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Mapping Between Hidden States and  
Features to Validate Automated Essay 
Scoring Using DeBERTa Models 
 
Christopher Michael Ormerod1  

Abstract 
We introduce a regression-based framework to explore the dependence that global features have 
on score predictions from pretrained transformer-based language models used for Automated 
Essay Scoring (AES). We demonstrate that neural networks use approximations of rubric-rele-
vant global features to determine a score prediction. By considering linear models on the hidden 
states, we can approximate global features and measure their importance to score predictions. 
This study uses DeBERTa models trained on overall scores and trait-level scores to demonstrate 
this framework with a specific focus on convention errors, which are errors in the use of lan-
guage, encompassing spelling, grammar, and punctuation errors. This introduces a new form of 
explainability and provides evidence of validity for Language Model based AES. 
Keywords: Automated Essay Scoring, Transformer, DeBERTa Model, Language Models, Ex-
plainability, Overall Essay Scores, Trait-Level Essay Scores 
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Introduction 

Automated Text Scoring (ATS) is an application of statistical models to approximate 
how a human rater might assess constructed text responses. ATS can be classified into 
two categories: Automated Essay Scoring (AES) and Automated Short-Answer Scor-
ing (ASAS). AES has had a long-distinguished history dating back to 1968 with Pro-
ject Essay Grade (PEG) by Ellis Page (Page, 2003). Most current AES engines in 
production use a mix of frequency-based methods and expert crafted features (Attali 
& Burstein, 2006). While AES allows us to provide instant and consistent feedback at 
substantially lower cost than human assigned scores under the condition that the mod-
els meet the technical standards and the scores are valid and reflect the rubrics. Work 
on the validity of AES helps address these concerns (Attali, 2013). There have been 
numerous studies on the performance using Artificial Intelligence (AI) based AES. 
This includes a range of neural network-based AES models such as traditional convo-
lutional and recurrent networks (Dong et al., 2017; Taghipour & Ng, 2016) and more 
recent pretrained transformer-based language models (Ormerod et al., 2021; Rodri-
guez et al., 2019; Uto & Uchida, 2020; Yang et al., 2020). While traditional AES 
explicitly depend on hand-crafted features (Attali & Burstein, 2006), the paradigm for 
neural network-based AES is that the models learn a set of features implicitly that are 
conducive to a statistically high agreement in the training process.  

To address the validity issues in AES, two major questions are raised related to what 
features have been learned in this training process and how these features are related 
to the original rubric. This study introduces a novel method of testing whether a given 
feature has been learned in the training process and provides a measure of the features 
importance to score predictions. We use this method to provide evidence of validity 
to neural network-based AES.  

From a computer science standpoint, this study is relevant to explainable Artificial 
Intelligence (xAI; Vilone & Longo, 2020), which concerns methods designed to help 
human understand the predictions made by AI. Within xAI, we address explainability 
in terms of local features, which focuses on the importance of particular words/tokens 
to a score, and global explainability, which focuses on the features of an essay as a 
whole. For example, a local feature could be a key word in a student response that is 
relevant to the prompt, whereas an example of global feature is the number of adjec-
tives used in a student response. Most work in xAI concerns local features rather than 
global features (Smilkov et al., 2017; Sundararajan et al., 2017) and is usually centered 
around numerical values of importance derived by removing or masking tokens and 
observing the change in the models’ hidden states and outputs. Such an approach is 
not sufficient to address the validity of the scores from AES because the properties 
relevant to scoring go beyond single tokens. In this way, we believe our proposed 
approach is novel in that it is focused on global properties of a response. It is important 
to view explainability in terms both local and global features. In this way, saliency 
maps based on the approaches like integrated gradients (Sundararajan et al., 2017) 
provides a complement to our global approach. Saliency maps (Sundararajan et al., 
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2017) isolate potential tokens that may be detrimental to a given score within a re-
sponse and heat maps are a way of visualizing the output. The combination of the 
methods introduced in this paper and saliency maps provides evidence of validity at 
both the local and global levels.  

From a psychometric standpoint, it is important to be able to test whether features 
have been used in the scoring process as validity evidence to support the explanation 
of the scores from AES. Currently, most models are defended purely from a statistical 
viewpoint in that they have high inter-rater agreement with human raters (Williamson 
et al., 2012). The agreement between computer and human scores does not indicate 
that the scores assigned are valid interpretations of the rubrics. It is important to know 
that neural networks are not just isolating spurious random correlations unrelated to 
the rubrics in order to produce high agreements. The validity evidence collected based 
on our proposed approach is whether the information used for score assignment is 
relevant to the rubrics. Little literature investigates how global attributes, such as 
length or total number of spelling or grammatical errors may affect score point deter-
minations within a neural network-based AES engine.  

Comprehensive discussions on the score validity of AES are too ambitious a goal to 
be covered in one paper. Our goal is to provide a simple proof of concept based around 
the dependence on the correct use of language in the rubrics. That is, we demonstrate 
that AES models use approximations of the number of convention errors per sentence 
an essay contains to determine scores. By convention errors, we mean spelling, gram-
mar, and punctuation errors. Furthermore, the quality of these approximations pro-
vides a measure of the features importance. 

 Unlike many other traits, we have a well-defined relation between misspellings and 
grammatical errors to the rubrics concerning conventions. Thus, convention errors 
serve as our starting point for a discussion on score validity of AES. If our hypothesis 
is valid, rubrics that have a stronger dependence on conventions should yield models 
with better approximations for the number of convention errors. Another reason to 
start with conventions, as opposed to some other traits, is that it is notoriously difficult 
to write down features for other traits, such as organizational structure or argumenta-
tion quality (Wingate, 2012).  

