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Abstract: 
This study assessed the parameter recovery accuracy of Marginal Maximum Likelihood (MML) 
and two Markov Chain Monte Carlo (MCMC) methods, Gibbs and Hamiltonian Monte Carlo 
(HMC), under the four-parameter unidimensional binary item response function. Data were 
simulated under the mixed factorial design with sample size (1,000; 2,500; and 5,000 respond-
ents) and latent trait distribution (normal and negatively skewed) as the between-subjects fac-
tors, and estimation method (MML, Gibbs, and HMC) as the within-subjects factor. Results 
indicated that in general, MML was more heavily impacted by latent trait skewness, but MML 
also improved its performance more strongly than MCMC when sample size increased. Two 
MCMC methods remained advantageous with lower root mean square errors (RMSE) of item 
parameter recovery across all conditions under investigation, but sample size increase brought 
a correspondingly narrower gap between MML and MCMC regardless of theta distributions. 
Gibbs and HMC provided nearly identical outcomes across all conditions, and no considerable 
difference between these two MCMC methods was detected. Sample size and latent trait distri-
bution had little observable effect on trait score estimation by MCMC and Expected a Posteriori 
following MML (MML-EAP), which were essentially unbiased and had similar RMSE across 
all conditions. Discussions of the findings and model calibration issues are presented together 
with practical implications and future research recommendations. 
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The four-parameter item response model (4PM; Barton & Lord, 1981) expands on the 
three-parameter model with an upper asymptote less than one to capture the non-zero 
probability of “slip” among proficient test-takers. Under the four-parameter logistic 
function, the probability of the correct answer to an item is P(x = 1│θi, aj, bj, cj, dj) = 

cj + (dj - cj) 
𝑒
𝑎𝑗(𝜃𝑖 − 𝑏𝑗)

1 + 𝑒
𝑎𝑗(𝜃𝑖 − 𝑏𝑗)

 , in which θi is the latent trait score of examinee i, and aj, bj, 
cj, dj are discrimination, difficulty, lower asymptote, and upper asymptote parameters 
of item j, respectively. Figure 1 below illustrates the characteristic curve of a hypo-
thetical test item modeled with the 4PM. This example item is characterized by four 
parameters: difficulty parameter b = 1.00, discrimination parameter a = 1.20, lower 
asymptote parameter c = .20, and upper asymptote parameter d = .90. The upper as-
ymptote implies the chance of endorsing the wrong answer to this item, even for very 
high ability examinees, equals 1- d (i.e., chance of slipping equals .10 or 10 %). 

 

Figure 1 

Characteristic Curve of a Hypothetical Item Modeled with the 4PM 

 

In recent years, the 4PM has rekindled research interest and found its utility in a vari-
ety of fields, including computerized adaptive testing (CAT; Liao et al., 2012; Rulison 
& Loken, 2009; Yen, Ho, Liao, & Chen, 2012; Yen, Ho, Laio, et al., 2012), cognitive 
appraisal such as financial literacy, mathematics, reading, and physics testing (Bar-
nard-Brak et al., 2018; Culpepper, 2017; Sideridis et al., 2016; Walstad & Rebeck, 
2017), health behavior assessment (Culpepper, 2016; Loken & Rulison, 2010), food 
security (Gregory, 2019), psychopathology and personality assessment (Feuerstahler 
& Waller, 2014; Waller & Feuerstahler, 2017; Waller & Reise, 2010), genetics 
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research (Tavares et al., 2004), and potential applications in other areas (Myszkowski 
& Storme, 2017; Primi et al., 2018; Storme et al., 2019). The interpretations of the d 
parameter and its usefulness vary across disciplines. For example, Gregory (2019) 
used the upper asymptote less than one to model the underreporting of food insecurity 
in adults and children; and in genetics research, Tavares (2004) proposed that the d 
parameter below one allows the possibility that a gene is not active in persons with a 
high predisposition to a disease. In educational assessment, general conclusions on 
the values of the 4PM involve measurement efficiency improvement, and reduced 
imprecision for scores among high-achieving students and among test-takers who 
make early mistakes in CAT (Culpepper, 2017; Rulison & Loken, 2009; Yen, Ho, 
Liao, & Chen, 2012).  

As the 4PM is gaining a stronger foothold in item response theory (IRT) applications, 
theoretical discussions have also emerged. Sijtsma and Hemker (2000) showed that 
the 4PM shares the properties of stochastic ordering of latent trait based on un-
weighted sum of scores and non-invariant item ordering with the 2PM and 3PM. 
Ogasawara (2012) extended the previous work of Lord (1983) by deriving the asymp-
totic approximations of ability estimator, and Ogasawara (2017) discussed identified 
and unidentified cases of the fixed-effects 4PM. Tendeiro and Meijer (2012) recom-
mended the 4PM to model test anxiety as a specific form of aberrant behavior in item 
responses, and Magis (2013) delineated the information function for the 4PM. More 
recent developments in the literature directly focused on examinations of the 4PM 
identifiability and estimation. Culpepper (2016) presented the full conditionals for the 
4-parameter ogive model for Gibbs procedure and developed a package to estimate 
this model in R (R Core Team, 2020). Kern and Culpepper (2020) introduced the 
Dyad-4PM, in which items divided into groups of two (dyads) load on one latent bi-
nary attribute, and showed that this model is identified. Zhang et al. (2020) developed 
the Gibbs-slice sampling algorithm for estimation of the 4PM with two steps, one to 
update the upper and lower asymptote parameters with truncated beta distribution 
conjugation, and the other to slice sample for the item discrimination and difficulty 
parameters with different auxiliary variables. Meng et al. (2020) reformulated the 
4PM as a mixture model and estimated it with marginalized maximum a posteriori via 
a newly developed Expectation-Maximization (EM) algorithm. 

