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Abstract 

Use of structural equation models (SEMs) to investigate relationships between latent variables 

has become increasingly widespread over the last 20 years.  The use of SEM involves fitting 

multiple plausible models and selecting the one that provides optimal fit.  A common approach 

for determining the optimal model involves use of information indices, which combine model 

misfit with a penalty for model complexity, with a minimum value being optimal.  One concern 

regarding this strategy is that it does not acknowledge uncertainty inherent in the process.  Wu, 

et al. (2020) described a Bayesian approach to quantifying this uncertainty and demonstrated 

its utility in the context of observed variable path models.  This simulation study extends the 

work of Wu, et al. to the case of latent variable SEMs.  Results demonstrate that the Bayesian 

approach does work well in the latent variable context.  Implications for practice are discussed. 
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Structural equation models (SEMs) are widely used to investigate relationships among 

latent constructs such as mood, executive functioning, cognitive ability, and person-

ality in disciplines across the social sciences (Steegh, Hoffler, Hoft, & Parchmann, 

2020; Ulper, Cetinkaya, & Dikici, 2018; Aguado, et al., 2015; Aveh, 2015).  These 

models allow researchers to link latent variables with one another in complex ways, 

thereby assessing the plausibility of theories about human psychology, behavior, and 

social structures.  One of the key issues faced by researchers using SEM to address 

their research questions is the selection of the optimal model given a set of data.  Such 

model selection can be done using measures of both absolute and relative model fit.  

In particular, data analysts often use one or more from the family of information indi-

ces, which combine a measure of model misfit for a given set of data (i.e., the log-

likelihood), and add to it a penalty for model complexity.  These indices are designed 

to favor relatively parsimonious models, unless additional the additional parameters 

in more complex models reduce model misfit by a sufficiently large degree so as to 

counteract the complexity penalty.  In practice, researchers typically fit several models 

to a sample of data and then select the one with the lowest information index value as 

being optimal (Raftery, 1995).  They would then assess whether the selected model 

fits the data well by using multiple absolute fit indices, such as CFI, TLI, RMSEA, 

and SRMR (Kline, 2016). 

Recently, Wu, Cheung, & Leung (2020) described an alternative method for using 

one particular information index, the Bayesian Information Criterion (BIC), to create 

a set of posterior probabilities for a group of plausible models given a particular da-

taset.  In this context, each model that is fit to the data is assigned a posterior proba-

bility based on the data and a prior probability.  The researcher using this approach 

has information about the likelihood of each model, and can then make decisions re-

garding which one(s) should be explored more fully.  An advantage of this Bayesian 

approach over the method for selecting a single optimal model as described above is 

that the uncertainty inherent in model building is reflected in the posterior probabili-

ties, as opposed to the selection of a single model without consideration of how likely 

it is when compared to the alternatives.  The purpose of the current study was to extend 

the work of Wu, et al., who tested this approach in an observed variables path analysis 

framework.  In this simulation study, latent variable SEM models were considered, 

and the Bayesian approach to using information indices, which is described in more 

detail below, was applied under a variety of conditions.   

 

BIC and sample size adjusted BIC 

There exist a wide array of fit statistics for use in the context of SEM.  Some of the 

more common of these, including the comparative fit index (CFI), the Tucker-Lewis 

Index (TLI), and the root mean squared error of approximation (RMSEA) are used to 

assess the overall fit of a model with respect to the data.  In terms of comparing the fit 

of models with one another, statistics such as the Akaike Information Criterion (AIC; 

Akaike, 1974), BIC (Schwartz, 1978), and sample size adjusted BIC (aBIC; Sclove, 

1987) can be employed by researchers.  Each of these statistics is built upon the log-
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likelihood of the estimate model along with a penalty for model complexity.  More 

specifically, they are calculated as: 

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑞       (1) 

𝐵𝐼𝐶 = −2𝐿𝐿 + 𝑞𝑙𝑛(𝑛)       (2) 

𝑎𝐵𝐼𝐶 = −2𝐿𝐿 + 𝑞𝑙𝑛 [
𝑛+2

24
]      (3) 

Where 

𝐿𝐿 = Log-likelihood of the fitted model 

𝑞 = Number of free model parameters 

𝑛 = Sample size 

 

These information indices can be used by data analysts to select the optimal model, 

which is the one with the smallest value.  In practice, researchers fit multiple models 

to a set of data and then select the one with the lowest information index value to be 

optimal. 

A limitation of this model selection approach is that it ignores the uncertainty associ-

ated with sampling variability that is inherent in the model selection process.  In other 

words, the values of fit statistics such as the BIC will differ from sample to sample 

drawn from the same population, given a constant population value.  For many statis-

tics (e.g., regression model coefficients) this uncertainty is measured by the standard 

error.  However, information indices such as the BIC do not have associated standard 

errors and thus quantifying this uncertainty and using it in comparing the relative fit 

of models is not possible.   For example, if the BIC for model 1 is 200, and the BIC 

for model 2 is 100, then the researcher would select model 2 as providing the better 

fit to the data.  Likewise, if BIC for model 1 is 200, and the BIC for model 2 is 199 

the researcher would also select model 2 as being better fitting.  However, it would be 

tempting to conclude that if the sample sizes and number of free parameters are iden-

tical in the two examples, then there would be greater certainty with the first compar-

ison (where BIC values differed by 100) as opposed to the second (where BIC values 

differed by 1).  However, the standard approach to applying information indices in the 

model selection process do not allow for any quantification of such model selection 

uncertainty.  However, as Wu, et al. (2020) described, it is possible to use the BIC in 

the calculation of posterior probabilities for all models in the model space.  We will 

discuss this approach next.  
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BIC posterior model probabilities 