To illustrate the proposed approach, we first present how neural network-based AES 
engines embed information in score point determinations. We then present an analysis 
of the data used in this study followed by the proposed methods to approximate the 
number of convention errors in the responses. We describe the modelling details for 
the overall scores, trait-level scores, and feature approximations subsequently.   
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Class States and Implicit Features 

Text classification engines are predominantly developed hierarchically; a text is to-
kenized, and the tokens are fed into a vector space model, which is an algebraic model 
that maps the document to a vector space (Salton et al., 1975). The vector space is 
defined as a set of hidden states that are used as input into a traditional classifier to 
determine scores. These hidden states are important because they encode all possible 
information used by the engine to assign scores. We reference these hidden states as 
the class states and the vector as the vector of the class states as input into the tradi-
tional classifier. In general, the class states are functions of the entire text and the 
interpretations of the class states are expressed in terms of global features. 

In AES, the class states encode elements pertaining to simple global features like 
length, but also high-level global features like organizational structure, argumentation 
quality, style, word choice, and voice. Interpreting the class states in terms of high-
level characteristics such as argumentation quality, for example, would require an as-
sociated quantifiable features conducive to argumentation.   

To illustrate class states, we present two examples. The first example is the traditional 
bag-of-words (BOW) model, where the class states are the union of frequency-based 
terms, typically elements of a term frequency-inverse document frequency (TF-IDF) 
vector, and a vector containing hand-crafted features. This vector is commonly used 
as input in a logistic regression or random forest classifier.  

The second example is a transformer-based language model, such as the Bidirectional 
Encoding by Representations using Transformers (BERT; Devlin et al., 2019), fine-
tuned for text-classification. This general structure for a transformer-based classifier 
is presented in Figure 1. The class states in this case are specified as the context-
dependent representation of the first token that has been fine tuned to summarize the 
global properties of the text. This means the class states are the output of an embed-
ding (word and positional) followed by multiple layers of attention-based transformer 
units (Wolf et al., 2020). Figure 1 presents the general structure of text classification 
models where an auxiliary linear model appended to determine the importance of a 
global feature. 
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Figure 1 

Text Classifier Structure 

 

 

Many studies in explainability consider tracking the changes in output through each 
of the attention-based transformer layers. Recall that attention is a model of relative 
importance between tokens (Devlin et al., 2019). The original BERT system of Devlin 
et al. (2019), and many other derivative architectures, are based on 12 to 24 layers of 
attention based transformer units, where attention is applied at each layer. When at-
tention is applied successively, the relevant mechanism is called self-attention. Self-
attention not only encodes the relationships between words, but also the importance 
of the relationships to other relationships between words. Although this provides the 
language model with a more complete context for each word, it is difficult to endow 
the final outputs with a concrete intuitive meaning with 24 layers of self-attention after 
fine-tuning is applied.  

An analysis of the vector of class states considers this problem in the opposite direc-
tion. We take known properties of text and observe how the vector of class states vary 
while we change those properties. We know that, depending on the architecture, the 
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vector of class states is used as input into a final linear layer that is optimized with the 
other layers to produce the final score probabilities.  

Let us demonstrate how the class states encode global information by taking length as 
an example. For the BOW models, length is typically used explicitly as a hand-crafted 
feature. This means length would be a class state and defines a single dimension in 
the vector of class states. Depending on the final simple classifier used, the importance 
of length to score determination can be inferred from the parameters that define the 
classifier. For neural networks, there are other ways length can appear in the class 
states. In contrast with the BOW models, the neural network uses length implicitly to 
determine scores if we are able to form a linear function of the class states that ap-
proximates length. 

We can test whether the neural network is using a given feature implicitly by consid-
ering linear models on the vector of class states that approximate this feature. The way 
in which linear models approximate a feature is also shown in Figure 1. We determine 
how well the neural network has learned a feature by how well linear models on the 
vector of class states can approximate the feature. If our linear models are good ap-
proximations of this feature, the neural network uses it implicitly to determine scores. 
That is, a feature used in score determinations can be any numerical quantity approx-
imated well as a linear combination of the class states. Our argument for validity is 
that neural networks determine score based on appropriate information if the features 
that are more relevant to the rubrics are modelled better than those that are not. 

We can measure the quality of an approximation by using the Pearson correlation 
coefficient or the Spearman rank-order correlation coefficient. We use the Spearman 
rank-order correlation coefficient more frequently because the functional dependence 
between the feature and the score may be nonlinear. However, in determining the co-
efficients of the linear models approximating a given feature, we must optimize with 
respect to the Pearson correlation coefficient as a proxy for the Spearman rank-order 
correlation coefficient. This is because, if we maximize the correlation coefficient as 
a function of the coefficients of the linear model, we can only employ high-dimen-
sional optimization techniques if the function is differentiable.  

Given a feature and a linear model approximating this feature from the class states, if 
the Pearson correlation coefficient is high enough, augmenting the class states with 
this feature is algebraically equivalent to appending a row in a matrix that is a linear 
combination of the other rows. When we consider the features appended to the BERT 
models specified by Uto and Uchida (2020), appending features that are approximated 
well, such as the number of nouns or the number of syllables, only endows the neural 
network with redundant information.  

We can also provide validity evidence through the use of other datasets and models 
built on those datasets when the dataset has a relevant property. Many higher-level 
features are not directly defined by rules, but by data. We use Corpus of Linguistic 
Acceptability (CoLA) as a dataset that is the most relevant to linguistic conventions 
(Warstadt et al., 2019). Our rationale for using the CoLA and models trained on the 
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CoLA is that the output probabilities from the model should define a measure of lin-
guistic acceptability for language more generally, whereas models trained on conven-
tions are typically only valid on student responses to a particular prompt. By applying 
a model trained on the CoLA to student responses, the outputs should be similar to a 
regression-based convention score. If the models trained have learned linguistic ac-
ceptability as a feature, then the outputs of a model trained on the CoLA datasets 
should be better approximated by linear models on class states when the rubrics de-
pend on conventions.  