Like other IRT models, the 4PM is useful only when person and item latency is well 
understood in the form of accurately estimated parameters. In applied measurement 
with the 4PM, both Marginal Maximum Likelihood (MML) and Markov Chain Monte 
Carlo (MCMC) within the Bayesian framework have been used (Barnard-Brak et al., 
2018; Culpepper, 2016, 2017; Feuerstahler & Waller, 2014; Waller & Reise, 2010; 
Walstad & Rebeck, 2017), and their statistical properties have been investigated indi-
vidually (Culpepper, 2016; Feuerstahler & Waller, 2014; Loken & Rulison, 2010; 
Sheng, 2015; Waller & Feuerstahler, 2017). The coexistence of multiple estimation 
approaches logically motivates researchers to pose questions about how the available 
methods compare to one another under various measurement conditions. Extensive 
research comparing the properties of MML and MCMC estimations has been reported 
on a number of IRT models, such as Rasch model (Kim, 2001), two-parameter model 
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(Baker, 1998), three-parameter model (Béguin & Glas, 2001), two-parameter testlet 
model (Luo & Wolf, 2019), graded response model (Kieftenbeld & Natesan, 2012; 
Kuo & Sheng, 2016), and nominal response model (Wollack et al., 2002). A similar 
question about merits of different estimation methods for the 4PM awaits exploration. 
This study will fill this gap. 

The purpose of this investigation is to evaluate the quality of parameter recovery for 
the 4PM by MML with EM algorithm and two MCMC sampling mechanisms, Gibbs 
and Hamiltonian Monte Carlo (HMC), within a fully Bayesian framework under sev-
eral measurement conditions. Specifically, answers to the following questions are 
sought: 

Question 1: How accurate are MML, Gibbs and HMC estimations of person and item 
parameters for the 4PM across latent trait distributions? 

Question 2: How accurate are MML, Gibbs and HMC estimations of person and item 
parameters for the 4PM across sample size levels? 

 

Methods 

Design 

This simulation was designed as a mixed factorial study with two between-subjects 
factors and one within-subjects factor. Two between-subjects factors were latent dis-
tribution (two conditions: normality and negative skewness) and sample size (three 
levels: 1,000; 2,500; and 5,000 respondents). The within-subjects factor was estima-
tion method with three types: MML, Gibbs, and HMC. This 2x3x3 mixed factorial 
design with two fully crossed factors resulted in 18 unique combinations of estimation 
features (18 cells). The treatment of estimation method as a within-subjects factor 
produced more accurate comparison because all three procedures were subject to iden-
tical random sampling variations in the data generation process. The number of items 
was fixed at 20, a rather common scale length in the 4PM research and applications 
(Culpepper, 2016; Sheng, 2015; Sideridis et al. 2016; Storme et al., 2019; Waller & 
Feuerstahler, 2017). 

 

Data Generation 

Item parameters were generated under the assumption that tests are well-designed, 
and few parameters are beyond their typical and useful range: a ~ N(1.2, 0.352) trun-
cated at 0, b ~ N(0,12), c ~ N(0.15, 0.042) truncated at 0, and d ~ N(0.88, 0.042) trun-
cated at 1. The additional constraint c < d was placed on asymptote parameters to 
further ensure item quality and appropriate representation of the 4PM item response 
function. Person parameters were generated to represent two scenarios. First, θ was 
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drawn from N(0,12) under the assumption that the test-taker sample comes from a 
normally distributed population. Second, to represent latent traits when a relatively 
easy test is administered (Lord, 1955; Sass et al., 2008), beta(8.2, 2.8) was employed 
to construct a negatively skewed distribution with moderate skewness of -0.60. This 
skewness level is within the range of median skewness values for IRT scale scores 
across state-level tests reported by Ho and Yu (2015). Random θ draws were scaled 
to have mean of 0 and variance of 1 before being inputted in the item response gener-
ation process. To reduce sampling errors and ensure diverse response patterns simul-
taneously, this study adopted Feinberg and Rubright’s (2016) strategy: in each cell, 
only one θ sample is drawn and fixed for all replications, but item parameters differ 
across replications. A random seed was set for each cell so that the person and item 
parameter values would vary across cells. The generated parameters were used to sim-
ulate response data under the 4PM with the simdata function in the mirt package 
(Chalmers, 2012) in R (R Core Team, 2020). 

 

Replications 

In light of previous research into parameter recovery under the four-parameter item 
response function, and the time- and computer resource-consuming nature of MCMC 
(Feinberg & Rubright, 2016; Harwell et al., 1996), 50 replications were set for each 
cell in this simulation. With this design, a total of 300 unique data sets were generated 
and 900 sets of results were obtained from three estimation procedures, with 72,000 
estimates for item parameters and 555,000 estimates for theta.  

 

Model Estimation 

Item parameter estimation with MML was performed with the mirt package 
(Chalmers, 2012) in R (R Core Team, 2020) using 41 quadrature points to ensure little 
estimation bias (Cao et al., 2014; Kim & Lee, 2017; Kim & Moses, 2016; Seong, 
1990; Sinharay & von Davier, 2005; van Rijn, 2014). Subsequent to item calibration, 
the person scoring phase was executed with Expected A Posteriori (EAP) using N(0, 
1.22) as θ prior.  

Bayesian estimation via MCMC was performed with following priors: a ~ LN(0, 0.22) 
where LN indicates the lognormal distribution, b ~ N(0, 1.32), c ~ beta(2, 10), d ~ 
beta(10, 2), and θ ~ N(0, 1.22). For both Gibbs and HMC, four parallel Markov chains 
were run with 50,000 iterations per chain and the initial burn-in (warm-up in rstan) of 
20,000 iterations was discarded. No chain thinning was performed due to its adverse 
effect on estimation accuracy (Link & Eaton, 2012). Gibbs sampling was executed 
with JAGS (Plummer, 2003) via the R interface package runjags (Denwood, 2016), 
and HMC was conducted using Stan via its R interface package rstan (Carpenter et 
al., 2017; Stan Development Team, 2018a, 2018b). MCMC modeling was run in 
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several office computers with Windows 10 and in the Ohio Supercomputer Center 
with Linux using batch mode. 

