 

accordingly. Thus, there was no difference in the bias for ability estimates. Two sam-

ple sizes were simulated. The estimation errors in the ability parameters are summa-

rized in Figure 1. The patterns in the estimation errors were similar for both sample 

sizes. Only the results for the sample size of 500 are reported here. Only the guessing 

magnitude significantly affected the SE and RMSE in the ability parameter estimation 

with large effect sizes (f=0.40 and f=0.41 respectively). Post-hoc Tukey analyses in-

dicated that all pairwise contrasts for SE and RMSE among different guessing mag-

nitudes were significant. Both SE and RMSE in the ability parameter estimation in-

creased as the guessing effect increased. 

Item Difficulty Parameter Estimation. The estimation model, guessing magnitude and 

their interaction all significantly impacted the bias in the item difficulty estimation 

with large effects (f=3.28, f=3.45 and f=1.53 respectively). The mean biases are pre-

sented in Figure 2 and the interaction between the model and the guessing magnitude 

is presented in Figure 3. The ordinal interaction generally indicated that the Rasch 

model with a lower asymptote produced the least bias in the item difficulty estimation. 

The Rasch model with a CUTLOW correction value of 0.5 produced the second least 

bias while the Rasch model without any correction led to the largest bias. The Rasch 

model with a correction value of 2 did not effectively reduce the impact of guessing 

because only a few correct item responses were recoded as missing due to the large 

correction value. The Tukey procedure indicated that all pairwise differences among 

different guessing magnitudes were significant and all pairwise differences among the 

six estimation models were significant except that between the Rasch model and the 

Rasch model with a CUTLOW correction value of 2.0. 
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Figure 2. Bias in the item difficulty parameter estimates. 

 

 

Figure 3. The effect of the interaction between the estimation model and the 

guessing magnitude on the bias in the item difficulty parameter estimates. 

Notes: Model 1=Rasch with a lower asymptote, Model 2=Rasch model, Model 3, 4, 

5, and 6=Rasch model with a CUTLOW value of 0.5, 1.0, 1.5, and 2.0 respectively; 

Guessing 1, 2, and 3=lower asymptotes of 0.1, 0.2, and 0.3. 
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In general, ignoring the guessing effect in Rasch modeling leads to underestimation 

of item difficulty. It is expected that the larger CUTLOW values led to a smaller num-

ber of examinees deleted. As the guessing effect increased, the number of examinees 

retained for item calibration became larger. This is counterintuitive since it is expected 

that larger guessing effects should lead to more misfit responses. However, a possible 

explanation for this can be provided based on Figure 4 which presents the item char-

acteristic curves for four items with the same difficulty but different guessing effects. 

Given the same ability level, the probability of a correct response will be the highest 

for the item with the highest guessing effect. On the other hand, given the same prob-

ability of a correct response or expected item score, the difficulty would be the lowest 

for the item with the highest guessing effect when calibrated with the Rasch model as 

the ICC is going to shift to the left. Or when the guessing effect is ignored, the item 

would be estimated to be easier. 

 

 

Figure 4. Item characteristic curves for items with the same difficulty but 

different magnitudes of guessing effects. 

 

All three studied factors, model, sample size, and guessing magnitude significantly 

impacted the SE in the item difficulty estimation (see Figure 5) with large effect sizes 

(f=0.60, f=0.74, and f=0.42 respectively). The SE was also significantly influenced by 

the interaction between model and the guessing magnitude (see Figure 6) with a small 

effect size (f=0.21). In general, the increase in the guessing magnitude increased the 

random error in the item difficulty parameter estimation. The ordinal interaction be-

tween the model and the guessing magnitude indicated that the Rasch model produced 

the smallest random error while the Rasch model with a lower asymptote for guessing 
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yielded the highest random errors. A possible explanation is that the Rasch model is 

a simpler model with fewer parameters while the Rasch model with guessing has more 

parameters to be estimated; thus, the increase in the number of parameters in the Rasch 

model for guessing increased the random error in the item difficulty parameter esti-

mation. When trimming the item response data with the CUTLOW procedures, the 

random error was affected by the extent of missing data. The smaller CUTLOW value 

increased the amount of missing item responses, which lead to higher random error. 