Wu, et al. (2020) discussed in some detail how the commonly used BIC statistic can 

be used to express the marginal likelihood of a SEM.  They drew on earlier work by 

Raftery (1993), Konishi, Ando, and Imoto (2004), and Preacher and Merkle (2012), 

who refer to this quantity as the predictive probability of the model.  It reflects the 

degree to which the model accurately predicts the observed data.   In the population, 

the marginal likelihood of the model can be expressed as: 

𝑃𝑟𝑒𝑑(𝐷|𝑀) = ∫ 𝑓(𝐷|𝜃, 𝑀)𝑝(𝜃|𝑀)𝑑𝜃     (4) 

Where 

𝐷 =Observed data 

𝜃 =Parameters for model 𝑀 

𝑓(𝐷|𝜃, 𝑀) =Density function for the data given the parameters from the model 

𝑝(𝜃|𝑀) =Prior density of model parameters 

Maximum likelihood is often used to estimate the parameters (𝜃) in equation (4), but 

can be computationally intractable in many applied situations involving many model 

parameters of varying distributions (Beck & Yuen, 2004).  Raftery (1993) and Kon-

ishi, et al. (2004) showed that if BIC is calculated as in equation (2), then for a given 

set of data (D) with a proposed model (M), this predictive probability takes the form: 

𝑃𝑟𝑒𝑑(𝐷|𝑀) ∝ 𝑒
(−

𝐵𝐼𝐶𝑀
2

)
       (5) 

Where 

𝐵𝐼𝐶𝑀 =BIC value for the target model. 

If the likelihood in equation (5) is calculated for two competing models given the same 

set of data, the ratio of those values is the Bayes Factor, and can be used in model 

selection.  In this context, the Bayes Factor is calculated as: 

𝐵𝐹 =
𝑃𝑟𝑒𝑑(𝐷|𝑀1)

𝑃𝑟𝑒𝑑(𝐷|𝑀2)
         (6) 

Where 

𝑃𝑟𝑒𝑑(𝐷|𝑀1) =Predictive probability of the data given model 1 

𝑃𝑟𝑒𝑑(𝐷|𝑀2) =Predictive probability of the data given model 2 

Jeffreys (1961) proposed a set of rules for using this rule for the purpose of model 

selection.  Essentially, when 𝐵𝐹 ≥ 1 we have support for Model 1 and when 𝐵𝐹 <
0.316 there is substantial evidence against Model 1.  Jeffreys suggested that 𝐵𝐹 val-

ues between 0.316 and 1 indicate minimal evidence against Model 1.  Of course, given 

the relationships between 𝑃𝑟𝑒𝑑(𝐷|𝑀) and BIC, the model selected as optimal based 

on the minimum BIC criterion will also be selected using the Bayes Factor.  Perhaps 

more interestingly, the probability expressed in (4) can be used to calculate a 
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probability space for an entire set of models, as opposed to allowing only for compar-

isons of model pairs. 

A brief description of the model posterior probabilities appears in the following text.  

The interested reader who would like more details is encouraged to read the Wu, et 

al. (2020) manuscript, where these issues are discussed in much greater detail.  In the 

context of K candidate models, the posterior probability of model i can be calculated 

using the BIC (Wu, et al.). 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑀𝑖) =
𝑒−0.5(𝐵𝐼𝐶𝑖−𝐵𝐼𝐶0)

∑ 𝑒−0.5(𝐵𝐼𝐶𝑖−𝐵𝐼𝐶0)𝑘
𝑖=0

     (7) 

Where 

𝐵𝐼𝐶0 =BIC for the null model 

𝐵𝐼𝐶𝑖 =BIC for candidate model i 

Because in many cases BIC is a very large number, its exponentiated value will be 

extremely small.  Therefore, in order to scale these values to a more useful format, the 

BIC for the null model is subtracted from that of the candidate model i.  The null 

model is defined by setting the covariances among the observed variables to be 0 

(Kline, 2016; Brown, 2015).  It is important to note that prior probability for each 

model is assumed to be 1/K.  As is discussed below, alternative prior probabilities can 

be employed by the researcher. 

Once the posterior probabilities for the candidate models are calculated, they can be 

used to assess the relative likelihood of each model being optimal given the data at 

hand.  More specifically, each model has an associated probability, which can be or-

dered from largest to smallest.  The models within the credibility set are those where 

the sum of posterior probabilities is 0.95.  This 95% model credibility interval can be 

used by the researcher to determine which should be explored in more depth.  Con-

sider an example involving 4 candidate models with the following ordered posterior 

probabilities for model 1 to model 4:  0..54, 0.42, 0.03, 0.01.  In order to determine 

set of credibility models, we would sum the probabilities until achieving a value of 

0.95.  In this case the posterior probabilities for the first two models sum to 0.96 

(0.54+0.42), meaning that they fall in the credibility set.  Therefore, given that they 

are in the credibility set, the researcher would conclude that models 1 and 2 are the 

most likely to be optimal for the population from which the sample was drawn, and 

are therefore investigated more closely.  Because they are not in the credibility set, 

models 3 and 4 are discarded as being unlikely to be appropriate representations of 

the relationships within the population. 