 

Model Assessment  

For MML, the convergence threshold of 0.001 was set for all replications. To accom-
modate possible convergence failures in the 4PM estimation, only data sets which 
resulted in identified models and successful estimation convergence in MML were 
fed to Gibbs and HMC until a predetermined number of successful calibrations (i.e., 
replications) in each cell were reached. It should be noted that both technical and 
practical convergence in MML were required. Pilot simulations indicated that MML 
frequently failed to practically converge (i.e., produce sound IRT estimates) despite 
technical convergence, especially for small samples. Thus, additional criteria adopted 
from Waller & Feuerstahler (2017) to ensure reasonable parameter estimates (â ≤ 3, -
6 ≤ b̂̂̂̂ ≤ 6, ĉ < d̂̂) were imposed on selected data. 

For MCMC, the potential scale reduction factor (PSRF) and its multivariate counter-
part (MPSRF) were used to assess Markov chain convergence using the conservative 
threshold of 1.05 (Brooks & Gelman, 1998). The MPSRF was used for the joint pos-
terior distribution of item parameters only, because person parameters tend to be ac-
curately estimated and rarely have convergence issues (Sinharay, 2004).  

 

Outcome Analysis 

Two common measures of the difference between true parameters and their estimates 
were used as outcome variables: bias, which represents the systematic discrepancy 
between the true and estimated parameter, and root mean square error (RMSE), which 
denotes total estimation error (Feinberg & Rubright, 2016; Mooney, 1997). Average 
bias and RMSE were calculated using the following equations: 

 
in which 𝑥𝑇  is the true parameter value (either person or item parameter), 𝑥𝑗𝑟̂  is the 
estimated parameter of item j in replication r, 𝑥𝑖𝑟̂  is the estimated parameter of person 
i in replication r, R is the number of replications, L is scale length, and n is the number 
of simulated examinees in each data set.  
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Results 

Both technical and practical convergence in MML were found to follow the same 
patterns of improving with increased sample size and deteriorating with the violation 
of θ normality assumption. Given technical convergence in mirt, MML successfully 
produced reasonable estimates less than 1 % of the time at n = 1,000 for both latent 
distributions. At n = 5,000, MML plausible estimation, conditional on technical con-
vergence, jumped to 39 % under skewed θ and 73 % under normal θ. Subsequent to 
data filtering with MML, selected item response matrices were subject to calibrations 
with Gibbs and HMC. For both MCMC methods, all PSRF and MPSRF estimates 
were far below the conservative cut point of 1.05, which suggested Markov chains 
reached a stationary state and mixed thoroughly.  

Bias and RMSE across conditions are displayed in Table 1, and boxplots in Figures 
2-6 depict estimation bias to aid examinations. In general, MML took a more substan-
tive impact of latent trait skewness but also absorbed the momentum from sample size 
increase to improve its performance more strongly than MCMC. Two MCMC meth-
ods remained advantageous with lower RMSE of item parameter recovery across all 
conditions under investigation, but sample size increase brought a correspondingly 
narrower gap between MML and MCMC regardless of latent trait condition. Gibbs 
and HMC provided nearly identical outcomes across all conditions, and no consider-
able difference between the two MCMC methods was detected.  
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Table 1 
Mean Bias and RMSE of Item and Person Parameter Estimations by MML, Gibbs and HMC across Sample 
Size Levels and Latent Trait Distributions   

 

Parameter Estimator Bias  RMSE 

  n = 1,000 n = 2,500 n = 5,000  n = 1,000 n = 2,500 n = 5,000 

a MML 0.2047 0.1971 0.1282  0.6323 0.5671 0.4707 

  0.2503 0.3172 0.2844  0.6733 0.6689 0.5959 

 Gibbs -0.1886 -0.1846 -0.1837  0.3389 0.3150 0.2998 

  -0.1783 -0.1688 -0.1516  0.3289 0.3157 0.2918 

 HMC -0.1887 -0.1846 -0.1836  0.3389 0.3151 0.2999 

  -0.1782 -0.1687 -0.1516  0.3289 0.3156 0.2918 

b MML -0.0573 0.0110 0.0026  0.5833 0.4244 0.3597 

  -0.2486 -0.2358 -0.2558  0.6288 0.5614 0.4954 

 Gibbs -0.0757 -0.0116 -0.0228  0.2985 0.2764 0.2704 

  -0.1827 -0.2254 -0.2756  0.3421 0.3747 0.3963 

 HMC -0.0756 -0.0112 -0.0225  0.2983 0.2765 0.2691 

  -0.1828 -0.2251 -0.2756  0.3423 0.3746 0.3964 

c MML -0.0219 -0.0004 -0.0033  0.1204 0.1013 0.0927 

  -0.0502 -0.0250 -0.0282  0.1204 0.1046 0.0871 

 Gibbs 0.0007 0.0034 0.0047  0.0537 0.0515 0.0545 

  -0.0105 -0.0173 -0.0225  0.0527 0.0546 0.0496 

 HMC 0.0007 0.0035 0.0048  0.0537 0.0515 0.0544 

  -0.0105 -0.0172 -0.0225  0.0527 0.0547 0.0497 

d MML -0.0022 -0.0006 0.0012  0.1179 0.1003 0.0871 

  -0.0346 -0.0561 -0.0648  0.1358 0.1267 0.1190 

 Gibbs -0.0235 -0.0165 -0.0116  0.0642 0.0589 0.0541 

  -0.0381 -0.0420 -0.0518  0.0728 0.0775 0.0843 

Note. Outcomes under normal theta are displayed in unshaded areas. Outcomes under negatively skewed 
theta are shaded 
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Figure 2 
Bias in Estimating the 4PM Item Discrimination by MML and MCMC across Sample Size and Latent Trait 
Conditions 

 

Note. Boxplot whiskers display 2.5 to 97.5 quantiles.  