The Tukey pairwise comparison indicated that all pairwise SE differences among dif-

ferent guessing magnitudes were significant and only the pairwise differences be-

tween the Rasch model with lower asymptotes and each of the other models were 

significant. The pairwise differences among the Rasch model and the Rasch models 

with different correction values were not significant. 

 

 

Figure 5. SE in the item difficulty parameter estimates. 
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Figure 6. The effect of the interaction between the estimation model and the 

guessing magnitude on the SE in the item difficulty parameter estimates. 

Notes: Model 1=Rasch with a lower asymptote, Model 2=Rasch model, Model 3, 4, 

5, and 6=Rasch model with a CUTLOW value of 0.5, 1.0, 1.5, and 2.0 respectively; 

Guessing 1, 2, and 3=lower asymptotes of 0.1, 0.2, and 0.3. 

Model, guessing magnitude and their interaction significantly impacted the total error in 

the item difficulty estimation with large effect sizes (f=2.58, f=3.60, and f=1.54). The effect 

of the sample size was small (f=0.20). In general, the larger guessing effects increased the 

total errors, RMSE (see Figure 7). The ordinal interaction between the model and the 

guessing magnitude (see Figure 8) indicated that the Rasch model with lower asymptotes 

produced least RSME while the Rasch model yielded about the largest RMSE. Post-hoc 

contrasts with the Tukey’s procedure indicated significant pairwise differences among dif-

ferent guessing magnitudes and significant pairwise differences among different models 

except the difference between that the Rasch model and the Rasch model with a CUTLOW 

correction value of 2.0 which could be considered as a non-effective correction value. 

Overall, the removal of potential misfit item responses purifies the item response data thus 

decreases the total error in the item difficulty parameter estimation. 

Guessing Parameter Estimation. The bias in the guessing parameter estimation for 

the Rasch model for guessing was not affected by either the magnitude of guessing or 

the sample size. The random error in the guessing parameter estimation was signifi-

cantly affected by the guessing magnitude with a large effect size (f=0.59). As the 

guessing effect increased, the random error increased as well. Sample size had a small 

effect on the random error (f=0.15). The increase in the sample size decreased the 

random error. Both sample size and the magnitude of guessing had small effects on 

the total estimation error in the guessing parameter (f=0.22, f=0.16). The increase in 

the sample size decreased the total error and the increase in the guessing magnitude 

increased the total error in the guessing parameter estimation. 
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Figure 7. RMSE in the item difficulty parameter estimates. 

 

 

Figure 8. The effect of the interaction between the estimation model and the 

guessing magnitude on the RMSE in the item difficulty parameter estimates. 

Notes: Model 1=Rasch with a lower asymptote, Model 2=Rasch model, Model 3, 4, 

5, and 6=Rasch model with a CUTLOW value of 0.5, 1.0, 1.5, and 2.0 respectively; 

Guessing 1, 2, and 3=lower asymptotes of 0.1, 0.2, and 0.3. ' 
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Real Data 

A large-scale science test was analyzed with each of the compared procedures. The 

test consisted of 40 items. Item responses from 623 examinees were available for 

analysis. Since no true values of the guessing effects were known, multiple priors for 

the guessing parameter were explored to select a prior with better fit. Like in the sim-

ulation study, the same beta distributions were specified to obtain a mean guessing 

effect of 0.1, 0.2, and 0.3. In addition, a beta distribution was specified with a 𝛼value 

of 4 and a 𝛽 value of 18 to obtain guessing effects with a mode of 0.15 and with a 𝛼 

value of 6 and a 𝛽 value of 16 to obtain a mode of 0.25 (Baker & Kim, 2004). Four 

fit indices were used to select the prior with better fit: Akaike’s information criterion 

(AIC; Akaike, 1974), the Bayesian information criterion (BIC; Schwarz, 1978), a ver-

sion of the AIC corrected for small sample sizes, AICc (Sugiura, 1978) and Deviance 

Information Criterion (DIC; Spiegelhalter et al., 2002). The fit indices are presented 

in Table 1. In general, all fit indices except AIC supported that the beta prior with a 

mode of 0.1 provided the best fit. 