 

Methods 

Automated Essay Scoring Data 

To illustrate our approach for addressing the score validity from AES,  this study used 
the original essays in the Kaggle ASAP dataset (Shermis, 2014), which contains eight 
essay prompts. These essay prompts are classified into four types; persuasive, expos-
itory, descriptive, and narrative. The expository and descriptive essays in the Kaggle 
ASAP dataset are classified as “source dependent”. The original data contains the ru-
brics which specify criteria that an essay needs to satisfy for each score point. 

To understand the nature of the text responses, we need to know what the essays 
measure (Cohen et al., 1996). In a well-designed writing assessment, the rubrics for 
an essay prompt align with the standards. The scores assigned are expected to adhere 
to those standards. The writing standards in general specify traits associated with writ-
ing at different proficiency levels. The quality of the essay can be evaluated in an 
overall score using holistic scoring rubrics or trait-level scores using analytic scoring 
rubrics specific to each facet in writing.  

Only two of the eight essay prompts, numbers 7 and 8, came with a complete set of 
trait level scores (Shermis, 2014), while one essay prompt, number 2, came with just 
scores for two traits. After the initial release of the data, an independent effort was 
made to provide trait-level scores for all prompts (Mathias & Bhattacharyya, 2018). 
This study used both overall scores and trait scores for each prompt. The rubrics for 
each trait are provided in both sources (Mathias & Bhattacharyya, 2018; Shermis, 
2014). A summary of this data is presented in Table 1. 
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Table 1  

A summary of the Essay Prompts 

Es-

say 

Grade Type Training 

Samples 

Average 

Length  

Overall 

Range 

Number of 

Traits 

Trait 

Range 

1 8 P 1783 350 2-12 5 1-6 

2 10 P 1800 350 1-6 5+1 1-6 

3 10 E 1726 150 0-3 4 0-3 

4 10 E 1772 150 0-3 4 0-3 

5 8 D 1805 150 0-4 4 0-4 

6 10 D 1800 150 0-4 4 0-4 

7 7 N 1569 250 2-24 4 0-3 

8 10 N 723 650 10-60 6 1-6 

Note:  P for Persuasive, E for Expository, D for Descriptive, and N for Narrative. 

 

For the trait-level scores, each type of essay assesses a different set of skills. In par-
ticular, the Common Core standards for writing associated with persuasive and narra-
tive essays assess critical thinking. These tasks often place much emphasis on how 
the essay is organized, how well the arguments are supported, and the correct use of 
language. Expository and descriptive essays usually assess comprehension with more 
emphasis on style and how well the student relates their argument to a prompt text. 
The traits assessed by each prompt are listed in Table 2.  It is noted that while language 
is important to all essays, persuasive and narrative prompts rely on the adherence to 
conventional rules of language more than expository and descriptive prompts. 
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Table 2 

The Trait-Level Scores Assigned for Each Essay Prompt 

Essay 

Traits Assessed by Each Prompt 

1 
Ideas & Content, Organization, Word Choice, Sentence Fluency, Conventions. 

2 

Ideas & Content, Organization, Word Choice, Sentence Fluency, Conventions, 
Language Conventions 

3 Content, Prompt Adherence, Language, Narrativity. 

4 Content, Prompt Adherence, Language, Narrativity. 

5 Content, Prompt Adherence, Language, Narrativity. 

6 Content, Prompt Adherence, Language, Narrativity. 

7 Ideas, Organization, Style, Conventions. 

8 

Ideas & Content, Organization, Voice, Word Choice, Sentence Fluency, Conven-
tions. 

 

When trait-level scores are available, the overall score can be derived from the addi-
tion of the scores for each trait (Shermis, 2014). This is the case for essay prompts 7 
and 8. For the remaining prompts, the trait-level scores were provided after the overall 
scores were assigned by a different set of raters (Mathias & Bhattacharyya, 2018). 
One of the difficulties in this study is that the trait-level scores for the ASAP++ dataset 
are much more highly correlated than usual. Although usually positive correlations 
are observed between independent traits, it is very unusual for independent trait scores 
to be as highly correlated as they are in the ASAP++ data. This means it is more 
difficult to ascertain what properties are being measured that are unique to each trait. 
We list the inter-trait Spearman rank-order correlation coefficients in Table 3. The 
average (Avg.) for each trait is calculated over all essay prompts for that trait. 
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Table 3 

Trait-Level Correlations for the ASAP and ASAP++ Data 

1 Cont Org WC SF 

Org. 0.810 - - - 

WC 0.806 0.761 - - 

SF 0.796 0.779 0.856 - 

Conv. 0.788 0.782 0.848 0.950 
 

2 Cont Org WC SF Conv. 

Org. 0.883 - - - - 

WC 0.851 0.836 - - - 

SF 0825 0.817 0.872 - - 

Conv. 0.778 0.774 0.842 0.836 - 

LC 0.592 0.608 0.629 0.606 0.644 
 

3 Cont PA Lang 

PA 0.900 - - 

Lang 0.790 0.808 - 

Nar 0.838 0.859 0.895 
 

4 Cont PA Lang 

PA 0.954 - - 

Lang 0.791 0.792 - 

Nar 0.899 0.904 0.861 
 

5 Cont PA Lang 

PA 0.852 - - 

Lang 0.712 0.711 - 

Nar 0.779 0.780 0.784 
 

6 Cont PA Lang 

PA 0.917 - - 

Lang 0.690 0.721 - 

Nar 0.750 0.773 0.839 
 

7 Cont Org Style 

Org. 0.797 - - 

Style 0.610 0.635 - 

Conv. 0.494 0.567 0.626 
 

8 Cont Org Voice WC SF 

Org. 0.801 - - - - 

Voice 0.755 0.705 - - - 

WC 0.727 0.707 0.762 - - 

SF 0.687 0.719 0.660 0.752 - 

Conv 0.643 0.665 0.583 0.627 0.739 
 

 
Note: The traits are abbreviated as Content (Cont.), Organization (Org.), Word Choice 
(WC), Sentence Fluency (SF), Conventions (Conv.), Language Conventions (LC), 
Prompt Adherence (PA), Language (Lang.), Narrativity (Narr.), Style and Voice. 
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One of the important considerations is the quality of the data. Unlike many other areas 
of machine learning where classifications can be clear-cut, overall scores and trait-
level scores have a level of subjectivity. There are a few standard practices in compil-
ing datasets used for training AES engines for production purposes. These standards 
require that each response is scored by two independent raters (Williamson et al., 
2012). These standards were not adhered to in the creation of the ASAP++ dataset 
(Mathias & Bhattacharyya, 2018).  