This approach to model exploration for a given research problem presents a distinct 

alternative to the standard use of information indices such as BIC, in which the model 

with the smallest value is selected as being optimal, and little to no consideration is 

given regarding the relative fit of several models, or the uncertainty in the model se-

lection process. 
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Bayesian model averaging 

A closely related model selection and combination approach to the BIC based method 

described above is Bayesian model averaging (BMA).  An early description of BMA 

was provided by Jeffreys (1939) and later expanded on by various authors (e.g., Hoe-

ting, et al., 1999; Raftery, et al., 1997; Madigan & Raftery, 1994; Leamer, 1978).  The 

basic idea behind the use of BMA is that it provides a framework for both model 

selection through the use of model probabilities, as well as obtaining more accurate 

predictions of one or more outcomes using a combination of multiple possible models 

weighted by their probabilities.  In both cases, BMA provides the researcher with a 

better understanding of the uncertainty underlying the possible models, given theory 

and the data, than does the selection of a single model based upon information indices 

or hypothesis tests comparing model fit (Hoeting, et al., 1999). 

 The posterior probability of a particular model can be expressed as: 

𝑝(𝑀𝑘|𝑦) =
𝑝(𝑦|𝑀𝑘)𝑝(𝑀𝑘)

∑ 𝑝(𝑦|𝑀𝑚)𝑝(𝑀𝑚)𝐾
𝑚=1

       (8) 

Where 

𝑝(𝑦|𝑀𝑘) =Marginal likelihood of the data y given model 𝑀𝑘 

𝑝(𝑀𝑘) =Prior probability of model 𝑀𝑘 

The value 𝑝(𝑀𝑘|𝑦) represents the probability of model 𝑀𝑘 based upon its fit to the 

data and its prior probability. 

As described in Hinne, et al. (2020) BMA has several advantages for researchers in 

practice, including the estimation of model uncertainty, optimal predictions for an 

outcome variable using multiple models weighted by their probabilities, reduction of 

the impact of outlying observations, and robustness to model misspecification.  Given 

these advantages, BMA is especially useful for situations in which prediction of the 

dependent variable values and parameter estimation are of most importance (Hinne, 

et al.).  Conversely, the individual models themselves are typically of less importance 

in the context of BMA than in more traditional model selection contexts.  Finally, as 

noted by previous authors (e.g., Hinne, et al., 2020; Hoeting, 1999) BMA can be rel-

atively difficult to carry out in some context because of the complexity of parameter 

estimation and specification of 𝑝(𝑀𝑘|𝑦), particularly when the number of candidate 

models is large. Given that the current study is focused on model selection, rather than 

prediction or parameter estimation, and the models being considered are relatively 

complex, BMA was not included in the current study. 

 

Prior research examining BIC posterior probabilities 

Wu, et al. (2020) conducted a series of simulation studies to investigate the perfor-

mance of the technique described above for developing a credibility set of models 

based on the BIC.  These simulations featured mediated and moderated models 
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involving observed variables.  The first of the three simulation studies examined the 

performance of the BIC posterior probability approach when all 16 possible models 

based on three observed variables were used for both data generation and data analy-

sis.  Relationships among three observed variables were classified as small (0.14), 

medium (0.36), and large (0.51) based on Cohen’s (1988) guidelines, and the sample 

size conditions were 100 and 1000.  The outcome variables were the posterior proba-

bilities for the candidate models.  The goal of this first simulation study was to assess 

the accuracy of the posterior probabilities described in equation (5) in terms of iden-

tifying the most likely candidate model given the data generating model.  In a second 

simulation study, the same basic data structure described above was used in data gen-

eration and analysis, but with only the small magnitude coefficients linking the vari-

ables and a wider array of sample sizes between 50 and 1000.  This second study 

assessed the performance of the proposed approach for model poster determination in 

the more challenging conditions (small samples and weak relationships among varia-

bles).  The third simulation study presented in Wu, et al. involved the use of priors 

other than the uniform.  Only four models were considered in this last simulation, with 

the standard uniform prior (0.25 for each model), as well as correct strong priors (0.7 

for the partial mediation model and 0.1 for the other models).   

Based on the results of the three simulation studies described above, Wu, et al., (2020) 

reached several conclusions regarding the utility of the posterior probability approach 

for characterizing relative model fit.  First, across studies the BIC posterior probabil-

ities were accurate in terms of correctly identifying the data generating model with 

the largest posterior probability except for samples of 100 or fewer and weak relation-

ships among the observed variables.  In those cases, the posterior probabilities for the 

simpler models tended to be larger, even when they were not the data generating 

model.  Second, the use of informative priors was associated with higher posterior 

probabilities for the model with the largest value.  When these informative priors were 

incorrect the posterior probabilities for the incorrect models were somewhat lower in 

the context of larger samples and stronger coefficients linking the variables.  How-

ever, for weak relationships and samples of 100 or fewer, incorrect informative priors 

were associated with larger values for the posterior probability of the incorrect model.  