 

Figure 3 
Bias in Estimating the 4PM Item Difficulty by MML and MCMC across Sample Size and Latent Trait Con-
ditions 

 
Note. Boxplot whiskers display 2.5 to 97.5 quantiles.  
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Figure 4 
Bias in Estimating the 4PM Item Lower Asymptote by MML and MCMC across Sample Size and Latent 
Trait Conditions 

 
Note. Boxplot whiskers display 2.5 to 97.5 quantiles.  

 

Figure 5 
Bias in Estimating the 4PM Item Upper Asymptote by MML and MCMC across Sample Size and Latent 
Trait Conditions 

 

Note. Boxplot whiskers display 2.5 to 97.5 quantiles. 

 

 

 

 



H. Do & G. P. Brooks 126 

Figure 6 
Bias in Estimating the 4PM Latent Trait Score by MML-EAP and MCMC across Sample Size and Latent 
Trait Conditions 

 
Note. Boxplot whiskers display 2.5 to 97.5 quantiles.  

 

Specifically, when θs were generated from a normal distribution, MML and MCMC 
estimated the b, c, and d parameters with little mean bias, even at n = 1,000. Estimates 
of the a parameter were positively biased for MML and negatively biased for MCMC, 
and mean bias by all methods was larger than 0.10 in absolute value even at n = 5,000. 
While MML item parameter recovery had lower mean bias than Gibbs and HMC at n 
= 5,000, two MCMC methods remained superior with smaller RMSE. Under normal 
θ, all methods consistently improved RMSE of item parameter recovery in conjunc-
tion with sample size increase, except for MCMC estimation of the c parameter which 
did not exhibit a clear trend.  

When latent trait scores were skewed to the left, there was a concomitant deterioration 
in the quality of item parameter recovery by both MML and MCMC generally. Under 
skewed θ, MML had total errors of item parameter recovery diminished as more ex-
aminees took a test, yet sample size increase did not appear to benefit mean bias. 
Indeed, MML became increasingly negatively biased in its estimation of the d param-
eter as sample size increased, and mean biases of estimating other item parameters 
remained considerably large at n = 5,000. For Gibbs and HMC, sample size increase 
under skewed θ benefited only mean bias of item slopes recovery while rendering 
their estimation of other item parameters more negatively biased. In addition, unlike 
MML, there was a slight increase in the b and d parameter estimation errors by two 
MCMC methods as more cases were drawn from a skewed θ distribution. Overall, 
MCMC still maintained its advantage over MML with lower total errors in recovering 
item parameters under skewed θ. 

Sample size and latent trait distribution had little observable effect on person param-
eter recovery on average. Both MML-EAP and MCMC were essentially unbiased and 
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had similar RMSE of trait score estimation across all conditions. Spearman’s correla-
tions between true and estimated θs fluctuated between .82 and .84 for three methods 
across all conditions, indicating that MML-EPA and MCMC had similarly strong 
preservation of respondents’ rankings despite changes in sample size and latent dis-
tribution.  

 

Follow-up Simulation 1  

We followed up the main findings to explore how Gibbs and HMC would perform 
when MML estimation was technically successful in mirt but practically unsuccessful 
(i.e., when MML offers severely inflated/deflated item parameter estimates). To an-
swer this question, additional simulations for n = 1,000 under both normal and nega-
tively skewed θ distributions were conducted. Simulated data sets were selected if 
they allowed technical convergence in mirt, and no additional constraints were im-
posed on MML estimates. Model configurations for MML and MCMC were identical 
to those described earlier. Results (Table 2) indicated that when MML technically 
converged but failed at practically sound estimates, both Gibbs and HMC continued 
to perform stably. No appreciable difference in MCMC estimations was found when 
compared to the findings in Table 1. On the contrary, in addition to the implausible 
item discrimination estimates (14 % of the a parameter estimates were larger than 
5.0), there was one case of anomalous item difficulty estimate of -84.00 by MML 
when the generated b value was -3.25, which severely worsened mean bias and RMSE 
for its item difficulty recovery.  
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Table 2 
Calibrations by MML and MCMC at n = 1,000 when MML Only Converged Technically 

 

Note. Outcomes under normal theta are displayed in unshaded areas. Outcomes under negatively skewed 
theta are shaded.   
 

Follow-up Simulation 2  

Because MML showed signs of continuous improvement as more examinees partici-
pated in a test, a follow-up simulation was conducted with n = 10,000 under identical 
model configurations to examine how MML would perform at a larger sample size. 
Outcomes were averaged across 50 replications and are reported in Table 3. With 
10,000 examinees and normal θ, MML estimation accuracy became acceptable. Mean 
bias went down below 0.10 for item slopes, and notable reduction in RMSE were 
observed for all item parameters, especially item discrimination and item difficulty. 

Parameter Estimator Bias  RMSE 
a MML 1.3126  2.8162 
  1.9651  3.9274 
 Gibbs -0.1747  0.3341 
  -0.1790  0.3352 
 HMC -0.1748  0.3341 
  -0.1789  0.3352 

b MML -0.0757  2.6412 
  -0.2419  0.7321 
 Gibbs -0.0458  0.3064 
  -0.1900  0.3564 
 HMC -0.0460  0.3064 
  -0.1902  0.3561 
c MML 0.0176  0.1476 
  0.0058  0.1402 
 Gibbs 0.0066  0.0575 
  -0.0043  0.0528 
 HMC 0.0066  0.0574 
  -0.0043  0.0529 

d MML -0.0266  0.1413 
  -0.0772  0.1728 
 Gibbs -0.0288  0.0659 
  -0.0381  0.0775 
 HMC -0.0288  0.0659 
  -0.0382  0.0776 
θ MML 0.0203  0.6136 
  0.0198  0.6021 
 Gibbs 0.0215  0.5989 
  0.0039  0.5875 
 HMC 0.0214  0.5989 
  0.0038  0.5875 
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Equally important, absurd item discrimination estimation happened only 8.4 % among 
generated data at n = 10,000, as opposed to 27 % at n = 5,000. However, the improve-
ment in item parameter recovery at n = 10,000 under negatively skewed θ was minor 
generally, and MML appeared to have reached a point of diminished returns when a 
very large sample alone no longer remedied the adverse impact of the non-normal 
latent trait to a desirable degree.  
 