The advantage of using two raters is that the agreement between the two raters be-
comes a benchmark for evaluating scoring engines trained on that data. The most 
commonly used benchmark for agreement is the quadratic weighted kappa (QWK) 
score given by 

𝛋 = 𝟏  −   
∑ ∑ 𝐰𝐢𝐣 𝐱𝐢𝐣

∑ ∑ 𝐰𝐢𝐣 𝐦𝐢𝐣

, 
(1) 

where 𝑥𝑖𝑗  is the observed probability of a rater first assigning a score of 𝑖  and the rater 
assigning a score of 𝑗, 𝑚𝑖𝑗 is the expected agreements between raters, given by 

𝐦𝐢𝐣 = (∑ 𝐱𝐢𝐤

𝐤

) (∑ 𝐱𝐤𝐣

𝐤

), 
 (2) 

where 𝑤𝑖𝑗 is the quadratic weight given by 

𝒘𝒊𝒋  =  
(𝒊 − 𝒋)𝟐

(𝒌 − 𝟏)𝟐
, 

(3) 

where 𝑘 is the number of classes (Cohen, 1960). This was the benchmark used in the 
competition and in evaluating the performance of AES more generally (Williamson 
et al., 2012). Different approaches could improve QWK including a more clearly de-
fined scoring rubrics to distinguish between what constitutes each score point, the 
construction of good rater training material, and well-implemented backreads for 
quality assurance. In addition, two other metrics are often used including scoring ac-
curacy, which is the probability of exact agreement between two raters, and standard-
ized mean difference (SMD) given by 

𝐒𝐌𝐃 =
|𝛍(𝐲𝟏) − 𝛍(𝐲𝟐)| 

√𝛔(𝐲𝟏)𝟐

𝟐
+

𝛔(𝐲𝟐)𝟐

𝟐

, 
(4) 

where 𝑦1 and 𝑦2 denote rater 1 and 2’s scores and 𝜇 and 𝜎 denote the mean and stand-
ard deviation of their respective assigned scores.  

Table 4 lists the QWK for all the traits with human double-scores computed from the 
ASAP dataset (Shermis, 2014). Note that the conventions score for prompt 2 refers to 
the second domain score presented in Shermis (2014) and not the trait-level scores 
presented in Mathias and Bhattacharyya (2018). Each response was assigned a score 
by a single rater for trait-level scores for prompts 1 to 6 (Mathias & Bhattacharyya, 
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2018), without information on QWK. Consequently, we do not have any benchmark 
for evaluating the quality of the trait scores. Further, the quality of the scores predicted 
by the automated scoring system cannot be assessed either. In general, the inter-rater 
agreements for trait-level scores presented in Table 4 are low by production standards 
(Williamson et al., 2012). For double-scored data for AES, a QWK of around 0.7 is 
often considered as a lower-bound. By this standard, the inter-rater agreements of the 
trait-level scores are lower than optimal.  

 

Table 4  

QWK for Trait-Level Scores 

 

Overall Cont Org Style Conv. Voice WC SF 

1 0.721 - - - - - - - 

2 0.814 - - - 0.801 - - - 

3 0.769 - - - - - - - 

4 0.850 - - - - - - - 

5 0.752 - - - - - - - 

6 0.776 - - - - - - - 

7 0.721 0.695 0.576 0.544 0.567    

8 0.624 0.531 0.542 - 0.546 0.467 0.481 0.507 

Note: The traits are abbreviated as Content (Cont.), Organization (Org.), Word Choice 
(WC), Sentence Fluency (SF), Conventions (Conv.), Prompt Adherence (PA), Language 
(Lang.), Narrativity (Narr.), Style and Voice. 

 

The original five-fold cross validation splits of Taghipour and Ng (2016) are used in 
this study. Each of the five folds is a non-overlapping set of the same size for each 
prompt where three sets are used for training, one set is used as a development set, 
and the remaining set is used as a test set. Each essay is in the test set for one fold and 
the performance of an AES engine is averaged over each test set. Regarding nomen-
clature, in some literature the training, validation, and test sets are used to label the 
splits. However, it is common in machine learning literature to use the term develop-
ment set for the set used to optimize parameter and architecture choices and a test set 
to report results. Development and test sets were the terms used in Taghipour and Ng 
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(2016) which defined the splits for almost all subsequent studies of the ASAP dataset, 
and these are the naming conventions we follow in this study. 

 

Counting the Number of Convention Errors 

The second part of our data collection or processing is to calculate the number of 
convention errors. Since the information on the convention errors annotated by human 
raters was not available, we employ methods to approximate the counts. Grammatical 
Error Correction (GEC) is the process of transforming grammatically incorrect sen-
tences to grammatically correct ones. The neural network architectures used for this 
task are the same architectures used to perform neural machine translation (Sutskever 
et al., 2014). These architectures typically contain an encoder, which transforms a 
grammatically incorrect sentence into a fixed dimensional vector, then a decoder in-
terprets the vector to produce a grammatically correct variation of the incorrect sen-
tence. Essentially, the most frequently used natural architecture is a sequence-to-se-
quence model of Vaswani et al. (2017). The model used in this study to perform GEC 
is the openly available pretrained model of Rothe et al. (2021) which is based on the 
T5 architecture (Raffel et al., 2020). This architecture uses the encoder and decoder 
structure of Vaswani et al. (2017) with 12 layers of transformers in both the encoder 
and decoder. The model leverages pretraining on a large corpus of synthetic data (Xue 
et al., 2021) and is then fine-tuned on high-quality human-annotated data (Rothe et 
al., 2021).  