Based on their findings, the authors concluded that the posterior probabilities are ef-

fective tools for identifying the most plausible model, and that they provide useful 

information about a full set of potentially credible models.  They also suggested that 

researchers may consider whether the best fitting model has a posterior probability 

greater than a predetermined cut-off such as 0.5.  If no posterior probability reaches 

this threshold, it may be that there is not a clearly defined best model for the data, 

regardless of which one has the lowest BIC value.  Among recommendations coming 

from the study is that future research should consider a wider variety of models, in-

cluding SEMs involving latent variables, which is the focus of the current work. 
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Methods 

A simulation study approach was used to address the goals of this study.  For each 

combination of study conditions, which are described below, a total of 1000 replica-

tions was used.  Data generation and analysis were carried out using Mplus version 8 

(Muthèn & Muthèn, 2018) and R version 4.02 (R Core Team, 2020).  A variety of 

conditions were manipulated in order to investigate the performance of the posterior 

probability approach that is described above.  The observed indicator variables were 

generated from the standard normal (𝜇 = 0, 𝜎 = 1) distribution.  There were three 

observed indicators for each of the latent variables. For each indicator variable, the 

sum of the squared factor loading and the error variance was 1 for all simulations. 

 

Data generation models  

Three separate models were used for data generation, and are based on the research 

questions associated with the empirical example that is also a part of this study.  These 

models include a fully mediated model (Figure 8), a partially mediated model (Figure 

9), and moderated partially mediated model (Figure 10).  For all combinations of the 

following conditions, each of these models was used to generate the data, and then 

each was fit to the resulting datasets.  Thus, data were generated from the fully medi-

ated, partially mediated, and moderated partially mediated models, and each of these 

was then fit to each of the datasets.  These models were selected because they corre-

spond to the hypothesized models in an actual research scenario represented in the 

empirical example. 

 

Structural coefficient magnitudes 

The structural coefficients used in this study are based on those presented in Wu, et 

al. (2020), and correspond to small (0.14), medium (0.36), and large (0.51) relation-

ships based upon guidelines presented in Cohen (1988).  In keeping with that earlier 

work, three structure coefficient conditions were used including all structure coeffi-

cients are 0.14 (small), some are 0.15 (medium), and large (all are larger than 0.14).   

 

Factor loadings magnitudes 

The factor loadings were manipulated to be 0.5, 0.7, and 0.9, representing weak to 

strong factor structure.  The same loading values were used for all indicators for a 

give condition.  As an example, in the 0.5 loading condition, all 12 factor loadings (3 

indicators for each of 4 factors) were 0.5. 
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Sample size 

Sample sizes were selected to reflect relatively small samples for latent variable SEM 

to large samples.  These values were 100, 200, 300, 500, and 1000.  These values also 

cover the range of those used by Wu, et al. (2020).  Given that those authors found 

that sample size was an important factor in terms of the performance of the posterior 

probability approach, it was determined that this factor should also be considered in 

the current study. 

 

Prior probabilities 

Wu, et al showed that the choice of prior probability can have a marked impact on the 

resulting posterior probabilities.  All data for this portion of the study were generated 

using the partial mediation model, and three levels of prior probability were used: (1) 

Uniform, (2) Correct informative, and (3) Incorrect informative.  In the uniform prior 

condition each model had a 1/3 prior probability.  For the correct informative prior 

condition, the partial mediation model was assigned a prior probability of 0.7, with 

the other two models having a prior probability of 0.15 each.  In the incorrect informa-

tive prior condition, the fully mediated model had a prior probability of 0.7, which 

was incorrect given that the data were generated using the partial mediation model.  

The partial mediation and moderated partial mediation models each had a prior prob-

ability of 0.15 in the incorrect priors condition. 

 

Study outcomes 

The outcome variables of interest for this study were the posterior probabilities for 

each model based upon both BIC and aBIC.  In order to determine which of the ma-

nipulated factors were related to the outcome variable, analysis of variance (ANOVA) 

was used, and both statistical significance and the 𝜂2 effect size were used.  A full 

factorial ANOVA model including the type of model, coefficient magnitude, factor 

loading magnitude, and sample size was fit to the outcome data for the BIC based 

results.  For the portion of the study examining the use of informative priors, a separate 

ANOVA was applied using the same sets of variables listed above, with the addition 

of type of prior (uniform, informative correct, and informative incorrect). 
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Results 

Partial mediation model 

The ANOVA identified the interactions of the coefficient magnitude by fitted model 

by sample size (𝐹8,16 = 8.21, 𝑝 < 0.001, 𝜂2 = 0.80), and factor loading value by fit-

ted model by sample size (𝐹8,16 = 20.27, 𝑝 < 0.001, 𝜂2 = 0.84) as being statistically 

significantly related to the posterior distribution of the BIC when the partial mediation 

model underlay the data.  The posterior probabilities of the models by coefficient 

magnitude, sample size, and fitted model appear in Figure 1.   

 

 

Figure 1: Posterior probabilities by coefficient magnitudes, sample size, and 

fitted model:  Underlying partial mediation model 

 

When the data generating structural coefficients were large, the posterior probabilities 

based on both BIC and aBIC for the partial mediation model were at or near 1.0 across 

sample sizes.  Furthermore, when the coefficients were of moderate magnitude, the 

posterior probabilities based on both information indices were above 0.9 for samples 

of 200 or more.  When the sample size was 100, the posterior probability for the partial 

mediation model remained largest for the partial mediation model, but for BIC it fell 

to 0.68, as compared to 0.32 for the fully mediation model.  With regard to the aBIC, 

the posterior probability for the partial mediation model was 0.89, with the fully me-

diated model having a posterior value of 0.11.   
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Finally, when the coefficients were small, the posterior probabilities based on the 

aBIC for the partial mediation model was larger than that of the fully mediated model 

with samples of 200 or more.  However, as the sample size decreased in value the 

posteriors of the two models converged, with that of the correct partially mediated 

model declining to 0.55 for a sample size of 200.  When N=100, the fully mediated 

model posterior based on the aBIC was less than that of the full mediation model.  