Table 3 
Mean Bias and RMSE of Item and Person Parameter Estimation by MML at n =10,000 

 

Note. Outcomes under normal theta are displayed in unshaded areas. Outcomes under negatively skewed 
theta are shaded.   

 

 

Discussions 

Careful inspections of the estimation results by MML and two MCMC methods across 
sample size levels and latent trait distributions gave rise to certain remarks. First, Lord 
(1986) noted, with mathematical proof, that given a useful prior density and the use 
of posterior mean as the point estimate of a parameter, Bayesian estimation would 
outperform MML in minimizing mean square error. This fact explains the consistent 
advantage of two MCMC methods with lower RMSE for item parameter recovery 
across all conditions. However, Bayesian estimation has an inherent trade-off between 
bias and RMSE in that securing minimal mean square error equals inflating bias (Lord, 
1986). Our findings indicated that when θ normal assumption held, MML only lagged 
behind Gibbs and HMC in terms of mean bias at the lowest sample of 1,000 cases. At 
n = 2,500, MML was less biased than MCMC in estimations of all item parameters 
except item slopes, and at n = 5,000, MCMC was trailing MML in unbiasedness of 
recovering all item parameters.  

It was also observed that as more respondents were available, MML made stronger 
progress than MCMC and narrowed the RMSE gap accordingly, regardless of the 

Parameter Bias  RMSE 
a 0.0956  0.3531 
 0.3173  0.5511 

b 0.0388  0.3082 
 -0.2632  0.4718 
c 0.0113  0.0833 
 -0.0076  0.0752 

d -0.0046  0.0742 
 -0.0842  0.1287 
θ 0.0087  0.5786 
 0.0259  0.5726 
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shape of the parent θ distribution. These findings could be explained by the different 
consistency properties possessed by MML and MCMC estimates (Patz & Junker, 
1999). It is well known that MML is based on the asymptotic theory, and MML item 
parameter estimates are consistent (i.e., approaching the true population parameters) 
as sample size increases and the number of items is constant (Ogasawara, 2012). 
MML enjoys the advantage of the separation between item calibration and person 
scoring, as more test-takers do not lead to an increase in the number of parameters to 
estimate. The consistency properties in MCMC, interestingly, depend on the way the 
Markov chain draws are used (Patz & Junker, 1999). When MCMC output is used to 
estimate both item (structural) and person (incidental) parameters, as is the case in this 
study, MCMC resembles Joint Maximum Likelihood in the lack of consistency be-
cause sample size leads to more parameters to estimate (Ogasawara, 2012; Patz & 
Junker, 1999).  

Another interesting finding was under negatively skewed latent trait, larger sample 
sizes actually harmed MCMC estimation of the b and d parameters, albeit at a minor 
degree. It is important to note that compared to normal θ samples, skewed θ draws 
actually brought about two disadvantages to data calibrations. One was the violation 
of the underlying latent distribution assumption for MML, and for MCMC was the 
mismatch between the normal θ prior and its skewed parent distribution. The other 
detriment was the lack of high-ability respondents at the upper end of the latent scale. 
Specifically, the maximum possible θ value generated from the skewed distribution 
beta(8.2, 2.8) after z transformation is around 2.02. Examinations of the simulated 
data indicated that the largest θ drawn under the negatively skewed latent trait equaled 
1.97 in the present study. The worsened performances in overall item calibrations by 
MML and MCMC under skewed theta could be attributed to the differences in these 
two factors. Within MCMC under skewed theta, however, the counterintuitive trend 
of increased RMSE of b and d estimations occurred when only sample size was de-
signed to increase, and the mismatched prior was held constant (Table 1). A putative 
explanation for this phenomenon has to do with the interplay between the prior and 
data in Bayesian posterior reconstruction. Due to the nature of the skewed θ distribu-
tion mentioned above, sample size increase did not bring more respondents with latent 
trait scores larger than 2.02 (practically no larger than 1.97). The absence of larger θ 
values toward the right end of the latent continuum provided little information for 
accurate estimation of highly difficult items and particularly for the recovery of upper 
asymptote, which was shown to depend on the number of respondents with high latent 
trait scores (Culpepper, 2016). In the meantime, sample size increase led to the dimin-
ishing influence of priors overall. Thus, even as larger samples brought more infor-
mation for item parameter recovery in general, the useful information associated with 
sample size increase under skewed θ was not as strong as its counterpart under normal 
θ to counter the declining effect of the b and d priors. Note that the rate of RMSE 
improvement slowed down for MML estimations of b and d under skewed θ as well, 
possibly because the lack of individuals at the upper tail of the θ continuum offset the 
overall value of sample size increase to some extent. The significant role of adequate 
information from data can also explain why little adverse impact of the negatively 
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skewed θ on the estimation of c was observed, presumably because the presence of 
more individuals in the lower tail of the latent scale (i.e., more respondents with low 
θ scores) considerably assisted accurate recovery of c. Examinations of the generated 
data revealed that there were 128 individuals with θ scores below -2.0 at n = 5,000 
under normal θ, whereas the corresponding number under negatively skewed θ was 
190 examinees. At this largest sample size n = 5,000, both MCMC and MML yielded 
lower RMSE in estimating c under skewed θ than under normal θ. 