Due to the inherent length limitations in transformer-based architectures, the essays 
were split into sentences using the spaCy library2 (Srinivasa-Desikan, 2018) and the 
GEC model of Rothe et al. (2021) was applied to each sentence. This provides us with 
a source sentence and a grammatically correct version of the sentence. We then apply 
the grammatical ERRor ANnotation Toolkit (ERRANT), which compares the original 
sentence to the corrected sentence, to classify the types of errors as being either 
spelling or grammatical (Bryant et al., 2017; Felice et al., 2016). We used LangTool3 
to calculate punctuation errors because there are no inherent length limitations. The 
punctuation errors can be more accurately identified using the rule-based methods. 
Using these two approaches, the total number of convention errors was calculated. 
Because the total number of errors is closely related to sentence length, we used the 
average number of errors per sentence to develop a quantity that is independent of 
length. The average number of errors per sentence in each of the essays for each 
prompt are presented in Table 5. The average number of errors per sentence in each 
of the essay prompts was approximated by combining the outputs from the GEC 
model used, LangTool, and the ERRANT system. Prompt 7 contains the most total 
errors per sentence while Prompt 6 contains the least total errors per sentence. This 

 
2 See https://spacy.io/ for more information. 
3 See https://languagetool.org/ for more information. 

https://spacy.io/
https://languagetool.org/
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table also lists the average number of sentences ranging from 4.73 in Prompt 4 to 35.6 
in Prompt 8. An evaluation of the quality of these approximations using GEC bench-
marks is presented in Appendix A. 

 

Table 5  

Spelling, Grammatical, Punctuation, and Total Errors Per Sentence  

Prompt 

Spelling Er-

rors Per Sen-

tence 

Grammati-

cal Errors 

Per 

Sentence  

Punctuation 

Errors Per 

Sentence 

Total 

Errors Per 

Sentence 

Average 

Number of  

Sentences 

1 0.280 1.697 0.003 1.980 23.00 

2 0.305 1.408 0.003 1.716 20.80 

3 0.151 1.603 0.004 1.759 6.41 

4 0.176 1.780 0.003 1.958 4.73 

5 0.231 1.538 0.006 1.775 6.84 

6 0.113 1.274 0.002 1.389 8.02 

7 0.205 2.194 0.015 2.414 12.40 

8 0.097 1.703 0.008 1.808 35.60 

 

Modelling  

This study explored the modeling of both overall and trait-level scores as well as the 
linear modeling of features using the vector of class states. There are a plethora of 
papers dedicated to modeling the overall scores in the Kaggle ASAP dataset (Dong et 
al., 2017; Ormerod et al., 2021; Rodriguez et al., 2019; Taghipour & Ng, 2016; Uto 
& Uchida, 2020). However, only a few papers addressed the modeling of trait-level 
scores (Mathias & Bhattacharyya, 2018, 2020; Ridley et al., 2021).  

BERT has made a profound impact on NLP (Devlin et al., 2019). Researchers have 
sought to improve both the architectural aspects of BERT and the training procedures 
used to train BERT. Some have sought to simply scale up the parameters to obtain 
larger variants of the BERT architecture while others have created different language 
models by varying the corpus on which the models are trained on or modified the 
underlying structure of the model. Our model choice was guided by both the 
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methodological advance in BERT and the recent work on ASAS model performance 
on student data (Ormerod, 2022). 

In this study, we used a variant of the DeBERTa model, which is a pretrained trans-
former-based language model utilizing disentangled attention and an adversarial train-
ing mechanism (He et al., 2021). DeBERTa differs from BERT in multiple aspects. 
First, a key difference in the architecture of DeBERTa is disentangled attention. BERT 
uses a positional embedding and a word embedding and adds the two vectors as mem-
bers of the same vector space. On the other hand, DeBERTa represents the two em-
beddings as two different spaces, essentially operating on the disjoint union of vector 
spaces (He et al., 2021). Second, DeBERTa uses an adversarial training mechanism. 
Adversarial trained language models use a reinforcement learning training mechanism 
in which a generator produces outputs and a discriminator attempts to distinguish be-
tween the generated outputs and some ground truth (Clark et al., 2020; He et al., 2021). 
Adversarial trained models, such as DeBERTa and Electra (Clark et al., 2020), per-
formed better than those trained simply as masked language models (Ormerod, 2022). 
These models are freely available in standard libraries4 (Wolf et al., 2020). The 
DeBERTa models possess smaller variants for quick prototyping and possible use in 
production workflows. 

The default language model-based classifier is one in which the vector of class states 
is used as input to a linear layer whose image is a vector of the same dimension as the 
number of score points (Wolf et al., 2020). This output is usually interpreted as log-
probabilities, which is compared with the targets using the Cross-entropy loss func-
tion. This study does not adopt this approach for two reasons. First, cross-entropy 
applied to the log-probabilities treats each class equally regardless of all ordinal in-
formation. Second, the ASAP dataset contains prompts with large score point ranges 
with very few training samples for each score point. It is better to train a classifier 
using a regression-based approach. In a regression-based approach, the image of the 
classifier is a single floating-point number. By limiting the range of the linear layer 
using the sigmoid activation function, the image of the neural network is between 0 
and 1.  