When the BIC served as the basis for the model posteriors, the full mediation model 

had larger values for samples of 300 or smaller.  In addition, the partial mediation 

model posterior probability never exceeded 0.8 in the small coefficient condition. 

 

 

Figure 2: Posterior probabilities by factor loading value, sample size, and fitted 

model:  Underlying partial mediation model 

 

Figure 2 includes the posterior probabilities by factor loading, sample size, and the 

fitted model.  Across sample sizes and factor loading values the partial mediation pos-

terior probability was largest for both BIC and aBIC.  However, with smaller samples 

and lower factor loading values, the difference between the posterior probability of 

the partial mediation and full mediation models was smaller; i.e., the posterior of the 

fully mediated model increased in value vis-à-vis larger samples and larger factor 

loadings.  When the sample size was 300 or more, the posterior probability of the 

partial mediation model was greater than 0.8 except when the factor loading was 0.5.  

For samples smaller than 300, the partial mediation model posterior was never greater 

than 0.8, regardless of the factor loading magnitude. 
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Full mediation model 

The ANOVA identified the interactions of structural coefficients by factor loading 

values by fitted model (𝐹4,16 = 12.06, 𝑝 < 0.001, 𝜂2 = 0.75), and sample size by fit-

ted model (𝐹4,16 = 81.76, 𝑝 < 0.001, 𝜂2 = 0.95) as being statistically significantly 

related to the posterior probabilities when the fully mediated model was used to gen-

erate the data.   

 

Table 1: Posterior probabilities by sample size and fitted model:  Underlying 

fully mediated model 

Sample 
size 

Full medi-
ation BIC 

Partial 
mediation 
BIC 

Moder-
ated medi-
ation BIC 

Full medi-
ation aBIC 

Partial 
mediation 
aBIC 

Moder-
ated medi-
ation aBIC 

100 0.85 0.15 0 0.57 0.43 0 

200 0.89 0.11 0 0.66 0.34 0 

300 0.92 0.08 0 0.72 0.28 0 

500 0.94 0.06 0 0.77 0.23 0 

1000 0.96 0.04 0 0.84 0.16 0 

 

Table 1 includes the mean posterior probabilities by sample size and fitted model.  

From these results, it is clear that when the data were generated from the fully medi-

ated model, the posterior probabilities for the BIC were higher for the fully mediated 

model than were those based on the aBIC, across sample sizes.  In addition, as the 

sample increased in value, the probability of the fully mediation model increased for 

both methods.   
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Figure 3: Posterior probabilities by structural coefficient magnitude, factor 

loading value, and fitted model:  Underlying full mediation model 

 

Figure 3 includes the posterior probabilities by factor loading values, structural coef-

ficient magnitudes, and the fitted models.  As was true in Table 1, the posterior prob-

abilities for the full mediation model was largest across all study conditions.  In addi-

tion, the probabilities for the correct full mediation model were larger when based on 

the BIC as compared to the aBIC.  In addition, for both the BIC and aBIC based pos-

teriors, the value for the full mediation model increased in value with increases in the 

loading values and coefficient magnitudes.  Finally, the impact of loading and coeffi-

cient magnitude on the posterior probabilities for the full mediation model was 

stronger for the aBIC based probabilities. 

 

Moderated mediation model 

The results of the ANOVA identified the interactions of sample size by fitted model 

(𝐹4,16 = 10.25, 𝑝 < 0.001, 𝜂2 = 0.72) and factor loading values by coefficient mag-

nitude by fitted model (𝐹4,16 = 10.43, 𝑝 < 0.001, 𝜂2 = 0.72) as statistically signifi-

cantly associated with the posterior probabilities when the underlying model involved 

moderated mediation.  Across sample sizes and fitted models, the posterior probabil-

ities for the moderated mediation model were the largest regardless of whether the 

BIC or aBIC was used to calculate them (Table 2).   
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Table 2: Posterior probabilities by sample size and fitted model:  Underlying 

moderated mediation model 

Sample 
size 

Full medi-
ation BIC 

Partial 
mediation 
BIC 

Moder-
ated medi-
ation BIC 

Full medi-
ation aBIC 

Partial 
mediation 
aBIC 

Moder-
ated medi-
ation aBIC 

100 0.03 0.10 0.87 0.04 0.11 0.85 

200 0.03 0.07 0.90 0.03 0.08 0.89 

300 0.02 0.04 0.94 0.03 0.08 0.92 

500 0.02 0.02 0.96 0.02 0.03 0.95 

1000 0 0 1.00 0 0 1.00 

 

In addition, the posteriors for the correct model were slightly larger for the BIC.  Fi-

nally, the posterior of the moderated mediation model increased in value concomi-

tantly with increases in sample size.   

The posterior probabilities based on BIC and aBIC by fitted model, factor loadings, 

and structural coefficients appear in Figure 4.   

 

 

Figure 4: Posterior probabilities by structural coefficient magnitude, factor 

loading value, and fitted model:  Underlying moderated mediation model 
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These results reinforce the finding from Table 2 that across conditions the posterior 

probabilities for the (correct) moderated mediation model were largest. When the factor 

loadings were 0.7 or larger, the posteriors for this model were at or near 1.0, regardless 

of the structural coefficients.  Furthermore, when the coefficients were of large magni-

tude, the posterior for the moderated mediation model was above 0.9 when the structure 

coefficients were large.  When the coefficients were medium or small, the moderated 

mediation model posteriors were below 0.8.  In these cases, the partial mediation model 

exhibited larger posterior probabilities than did the full mediation model. 