 

Table 1: Fit Indices for the Real Data with Different Prior Distributions  

Mode of Guessing 0.1 0.15 0.2 0.25 0.3 

AIC 26430 26430 26440 26460 26470 

AICc 26450 26460 26470 26480 26500 

BIC 26780 26790 26800 26810 26830 

DIC 26840 26850 26850 26860 26880 

 

Ability parameter estimates are summarized in Table 2. Since the scale comparability 

was achieved by standardizing the ability parameter estimates, there was no difference 

in the mean and standard deviation of the ability estimates across methods. The cor-

relations among the ability estimates across methods were almost all above 0.99. In 

general, items were estimated to be more difficult by the Rasch model plus guessing 

than by other five methods (see Table 2). The correlations between item difficulty 

estimates of the Rasch model plus guessing and other models ranged from 0.93 to .95 

while the difficulty estimation among the Rasch model and the Rasch model with 

correction were over 0.99. The correction procedure with a CUTLOW value of 0.5 

yielded item difficulty estimates closest to those from the Rasch model with lower 

asymptotes. The correction procedure with a CUTLOW value of 2 essentially pro-

duced the same estimates as the Rasch model. 

Test information curves are presented in Figure 9. The ability point with the maximum 

test information differed. The Rasch model for guessing was around 0.8 while the others 

were around -0.8. The test information was much lower for the Rasch model for guess-

ing than other models. A further examination of similar simulation conditions with a 
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sample size of 500 and guessing of 0.1 supported the findings. This indicates that the 

ignorance of the guessing effect lead to overestimation of the test information along the 

ability scale and misrepresentation of the maximum test information location.  

Table 2: A Summary of the Ability and Item Difficulty Parameter Estimates for 

the Real Data 

Ability  N Minimum Maximum Mean Standard Deviation 

Rasch+c 623 -2.7828 2.3445 0.0000 1.0000 

Rasch 623 -3.0782 2.5612 0.0000 1.0000 

CUTLO=0.5 623 -2.8721 2.1456 0.0000 1.0000 

CUTLO=1.0 623 -3.2182 2.3025 0.0000 1.0000 

CUTLO=1.5 623 -3.2832 2.4512 0.0000 1.0000 

CUTLO=2.0 623 -3.3983 2.5307 0.0000 1.0000 

Item Difficulty N Minimum Maximum Mean Standard Deviation 

Rasch+c 40 -1.7546 1.7473 -0.3484 0.9413 

Rasch 40 -2.2270 0.6044 -0.8648 0.7792 

CUTLO=0.5 40 -1.8559 1.0346 -0.5480 0.8044 

CUTLO=1.0 40 -2.0006 0.8451 -0.6892 0.7880 

CUTLO=1.5 40 -2.1232 0.7443 -0.7952 0.7769 

CUTLO=2.0 40 -2.1898 0.6629 -0.8416 0.7769 

 

Figure 9. Test Information Curves for the real data. 
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The test characteristic curves as presented in Figure 10 generally show that given the 

same ability, the expected scores for the Rasch model with guessing were higher than 

those from other procedures for the lower ability levels. This implies that for the same 

expected score, the ability estimate from the Rasch model for guessing would be lower 

than those from other procedures. This is consistent with the findings from a similar 

simulation condition with a sample size of 500 and guessing of 0.1. 