We start by subdividing the interval [0,1] equally so that there is one sub-interval for 
each score point. Assume the maximum score is p and the minimum score is q, there 
are p-q+1 such intervals. We have one map in which each score is mapped to the 
midpoint of these intervals. Suppose we let 

𝛅 =  
𝟏

𝐩 − 𝐪 + 𝟏
, (5) 

then the mapping 

 
4 See https://huggingface.co/ for more information and implementation. 

https://huggingface.co/
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𝛍(𝐱)  =  𝛅(𝐱 − 𝐪)  +  
𝛅

𝟐
, 

(6) 

satisfies this requirement. The inverse mapping is one in which we map each interval 
to the appropriate label. In a similar way, the inverse mapping is defined as 

𝛍−𝟏(𝐱) =  𝐫𝐨𝐮𝐧𝐝 (𝐪 +  
𝐱

𝛅
−

𝟏

𝟐
). (7) 

We can train the language model and the linear layer using regression by using the 
mean squared error (MSE) between the training targets and the output of the linear 
layers as a loss function. Using 𝜇−1(𝑥) we can maximize QWK as an early stopping 
mechanism on the development set over 20 epochs. MSE is used as a proxy for the 
optimization of QWK. 

We use the optimizer known as Adam with weight decay (Loshchilov & Hutter, 2019) 
with a learning rate of 2.5 × 10−5. This method is a variation of the stochastic gradient 
descent (SGD) method with an adaptive step size. This method is an improvement 
upon the standard Adam optimizer by varying the weight decay mechanism (Losh-
chilov & Hutter, 2019). The chosen learning rate is a slightly lower than typically used 
because larger models train more robustly with slightly lower learning rates. This is 
coupled with a linear learning rate scheduler that tends to zero. In some cases, where 
DeBERTa failed to give expected performance (e.g., zero, or a significant drop com-
pared with other folds), we ran the optimization twice and only chose the best per-
forming model on the development set. The models failed rarely and their expected 
performance is known from other splits.  

Once all the models had been trained, before the application to the test set, there was 
one additional optimization that was performed to obtain the final performance. One 
alternative interpretation of 𝜇−1 is that 𝜇−1 is defined by a series of cutoff points for 
the various scores. Thus, a sequence, 𝑐𝑘, is obtained with 

𝟎 <  𝐜𝐪  <  𝐜𝐪+𝟏  < . . . < 𝐜𝐩−𝟏  <  𝐜𝐩  <  𝟏, (8) 

given by 𝑐𝑘 = (𝑞 − 𝑘)𝛿 so that an alternative formulation of 𝛍−𝟏 is given by 

𝛍−𝟏(𝐱) =  𝐪 +  |{𝐱 >  𝐜𝐤 ∶  𝐪 <  𝐤 <  𝐩}|, (9) 

where |S| denotes the cardinality of a set. The goal of the additional optimization is to 
find a sequence, (𝑐𝑞, …, 𝑐𝑝), satisfying the above constraint, that optimizes QWK on 
the development set. This is a constrained optimization problem with a non-differen-
tiable target. We treat this as an unconstrained problem by taking a unconstrained 
vector and applying the composition of the softmax function, given by 

𝛔(𝐳𝟏, ⋯  , 𝐳𝐧)𝐢 =  
𝐞𝐳𝐢

∑ 𝐞𝐳𝐤
𝒌

 (10) 
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and the cumulative sum allowing us to use a standard maximization algorithm with 
no constraints. The QWK as a function of the resulting scores is not a differentiable 
function, hence, many standard multidimensional optimization algorithms fail. Of the 
algorithms that do not require the underlying function to be differentiable, we chose 
Powell's method to optimize QWK due to its robustness (Powell, 1964).  

The next part of modelling regards the approximations of features as linear functions 
of the class states. The first set of features explored is the total number of spelling 
errors, grammatical errors, and punctuation errors per sentence. The number of class 
states defined by the DeBERTa architecture is 1024, so for each split we have three 
matrices associated with the training, development, and test sets. Each of these has 
1024 columns and one row for each element of the set. 

Due to the possible non-linear nature of the relationship between score and the number 
of convention errors per sentence, our goal is to find the maximum Spearman rank-
order correlation coefficient between the output of the linear models and our feature. 
However, the Spearman rank-order correlation coefficient is not differentiable. Given 
the size of the matrices, we need to employ methods that require differentiability. The 
approach we adopted was to optimize the Pearson correlation coefficients of the linear 
models on the training set using the Spearman correlation coefficient as an early stop-
ping mechanism on the development set. The number of class states defined by the 
DeBERTa architecture is comparable to the number of training examples. To com-
pensate, we used a linear layer with a dropout at the input level to regularize this 
network (Srivastava et al., 2014). This is also necessary because we typically expect 
many correlated class states. The result of this process is a linear approximation of the 
number of convention errors per sentence. This same process was applied to each 
feature used in the work of Uto and Uchida (2020). 

In addition, this study considers the Corpus of Linguistic acceptability (CoLA). The 
CoLA was expertly annotated for general linguistic acceptability (Warstadt et al., 
2019). This study uses the probability outputs of a pretrained distilled-BERT model 
fine-tuned on the CoLA (Sanh et al., 2020). Given the size and breadth of the CoLA, 
the output probabilities of this model, which are between 0 and 1, can be interpreted 
as an approximation of linguistic acceptability applied to language generally. If the 
model produces a value close to 0 for any given text, this should indicate the text is 
not linguistically acceptable and contains many linguistic errors, while a value close 
to 1 indicates the text contains relatively few linguistic errors. Given the model should 
apply to language more generally, it can also apply to the student responses. Applying 
the pretrained distilled-BERT model to each student response defines a new feature 
we call the linguistic acceptability of a response, which takes values between 0 and 1. 
The same process of finding linear approximations for the other features in terms of 
the class states was applied to linguistic acceptability, hence, we determine whether a 
form of linguistic acceptability is implicitly being used by the DeBERTa models 
trained for AES. 
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Saliency Methods and Local Explainability 

The most common form of xAI  is conducted at an input level (Linardatos et al., 2021). 
Common approaches include LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 
2017), and integrated gradients (Sundararajan et al., 2017). The advantage of these 
approaches is that the output is easy to visualize which provides a straight-forward 
way of interpreting the results. Most applications of xAI for essays cause more con-
cerns compared with short texts. These methods fail to give an adequate explanation 
of global properties, for example, how well an essay is organized. Thus, this study 
focuses on conventions first as we can consider convention errors at a global level, in 
terms of how well an essay generally adheres to the conventions of language, and a 
local level, in terms of specific errors like misspellings and grammatical errors. 