 

Partial mediation model with informative priors 

Results of the ANOVA revealed that the interactions of prior probability type, struc-

tural coefficient magnitudes, sample size, and fitted model (), and prior probability 

type, factor loading value, and fitted model () were significantly associated with the 

posterior probabilities.  Based on the results in Figure 5, it appears that when the struc-

tural coefficients were large, the posterior probabilities for the (correct) partial medi-

ation model were the largest for both BIC and aBIC, across sample sizes.  In addition, 

when informative priors were used, the posterior probabilities for the partial mediation 

model were greater than 0.8 across sample sizes in the medium structural coefficients 

case.  Indeed, when informative priors were used, the posterior probabilities based on 

the aBIC were 0.8 or larger across all study conditions.  In contrast, when the struc-

tural coefficients were small and the sample was less than 1000, the posterior proba-

bilities based on the BIC for the partial mediation model were less than 0.8.   

 

When incorrect informative priors were applied, the BIC based posterior probabilities 

for the (incorrect) full mediation model was largest for samples of 500 or fewer when 

the structural coefficients were small, and 300 or fewer for the aBIC posterior proba-

bilities.  In addition, When the structural coefficients were of medium magnitude, the 

posteriors for the partial mediation model were the largest across sample sizes when 

based on the aBIC.  For the posterior probabilities calculated using the BIC, the pos-

teriors for the partial mediation model was largest for samples of 200 or more.  For 

the small structural coefficient condition the posterior probabilities for the (correct) 

partial mediation model based on the aBIC were larger than those for the BIC.  
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Figure 5: Posterior probabilities by prior type, structural coefficient 

magnitude, sample size, and fitted model:  Underlying partial mediation model 

 

 

 

Figure 6: Posterior probabilities by prior type, factor loading value, and fitted 

model:  Underlying partial mediation model 
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Figure 6 displays the posterior probabilities by prior type, factor loading value and the 

fitted model.  As was evident in Figure 5, the posterior probabilities based on the aBIC 

were uniformly larger than those based on the BIC.  In addition, for both approaches, 

the posteriors for the partial mediation model were larger in the correct informative 

prior condition.  For both approaches, the posterior probabilities for the partial medi-

ation model were larger for models with larger factor loadings.  The posterior proba-

bilities for the full mediation model were second largest across conditions. 

 

Comparison of posterior probabilities by prior for partial mediation model 

The three panels of Figure 7 display the posterior probabilities for each model based 

on the BIC and aBIC by the prior distribution, and factor loadings, sample size, and 

structural coefficient magnitude.  

 

The goal of this examination was to compare the performance of the fitted models 

under different prior probability conditions.  With respect to factor loading values 

(Panel 1), the posterior probabilities for (correct) partial mediation model were largest 

in the informative prior case and smallest in the incorrect informative prior.  These 

differences were magnified for smaller factor loadings, for which the use of informa-

tive priors was particularly effective in terms of the posterior probabilities being larg-

est for the partial mediation model.   

Results in Panel 2 of Figure 7 reveal a similar overall pattern of results, in which the 

use of an informative prior yielded higher posterior probabilities for the partial medi-

ation model than was the case for the other two prior types, particularly the incorrect 

informative priors.  These differences were most magnified for smaller samples, 

whereas for sample sizes of 500 or more the results for the informative and uniform 

priors were similar to one another.  On the other hand, the informative prior consist-

ently yielded the lowest posterior probabilities for the partial mediation model across 

sample sizes.  Finally, Panel 3 of Figure 7 shows that when the structure coefficients 

were large, the posterior probabilities for the partial mediation model were nearly 1.00 

for both the informative and uniform priors, and somewhat lower for the incorrect 

informative priors.  When the structure coefficients were of medium magnitude, the 

posteriors for the partial mediation model in both the informative and uniform prior 

conditions were above 0.9, but were just above 0.8 for the incorrect informative priors.  

Finally, when the coefficients were small, the BIC based posterior probabilities were 

largest for the partial mediation model only for the informative prior condition.  When 

considering the aBIC posteriors, the partial mediation model had the largest posteriors 

for both the informative and uniform priors.  However, the partial mediation posterior 

probability in the informative prior case were above 0.8 in the small coefficient case, 

whereas for the uniform priors the posteriors of the partial mediation model were ap-

proximately 0.7 in the small coefficient case. 
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Figure 7:  Posterior probabilities by prior type, factor loading value, sample 

size, structural coefficient magnitude, and fitted model:  Underlying partial 

mediation model 

Factor loadings 

Sample size 

Structure  
coefficient 
magnitude 
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Empirical example 

In order to demonstrate the application of the Bayesian approach to interpreting model 

fit based on the BIC and aBIC, a series of SEMs were used with a dataset collected 

from a sample of 417 college students.  Among other measures, the participants com-

pleted items on the Adult Temperament Questionnaire (ATQ; Evans & Rothbart, 

2007), which includes subscales measuring extraversion, negative affect, effortful 

control, and orienting sensitivity.  A series of SEMs were fit around these variables, 

and the Bayesian BIC approach to obtaining model posterior probabilities in order to 

identify those that are most probable, given the data.  A total of four models were fit 

to the data, and for each the posterior probabilities was calculated based upon the BIC 

and aBIC, respectively.  The models appear in Figures 8-10, and reflect partial and 

full mediation, and a partially mediated model with moderation.  The models were fit 

using Mplus, version 8 (Muthèn & Muthèn, 2018), and reflect the set of theoretically 

justified models for these data.   