The low practical convergence rate in MML was notable in this study. Approximately 
one in every four samples failed to practically converge in MML under the most fa-
vorable conditions with n = 5,000 and normal θ. At n = 1,000, less than one percent 
of data sets generated were successfully calibrated with plausible MML estimates. 
Examinations of MML estimates revealed that out-of-bounds discrimination parame-
ter estimates were the major culprit behind practical convergence failure in MML. 
Infinite estimates of item difficulty also appeared, albeit very rarely. Due to the infi-
nite parameter estimation by MML even for less-parameterized models, suggestions 
to incorporate item priors (i.e., turn MML into Bayesian Modal Estimation [BME; 
Mislevy, 1986]) have been made and adopted in popular IRT software programs like 
BILOG and MULTILOG (Rupp, 2003). However, Waller and Feuerstahler’s (2017) 
investigation of the 4PM estimation with BME indicated that the lack of practical 
model convergence was still prevalent with BME, especially at n = 1,000. Our follow-
up calibrations showed that Bayesian estimation via Gibbs and HMC can serve as 
more viable alternatives for IRT practitioners when MML and Bayesian analytic al-
gorithm do not work well for the 4PM item parameter estimation. 

A characteristic of the Markov chain simulation in this study was the use of informa-
tive priors for all item parameters, which was found to be vital for Markov chain con-
vergence. In our pilot simulations when only the d parameter had the uniform prior 
U(.6, 1) and informative priors were used for other item parameters, rstan gave warn-
ings about a large number of divergent transitions, which at times went up to 10,000. 
Essentially, divergent transitions mean that rstan is having difficulty sampling from 
the posterior region thoroughly (Stan Development Team, 2018b). When divergence 
happens in rstan, model calibration results from other MCMC mechanisms should be 
questioned as well because the Markov chains are unlikely to converge to the posterior 
distribution (B. Goodrich, personal communication, November 19, 2019). When more 
informative priors were imposed on all item parameters, the vast majority of calibra-
tions were completed well and rstan gave warnings to only several to a couple of 
dozens replications, which is small compared to 120,000 iterations after burn-in 
(warm-up in rstan).  

Given the significant role of informative priors for item parameters characterized with 
the 4PM, a relevant question is how analysts can obtain them ahead of actual model 
estimation. Lord (1986) commented that repeated administrations of parallel test 
forms to similar test-taker groups allow us to infer appropriate item and person pa-
rameter prior distributions. While parallel test forms and frequent administrations are 
not feasible in many situations, reasonable expectations of an IRT parameter value 
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range and types of distributions to effectively capture it are possible (Baker & Kim, 
2004). Note also that when the d parameter is very close to one, little change in the a, 
b, and c parameter estimates is observed between the 4PM and the 3PM (see, e.g., 
Swist, 2015). Therefore, modeling results with traditional IRT models can also serve 
as useful starting points for the 4PM calibrations.  

Of course, the challenge remains for d because the 4PM has found widespread appli-
cations very recently and preexisting research results are not always available to in-
form the d prior. However, recent 4PM applications in educational measurement (e.g., 
Culpepper, 2016; Sideridis et al., 2016; Walstad & Rebeck, 2017) appeared to support 
a common-sense approach to specifying an upper asymptote prior that allows most 
values to cluster around .80 to 1.00 and lower values to be less and less probable. For 
psychopathology data modeling as reported in Waller and Feuerstahler (2017) and 
Waller and Reise (2010), the d parameters in the Depression and Cynicism data fit 
this general anticipation well, whereas the Low Self-Esteem data had many d values 
below .70 and might require a closer collaboration between methodologists, psycho-
metricians, and content experts, as suggested by König and van de Schoot (2018), to 
determine the amount of prior knowledge available and the appropriate statistical dis-
tribution to convey this knowledge. Substantive issues aside, using the U(0, 1) to in-
dicate no prior information on the upper asymptote, as examined in previous research 
(e.g., Culpepper, 2016), is not entirely justified because it endorses an implicit as-
sumption that values of .10 and .90 are equally probable. While uniform priors such 
as U(0, 1) and U(.6, 1) impose little belief on the probability of d within a certain 
range, our study showed that they are not always warranted and might be a statistical 
luxury researchers cannot afford due to the Markov chain convergence concern.  

The MPSRF was highly useful in Markov chain convergence evaluation. In our trial 
simulations where the uninformative prior U(0, .6) was used for the d parameter, the 
PSRF quickly went down below 1.05 for all parameters in both HMC and Gibbs after 
25,000 iterations, whereas the MPSRF remained well above the chosen threshold even 
when chain length was increased up to 100,000 iterations. The message conveyed by 
MPSRF was consistent with warnings of divergent transitions in rstan that MCMC 
algorithm was struggling to sample from the joint posterior distribution and the Mar-
kov chains did not mix well in a stationary state. Only when a more informative prior 
for the d parameter was employed, did MPSRF approach 1.0, which again resonated 
with the fact that no divergent transition warning was issued by rstan. These findings 
about the power of MPSRF corroborated Sinharay’s (2004) report on its superiority 
to PSRF in monitoring Markov chain convergence. 

 

Estimator and Efficiency 

MML was clearly faster than the simulation-based Gibbs and HMC at converging at 
a solution. Even with a sample of up to 10,000 cases, MML in mirt executed the cal-
ibration within matters of seconds and did not require a large computer memory. 
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Between the two MCMC candidates, HMC was faster than Gibbs overall. At n = 1,000 
and normal θ, a core i7 desktop computer with 16 GB of memory handled a data set 
within 3.5 hours with HMC but spent up to 7.4 hours with Gibbs on average. HMC 
maintained its superior speed over Gibbs in computers with poorer computing powers, 
although its advantage appeared to shrink. In the supercomputer system with a Dell 
Intel Xeon E5-2680 v4 machine, both Gibbs and HMC took approximately 15 hours 
on average to calibrate one data set with 5,000 cases. 