The AllenNLP toolkit5 offers an implementation of the Integrated Gradients method 
(Sundararajan et al., 2017) in the form of saliency maps. Saliency maps are typically 
applied to models in which the outputs are log-probabilities (Wallace et al., 2019), 
hence, we modified this code in order to apply the toolkit to classifications that use 
regression. For every token, the saliency map gives an attribution value, which is pos-
itive if inclusion of the token improves the score, and negative otherwise. If an engine 
is trained on good convention data, saliency maps applied to these models should give 
negative attributions when convention errors occur. Heat maps are a way to visualize 
the attributions by color-coding positive and negative attributions from a saliency 
map. 

 

Results 

We first present the results of modelling the scores in the ASAP and ASAP++ da-
tasets. This includes both the results of the overall and trait-level scores. Secondly, we 
present the results of modelling global features as linear approximations of the class 
states. This provides us with a measure of the importance of these global features. 
Lastly, we present the results of using saliency, which complements the global fea-
tures with local features that are important to score point determinations.   

 

Modelling Overall and Trait-Level Scores 

The values of QWK of modelling the overall scores from 8 models are presented in 
Table 6. The models featured in Table 6 include our proposed model and 7 other mod-
els analyzing the ASAP dataset. The methods of the compared papers were suffi-
ciently distinct from each other and reflect the range of available methods used in the 

 
5 See https://github.com/allenai/allennlp. 
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literature. For the traditional BOW based approaches, the results of the EASE engine 
from Dong et al. (2017) are included. Further, models use the traditional recurrent and 
convolutional approaches with an attention mechanism was included as 
LSTM+CNN+Att. The QWK values from the first application of a single BERT 
model in Rodriguez et al. (2019) are listed in BERT (base), while the results of a 
regressive version of BERT from Yang et al. (2020) has been listed as 𝑅2 BERT. The 
current state-of-the-art was achieved by appending hand-crafted features to BERT in 
Uto and Uchida (2020), and listed as BERT+Features. A computationally efficient 
ensemble from Ormerod et al. (2021), was listed as Efficient Ensemble in the table. 
The results of the modelling the overall scores from this study are presented as 
DeBERTa Large. The DeBERTa Large model performed similarly to the best per-
former for each prompt; the average QWK value is very close to the current state-of-
the art. In general, the BERT+Features model (Uto & Uchida, 2020) performed the 
best on 5 of 8 prompts and the best on average. The human QWK reported in Table 6 
is average inter-rater QWK over the five test sets. This is not to be confused by the 
QWK measured in Table 4, which is the QWK for the entire dataset. The averaged 
QWK over each fold and QWK for the entire dataset are not equal.  

 

Table 6  

QWK for the Overall Score Models on Each Prompt  

QWK 1 2 3 4 5 6 7 8 Avg 

Human 0.721 0.812 0.769 0.850 0.753 0.775 0.720 0.620 
0.752 

Ease 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699 

LSTM 

+CNN+Att 
0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764 

BERT 

(base) 
0.792 0.680 0.715 0.801 0.806 0.805 0.785 0.596 

0.758 

𝑅2 BERT 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 
0.794 

BERT + 

Features 
0.852 0.651 0.804 0.888 0.885 0.817 0.864 0.645 

0.801 

Efficient 

Ensemble 
0.831 0.679 0.690 0.825 0.817 0.822 0.841 0.748 0.782 

DeBERTa 

Large 
0.832 0.713 0.699 0.835 0.826 0.834 0.851 0.783 0.797 
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The same procedure was applied to develop models for the trait-level scores. The re-
sults for the trait-score DeBERTa are presented in Table 7. A competing model of 
DeBERTa, labelled as CoNLL, uses the architecture specified by Dong et al. (2017) 
and is modeled in Mathias and Bhattacharyya (2020). The best QWK values for 
CoNLL from Mathias and Bhattacharyya (2020) are included for comparison of the 
DeBERTa model performance.  
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Table 7  