 

 

 

 

 

 

Figure 8: Full mediation model for empirical example 
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Figure 9: Partial mediation model for empirical example 

 

 

 

Figure 10: Moderated partial mediation model for empirical example 
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Table 3 includes the BIC, aBIC, and posterior probabilities for each model.   

 

Table 3:  BIC, aBIC, and posterior probabilities for each model in the 

empirical example 

Model BIC aBIC BIC  

Posterior 

aBIC  

posterior 

Full mediation 10189.241 10097.216 0 0 

Partial mediation 10163.083 10067.885 0.85 0.54 

Moderated partial medi-
ation 

10166.544 10068.173 0.15 0.46 

 

If we were to use the BIC and aBIC only, we would conclude that the partial mediation 

model yielded the best fit and would move on to describe the model coefficients, with 

no further examination of the competing models.  In contrast, by relying on the pos-

terior probabilities, we gain a greater understanding of the nuances among the various 

models.  First considering the BIC posterior probabilities only, we would conclude 

that it is very likely that the correct model involves partial, as opposed to full, media-

tion.  In addition, it seems unlikely that there is a moderation effect present in the 

model, though we could not rule it out entirely.  However, we would be inclined to 

primarily focus on the partial mediation model.  If we were to rely on the posterior 

distributions derived from the aBIC statistic, we would also conclude that partial me-

diation is very likely to be present.  However, in contrast to what we found based on 

the BIC only, the aBIC posterior probabilities for the partial and moderated partial 

mediation models were relatively close to one another.  Thus, although the partial 

mediation model has a higher posterior than does the moderated partial mediation 

model, both appear to be plausible given the data, and therefore deserve continued 

consideration. 

The structural coefficients and direct/indirect effects for the partial mediation and 

moderated partial mediation models appear in Table 4.  An examination of these re-

sults reveals that for either model, the direct relationships between effortful control 

and negative affect with orienting sensitivity were statistically significant, based on 

the 95% confidence intervals.  In both cases, the relationships were positive indicating 

that higher levels of effortful control and negative affect were associated with higher 

levels of orienting sensitivity.  The indirect effect between negative affect and effort-

ful control was not statistically significant, though the total effect was.  Finally, the 

moderated effect due to extraversion was not statistically significant.  Taken together, 

these results show that orienting sensitivity was positively associated with both effort-

ful control and negative affect, and that these relationships were direct in nature.  The 

posterior probabilities reflected that the partial mediation model was the most likely 

given the data, and the coefficient results support this finding in that the moderator 

effect was not statistically significant. 
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Table 4: Parameter estimates, standard errors, and 95% confidence intervals 

for structural coefficients for the partial mediation and moderated partial 

mediation models 

Term Coefficient Standard error 95% confidence inter-
val 

Partial mediation model 

Effortful control direct effect 0.21 0.11 -0.01, 0.42 

Negative affect direct effect 0.32 0.12 0.08, 0.56 

Negative affect->Effortful con-
trol 

-0.13 0.19 -0.49, 0.24 

Negative Affect indirect effect -0.03 0.03 -0.09, 0.03 

Negative Affect total effect 0.29 0.12 0.06, 0.53 

Moderated partial mediation model 

Effortful control direct effect 0.21 0.11 -0.004, 0.42 

Negative affect direct effect 0.32 0.12 0.09, 0.55 

Negative affect->Effortful con-
trol 

-0.13 0.16 -0.45, 0.19 

Negative Affect indirect effect -0.03 0.03 -0.09, 0.03 

Negative Affect total effect 0.29 0.11 0.07, 0.51 

Extraversion X Negative affect 0.01 0.07 -0.12, 0.14 

 

Discussion 

The goal of this study was to extend upon the work of Wu, et al., (2020) by applying 

BIC based posterior probability approach to model comparison to the case of latent 

variable SEM.  In addition, the utility of posterior probabilities based on aBIC was 

also investigated.  The results of the simulations described above yielded several find-

ings of interest.  First, when the coefficients relating the latent variables to one another 

were medium or large, posterior probabilities based on both BIC and aBIC were larg-

est for the data generating model.  However, when the coefficients were small in mag-

nitude and the sample size was 300 or fewer, the posterior probabilities for the simpler 

full mediation model tended to be larger than for the more complex models, even 

when those more complex models were used to generate the data.  This result is sim-

ilar to findings for observed variable models that was reported in Wu, et. al.  A second 

major finding of the current study was that cases with smaller factor loadings, coupled 

with smaller sample sizes led to larger posterior probability values for the full media-

tion model when the data were generated from the partial mediation model.  However, 

unlike with small structural coefficients, the full mediation model never had the high-

est posterior probability even for samples as small as 100 and factor loadings of 0.5, 

when either the partial or moderated partial mediation models were used to generate 

the data.  In other words, it appears that, although factor loading magnitude does 
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influence model posterior probabilities, this impact is not as strong as for coefficient 

magnitude.   