 

 

Figure 10. Test Characteristic Curve for the real data. 

 

Summary and Discussions 

This study explored the model parameter estimation for the extended Rasch model for 

guessing using a Bayesian approach. The MCMC estimation algorithm developed in 

WinBUGS could well recover the true model parameters. Further, model parameter 

estimates were compared with those from the Rasch model which does not explicitly 

model the guessing effect and the Rasch model with the CUTLOW procedure to cor-

rect the guessing effects under different study conditions. The model parameter esti-

mates were in general not significantly different between the Rasch model with and 

without CUTLOW correction procedures, which is consistent with the findings from 

Smith (2008). However, the differences in model parameter estimates from the Rasch 

model for guessing and other models were not negligible. The study results indicated 

ignoring guessing effects in general leads to the underestimation of item difficulty, 

overestimation of test information, and misrepresentation of the maximum test infor-

mation location. The overestimation of test information may lead to premature 
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termination of a test in computerized adaptive test and lead to model parameter esti-

mation errors not the same as expected. 

This study explored one approach to modeling the guessing or pseudo-guessing ef-

fects in the Rasch model which is consistent with the conceptualization and parame-

terization of the effects in the standard IRT modeling framework such as the 3PL and 

4PL IRT models. However, this model no longer maintains the specific objectivity 

property (Artner, 2016) and the CML estimators are no longer available. This ap-

proach incorporates a model parameter to describe the lower asymptote in the item 

characteristic curve. It would be interesting to compare the currently explored model 

with another Rasch model that specifically incorporates guessing related to the num-

ber of distractors: the multiplicative Rasch model (Smith & Fujimoto, 2011). It is 

worthy of note that several R-packages such as TAM, itm, mirt, and sirt are available 

for estimating the guessing parameters by setting some constraints using non-Bayes-

ian estimation methods. 

This study implemented the CUTLOW procedure as implemented in WINSTEPS by 

recoding item responses. The correction to the guessing is based on the relative dif-

ference between an examinee’s ability and an item difficulty. If the item difficulty is 

higher than an examinee’s ability by over a threshold value, the examinee’s response 

will not contribute to the estimation of the item difficulty. This correction is not in 

good alignment with the inclusion of a lower asymptote in an IRT model to account 

for the guessing effects. It is expected that this correction procedure should be more 

effective in correcting ability-based guessing which could be addressed in future ex-

plorations. 

When guessing is present, a three-parameter IRT model show better model parameter 

estimates (DeMars, 2001; Divgi, 1984). The extended Rasch model for guessing is 

also a potential option to model the effect. However, it is expected that in well-devel-

oped multiple-choice or non-multiple choice tests, guessing or pseudo-guessing 

would be limited as it is ultimately construct irrelevant variance (Smith, 2008) and not 

a desired item performance behavior. Good item development and test form construc-

tion is the best solution to improving item calibration quality (Gershon, 1992). On the 

other hand, the extended Rasch model for guessing is a convenient measurement 

model for analyzing item response data where guessing or pseudo-guessing factors 

lead to spuriously high item scores. The findings from this current exploration have 

more significant implications to researchers who use the Rasch model for item re-

sponse data analysis when guessing is potentially present. 

Guessing is a common responding behavior in item response modeling. The Rasch 

model is a very widely used model in test development. This model assumes no aber-

rant responding behaviors such as guessing be present. Though WINSTEPS, the main-

stream software program for the Rasch model parameter estimation has incorporated 

the CUTLOW procedure to deal with the issue, more attention needs to be drawn to 

the impact of ignoring the guessing effects in Rasch modeling. This study compared 

a model extended based on the Rasch model to account for the guessing effects and 

compare the estimates from the model and the Rasch model with and without the 
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correction of the guessing effects. The findings from the study provide the measure-

ment field with empirical evidence of the impact of the guessing effect in the Rasch 

modeling. 
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