However, calibration time might not be the most or only reasonable criterion to inform 
the efficiency discussions because Bayesian MCMC provides richer information than 
MML. MCMC approximates the posterior distribution where distributional features 
can be summarized to answer research questions, in contrast with MML which offers 
only point estimates. Levy and Mislevy (2016) captured this difference with an inter-
esting analogy that frequentist methods (e.g., MML) find the highest peak in a moun-
tain range, but Bayesian methods aim to develop a panorama of the entire mountain 
range via the posterior distribution.  

Following Carpenter et al.’s (2017) recommendation, mean effective sample size per 
second (ESS/s) was calculated to assess the efficiency of the two MCMC sampling 
algorithms when they were executed in the same computer station, and results are 
displayed in the Appendix Tables 1 and 2. In general, HMC produced more ESS per 
time unit than Gibbs across all parameter types, sample sizes and latent trait condi-
tions, and both HMC and Gibbs sampled the person parameters far more efficiently 
than item parameters. For example, at n = 1,000 and normal θ, Gibbs obtained about 
1,107 ESS/s for θ but less than 5 ESS/s for the discrimination parameter on average, 
while the corresponding numbers for HMC were approximately 11,253 and 125, re-
spectively. The overall efficiency ratio between HMC and Gibbs ranged from 4.85 to 
10.39 (i.e., HMC yielded about 5 to 10 times more ESS/s than Gibbs). Although HMC 
was found to sample the posterior space more efficiently than Gibbs in the same com-
puting environment, we urge the reader to take caution in the generalization of ESS/s 
by the two MCMC methods because a mixture of computers with varied computing 
powers was used in this study. It is also worth pointing out that while HMC generally 
offers an efficiency advantage, rstan installation and execution are more complex than 
runjags. In our study, rstan occasionally terminated mid-way due to computer memory 
limits and required random seed adjustments to improve the poor progress of some 
Markov chains. 

 

Practical Implications 

The analytical results in the present inquiry prompted several recommendations for 
applied researchers utilizing the 4PM. Similar to Waller and Feuerstahler’s (2017) 
report on BME-EAP, this study suggested that if the overarching purpose of model 
calibration is recovery of trait scores, both MCMC and MML-EAP could be employed 
for similarly accurate θ estimates with samples of as few as 1,000 respondents. If 
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accurate recovery of item parameters is also targeted, which many studies undoubt-
edly aim for, issues of latent trait distribution and sample size must be considered to 
inform the choice of estimation methods. Based on the second follow-up simulation, 
it is recommended that MML should be employed when sample size reaches 10,000 
cases to ensure acceptable accuracy in item parameter recovery. While obvious ad-
vantages of MML include high speed calibrations and the lack of the need to specify 
item priors, which is convenient due to the rather novel applications of the 4PM in 
many settings, our simulations showed that even at n = 10,000 cases, practical model 
convergence with MML still failed about 8 % of the time. In such circumstances, 
MCMC appears to be a viable alternative for the 4PM estimation. Either Gibbs or 
HMC can be selected to estimate the 4PM item parameters with 1,000 examinees, 
providing that useful information is available in the form of informative priors. HMC 
might be preferred among two MCMC approaches due to its comparable parameter 
recovery accuracy but higher efficiency and superior built-in mechanism in rstan to 
detect non-convergence.  

When there are reasons to believe departure from θ normality is present, such as test 
scores obtained from academically at-risk or gifted students, or non-normal latent trait 
population distribution, neither MML nor MCMC offer an optimal solution. In this 
study, only negatively skewed latent trait was explored, and MCMC still remained the 
better option with lower RMSE of item parameter recovery than MML. However, it 
was clear that for all methods, simply adding more data of the same type does not 
represent the silver bullet for improved accuracy. When data provide little information 
to accurately estimate the upper asymptote and difficulty parameters of the 4PM, one 
strategy to consider is to collect more data to fill the empty locations in the upper tail 
of the latent trait spectrum to aid accurate recovery of these parameters. Because ac-
curate item parameter recovery in IRT depends on a sample which is both large and 
heterogenous (Hambleton & Jones, 1993), both quantity and quality of data matter. 
After all, our model is only as good as the data we feed into it.  

Common Markov chain length and burn in are necessary in simulation studies because 
the total number of data sets and parameters to handle is large and it is impractical to 
have the number of iterations adapted to each peculiar estimation scenario (Wollack 
et al., 2002). In reality, applied researchers typically examine fewer data sets and pa-
rameters. Therefore, it is recommended that the Markov chain length and burn-in seg-
ment be tailored to individual response data sets and measurement conditions. More-
over, given that MCMC simulates random samples from the multivariate (joint) pos-
terior distribution of all IRT parameters, the necessity to diagnose Markov chain con-
vergence to the multivariate posterior distribution is self-evident. Because there have 
been complaints about the performance of PSRF in detecting the lack of MCMC con-
vergence with the 4PM (Waller & Reise, 2010), researchers wishing to explore mod-
eling data with the 4PM via MCMC might want to add MPSRF to their frequently 
used convergence diagnostic toolbox. In addition to numerical means such as MPSRF 
and PSRF, visual means like trace plots to investigate the stability and mixing of par-
allel chains are more convenient in actual measurement practice and are highly rec-
ommended. After all, MCMC convergence to the posterior region forever remains a 
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black box and one can never be too certain about it. Therefore, regarding techniques 
to evaluate MCMC convergence, one should be content to have more and willing to 
use more, not less.  