Third, the use of aBIC to calculate model posterior probabilities yielded larger values 

for the partial mediation model when it was the data generating model than did BIC, 

but such was not the case for the full mediation model, where the BIC posterior prob-

abilities for the correct (full mediation model) were largest.  Finally, the use of in-

formative priors can have a positive impact for researchers when they are applied cor-

rectly.  This is particularly the case for smaller sample sizes and weaker factor load-

ings, where the use of correct informative priors led to higher posterior probabilities 

for the correct model than was the case for the uniform priors.  However, when in-

formative priors are incorrect (i.e., larger priors are associated with an incorrect 

model), the incorrect model will have relatively large incorrect priors when the sample 

size is less than 300, the structure coefficients are small, or the factor loadings are 0.5.  

In those cases, the posterior probabilities for the incorrect model with the larger prior 

probability was itself relatively large, which could mislead researchers into assuming 

that there was greater model uncertainty than is actually the case. 

 

Implications for practice 

The results of this study provide several implications for practice.  First, it appears 

that the use BIC to calculate Bayesian posterior probabilities for a set of models that 

was described by Wu, et al. (2020) in the context of observed variable path models 

does translate well to latent variables as well.  Generally speaking, the data generating 

models had the largest posterior probabilities in the current study.  However, one ma-

jor caveat that researchers using this approach need to keep in mind is that the strength 

of relationships among the latent variables, and the factor structure itself will impact 

the utility of these posterior probabilities.  When the factor structure is relatively weak 

and/or the relationships among the variables is small, the simpler models will have 

higher posterior probabilities than would be reflected in the data generating processes.  

Thus researchers need to consider the posterior probabilities in light of the factor load-

ing and structure coefficient magnitudes.  Similarly, sample size is also an important 

consideration given the results presented above.  When it is below 300, the posterior 

probabilities appear to favor simpler models, particularly when comparisons are be-

tween partial and full mediation.  Thus, researchers should keep in mind that, in the 

context of latent variable modeling, smaller sample sizes will be associated with rel-

atively larger probabilities for simpler models even when these are not actually cor-

rect.  Indeed, it may be the case that for very small samples (e.g., 100) the use of these 

Bayesian posterior probabilities may not be reasonable.   

A third, related implication from this research is that the use of informative priors can 

ameliorate the deleterious impact of small samples and weak models on the posterior 

probabilities.  When the informative priors are correct (i.e., the data generating model 

has the larger prior probability) the resulting posterior probabilities for these correct 

models will generally be larger, regardless of the sample size, an factor loading and 
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structural coefficient magnitudes.  However, the converse is also true.  Namely, when 

the largest informative prior is applied to the incorrect model, and the sample size is 

small or the model is weak, the posterior probability for that incorrect model will be 

large, thereby leading to potential confusion and/or incorrect conclusions regarding 

model uncertainty.  Considering these latter two implications together, if researchers 

have relatively high confidence that one of the proposed models is more likely to un-

derlie the observed data, then the use of informative priors can be helpful, particularly 

in traditionally difficult situations for latent variable SEM; i.e., with small samples 

and weak models.  However, in those very same situations, the researcher should 

probably avoid using informative priors if their prior information about the correct-

ness of one of the models is relatively low.   

A final implication of this study is that the number of candidate models will very 

likely impact the likelihoods of the individual models through the size of the denom-

inator.  The more candidate models that are considered, the larger the denominator 

and potentially the lower the marginal likelihood of any single model.  Wu, et al. 

(2020) acknowledge this fact in their work, and argue that researchers should therefore 

only consider theoretically meaningful and plausible models.  They also note that even 

when a relatively large number of models are considered, the posterior likelihoods 

should still reflect the most important models relative to one another.  Nonetheless, 

researchers should be aware that the number of candidate models will have an impact 

on the individual model likelihoods. 

In summary, the use of the posterior probability approach to describing and comparing 

model fit that was described in Wu, et al. (2020) and extended here to the context of 

latent variable modeling appears to be a viable option for researchers.  It is particularly 

useful when the factor loadings are 0.7 or larger, and for samples of 300 or more.  In 

addition, when researchers have good prior information regarding the relative likeli-

hood of the models being considered, this can be applied in the form of prior proba-

bilities, and would be particularly useful in traditionally difficult modeling situations.  

Care must be taken in using such priors however, particularly in those difficult cases.  

 

Directions for future research 

The results of the current study point to several directions for additional research.  

First, additional latent structure situations should be considered, including more com-

plex structural relationships among the latent variables, more latent variables, and dif-

ferent factor loading conditions.  Second, future work should consider the use of cat-

egorical indicator variables.  In many situations, scales consisting of ordinal items are 

used in social science research.  Therefore, future work should examine how the pos-

terior probability approach performs when the indicators are ordinal and dichotomous 

in nature.  Additional research should also continue to investigate the use of aBIC for 

calculating the posterior probabilities.  Results of the current work are indeterminate 

with regard to the use of the aBIC for this purpose.  In some scenarios it appears to 

yield more accurate posteriors, but this was not true across all conditions.  Thus, more 
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work needs to examine this issue.  Future research should compare the method that 

was the focus of this work with BMA.  One hurdle that such work would need to 

overcome is the potential difficulty in model parameter estimation for the SEMs.  

However, it would be useful to researchers if traditional BMA could be compared to 

the BIC method considered here.  Finally, future work should also examine the per-

formance of the posterior probabilities for models with relationships among a mix of 

observed and latent variables, such as the MIMIC model. 
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