 

Limitations  

We would like to acknowledge the limitations of the current study. First, scale length, 
an important factor for accurate person parameter recovery, was fixed at 20 items. 
Past research has demonstrated the influence of longer scales on the accuracy of re-
covering θ for various IRT models, including the 4PM (e.g., Kieftenbeld & Natesan, 
2012; Loken & Rulison, 2010). In general, longer tests are likely to bring greater ben-
efits to the person parameter recovery accuracy, all else being equal. Although scales 
with 20 items or even fewer are quite common for unidimensional IRT models, in-
cluding the 4PM research and applications (e.g., Culpepper, 2016; Gregory, 2019; 
Sheng, 2015; Sideridis et al. 2016), 20-item tests are fairly short tests, and this test 
length limits the generalizability of the study’s findings to scales with substantially 
more items. Second, only a moderately skewed latent distribution was examined as a 
representative of latent trait nonnormality within the study’s design. While this level 
of skewness (-0.60) has been found to be present in real world test score distributions 
(Ho & Yu, 2015; Lord, 1955) and its impact is worth exploring, positive skewness 
and more extremely negative skewness are far from uncommon in practice and can be 
expected to bring different levels of estimation errors to item parameter recovery and 
possibly person parameter estimation as well. Additionally, the parameter values se-
lected for data generation reflected a typical educational cognitive assessment sce-
nario rather than other domains with higher b parameters like in psychopathology 
(Feuerstahler & Waller, 2014; Waller & Feuerstahler, 2017; Waller & Reise, 2010). 
Furthermore, an important feature of the MCMC methods in this study was the use of 
informative priors, particularly for c and d, as opposed to previous research by Cul-
pepper (2016) where uniform priors were used for the asymptote parameters. There-
fore, the findings on MML and MCMC performances might hold true for the meas-
urement conditions examined in this study and should not be overgeneralized to other 
scenarios outside the confines of the study design. 

 

Recommendations for Future Research 

As is the case with other investigations, the current study provides answers to several 
specific questions while raising additional questions that await explorations to move 
the field forward. First, inquiries into how test length increase, different underlying 
item parameters, and latent distributional characteristics interact with estimation 
methods and influence the 4PM parameter recovery accuracy are warranted future 
directions. Second, it is important to understand how the prior specifications affect 
the MCMC estimation of the 4PM. In the present study, Gibbs and HMC simulations 
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were configured with informative and useful priors. Of course, prior informativeness 
and usefulness are matters of degree and can be adjusted by changing the parameters 
of the prior distributions. A sensitivity analysis to look at whether different levels of 
useful knowledge incorporated in the priors for the 4PM parameters have a consider-
able impact on the substantive conclusions regarding the merit of these two MCMC 
methods would be an interesting research idea to investigate. Third, the unsatisfactory 
performance of both MML and MCMC under skewed theta necessitates further re-
search into more robust methods to handle the 4PM estimation under such a circum-
stance. The Bayesian non-parametric estimation approach (Paganin et al., 2023) rep-
resents another approach to dealing with parameter recovery in the context of non-
normal θ. The literature on the use of Bayesian non-parametric method is still in its 
infant stage, but pioneering research has demonstrated that it brought more accurate 
item and person parameter recovery for Rasch IRT binary model than MML and 
MCMC, among other methods, in the presence of skewed latent trait while relaxing 
the normality assumption of person parameters (Finch & Edwards, 2016). The Bayes-
ian non-parametric approach is an intriguing Bayesian inference development and a 
promising method for the 4PM estimation upon the departure from normal θ distribu-
tion. Future research efforts could examine this newer member in the Bayesian frame-
work to model response data with the 4PM when θ normality cannot be reasonably 
assumed. Finally, it is imperative to provide formal proof of identifiability for the 
4PM, as Culpepper (2016) also pointed out. IRT model identifiability is necessary for 
meaningful interpretations of its parameters, and future interests and useful applica-
tions of the 4PM might be hampered while waiting for such a significant piece of 
research to arrive.  
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Appendix  

Table 1 

Effective Effect Size per Second by Gibbs and HMC 

 
Note. Outcomes under normal theta are displayed in unshaded areas. Outcomes under negatively skewed 
theta are shaded. 
 

  

Parameter Estimator n = 1,000 n = 2,500 n = 5,000 
a Gibbs 4.8318 0.3437 0.0387 
  5.7484 0.1623 0.0384 
 HMC 125.6782 24.4941 1.0315 
  111.4864 5.6489 0.9828 
b Gibbs 1.7197 0.1654 0.0231 
  2.0527 0.0803 0.0244 
 HMC 73.9134 16.6166 0.7705 
  64.4837 3.7612 0.7509 
c Gibbs 2.5047 0.2191 0.0299 
  3.3117 0.1275 0.0355 
 HMC 89.5991 18.2892 0.8420 
  86.1628 5.1140 1.0195 
d Gibbs 2.5828 0.2530 0.0339 
  2.7914 0.1010 0.0293 
 HMC 88.3873 19.8791 0.8887 
  71.3048 3.7451 0.6963 
θ Gibbs 1107.2935 434.6188 177.3456 
  1320.0575 204.3885 173.6008 
 HMC 11253.3630 7041.0626 867.8881 
  9871.8391 1642.4100 839.5945 
Overall Gibbs 1118.9325 435.6000 177.4711 
  1333.9617 204.8595 173.7284 
 HMC 11630.9411 7120.3417 871.4208 
  10205.2768 1660.6792 843.0440 
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Table 2 

Ratio of HMC and Gibbs Sampling Efficiency 

 

Note. Ratio was calculated as HMCESS/s : GibbsESS/s. Outcomes under normal theta are displayed in unshaded 
areas. Outcomes under negatively skewed theta are shaded.   

 

Parameter n = 1,000 n = 2,500 n = 5,000 
a 26.01 71.27 26.66 
 19.39 34.80 25.57 
b 42.98 100.47 33.36 
 31.41 46.86 30.83 
c 35.77 83.46 28.19 
 26.02 40.11 28.74 
d 34.22 78.57 26.21 
 25.54 37.10 23.75 
θ 10.16 16.20 4.89 
 7.48 8.04 4.84 
Overall 10.39 16.35 4.91 
 7.65 8.11 4.85 

 