QWK for the Trait-Level Score Models on Each Prompt  

Prompt Model Cont Org WC SF Conv PA Lang Narr Style Voice 

1 CoNLL 0.703 0.664 0.675 0.648 0.638 - - - - - 

 DeBERTa 0.739 0.712 0.717 0.742 0.725 - - - - - 

2 CoNLL 0.617 0.623 0.630 0.603 0.601 - - - - - 

 DeBERTa 0.720 0.712 0.756 0.743 0.749 - - - - - 

3 CoNLL 0.673 - - - - 0.683 0.612 0.684 - - 

 DeBERTa 0.739 - - - - 0.751 0.714 0.749 - - 

4 CoNLL 0.751 - - - - 0.738 0.645 0.722 - - 

 DeBERTa 0.807 - - - - 0.806 0.749 0.796 - - 

5 CoNLL 0.738 - - - - 0.719 0.638 0.700 - - 

 DeBERTa 0.733 - - - - 0.725 0.688 0.689 - - 

6 CoNLL 0.820 - - - - 0.783 0.664 0.690 - - 

 DeBERTa 0.849 - - - - 0.802 0.720 0.723 - - 

7 CoNLL 0.771 0.676 - - 0.621 - - - 0.659 - 

 DeBERTa 0.722 0.588 - - 0.585 - - - 0.580 - 

8 CoNLL 0.586 0.632 0.559 0.586 0.558 - - - - 0.544 

 DeBERTa 0.568 0.592 0.561 0.588 0.599 - - - - 0.551 

Avg 
CoNLL 0.707 0.649 0.621 0.612 0.605 0.731 0.640 0.699 0.659 0.544 

 
DeBERTa 0.735 0.651 0.675 0.682 0.661 0.771 0.718 0.739 0.580 0.551 

Note: The traits are abbreviated as Content (Cont.), Organization (Org.), Word Choice 
(WC), Sentence Fluency (SF), Conventions (Conv.), Prompt Adherence (PA), Language 
(Lang.), Narrativity (Narr.), Style and Voice. In general, DeBERTa for each trait scores 
on each prompt performed better than CoNLL with higher QWK values than those from 
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CoNLL. The average QWK across all traits and prompts for the CoNLL model was 
0.663, while for the DeBERTa models, the average QWK was 0.703, which is an im-
provement by 0.040 over the current best performing models known in accessible litera-
ture. 

 

Modelling Features  

Table 8 reports the average Spearman correlation coefficients over five test sets be-
tween the linear approximations of the errors per sentence and the number of errors 
identified. We could not produce a one-to-one correspondence between the 1024 class 
states and features given the information in the vector of class states.  

 

Table 8 

The Spearman’s Rank-Order Correlation between the Linear Approximation and the 
Number of Convention Errors Per Sentence. 

  Over. Cont Org WC SF Conv PA Lang Narr Style/Voice 

P 1 0.751 0.777 0.760 0.748 0.761 0.735 - - - - 

P 2 0.801 - - - - 0.833 - - - - 

P + - 0.806 0.817 0.817 0.805 0.810 - - - - 

E 3 0.557 0.583 - - - - 0.573 0.636 0.625 - 

E 4 0.601 0.647 - - - - 0.678 0.681 0.693 - 

D 5 0.637 0.647 - - - - 0.633 0.667 0.639 - 

D 6 0.620 0.649 - - - - 0.643 0.643 0.657 - 

N 7 0.701 0.628 0.666 - - 0.723 - - - 0.640 

N 8 0.726 0.691 0.756 0.740 0.707 0.739 - - - 0.695 

Note: The traits are abbreviated as Content (Cont.), Organization (Org.), Word Choice 
(WC), Sentence Fluency (SF), Conventions (Conv.), Prompt Adherence (PA), Language 
(Lang.), Narrativity (Narr.), Style and Voice. The row with a + refers to the ASAP++ 
data from (Mathias & Bhattacharyya, 2018). The values here are averages of the Spear-
man’s Rank-Order Correlation over the 5 test sets.  

 

Our linear approximations for the number of convention errors per sentence using the 
class states for the overall scores are better for persuasive and narrative essay prompts. 
This indicates that these scores depend on convention errors to a greater degree for 
persuasive and narrative essay prompts. These are also the set of essays in which con-
vention is explicitly included in the rubric. On prompts 2 and 7, our best estimates for 
the convention errors per sentence arise from models on the trait of conventions. 
Prompt number 8 was an exception, perhaps due to the smallest number of training 
samples and the lowest inter-rater agreements.  

The Spearman rank-order correlation coefficients between the linear approximations 
of features from Uto and Uchida (2020) and the features themselves averaged over 
the five test sets are summarized in Table 9. The average Spearman rank-order 
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correlation coefficients presented are for linear approximations of features using the 
class states for overall scores only. They were not computed for trait-level scores. 

 

Table 9  

The Spearman’s Rank-Order Correlation Coefficients between the Traditional Features 
and Linear Approximations of the Features on the Class States for Overall Scores.  

Feature Classes Features 1 2 3 4 5 6 7 8 

Length Related 

Features 

# of Words 0.945 0.937 0.961 0.953 0.977 0.952 0.948 0.591 

# of Sentences 0.812 0.841 0.844 0.845 0.852 0.792 0.895 0.647 

# of Commas 0.769 0.704 0.718 0.751 0.730 0.695 0.654 0.734 

# of Question Marks 0.452 0.446 0.116 0.094 0.000 0.046 0.481 0.380 

# of Exclamation Marks 0.448 0.137 0.034 0.054 0.063 0.000 0.515 0.344 

Avg Word Length 0.623 0.661 0447 0.350 0.530 0.355 0.542 0.617 

Avg Sentence Length 0.373 0.068 0.392 0.398 0.420 0.255 0.527 0.458 

Syntactic Features # of Nouns 0.883 0.887 0.914 0.904 0.926 0.884 0.871 0.648 

# of Verbs 0.833 0.860 0.884 0.901 0.882 0.852 0.897 0.512 

# of Adjectives 0.776 0.803 0.778 0.778 0.780 0.807 0.735 0.691 

# of Adverbs 0.747 0.757 0.727 0.749 0.739 0.723 0.783 0.571 

# of Conjugations 0.663 0.711  0.693 0.751 0.738 0.524 0.690 0.550 

Readability Automated Readability 0.371 0.133 0.427 0.384 0.479 0.280 0.531 0.413 

Coleman-Liau 0.577 0.613 0.487 0.365 0.576 0.360 0.494 0.520 

Dale-Chall 0.673 0.312 0.492 0.325 0.447 0.386 0.545 0.545 

Ratio of Difficult Words 0.757 0.755 0.470 0.300 0.372 0.448 0.446 0.712 

Flesch Reading Ease 0.458 0.213 0.360 0.330 0.389  0.245 0.489 0.356 

Flesch Kancid Grade 0.370 0.130 0.394 0.366 0.425 0.246 0.518 0.418 

Gunning Fog 0.360 0.129 0.387 0.391 0.430 0.232 0.500 0.422 

Linsear Index 0.237 0.305 0.351 0.392 0.380  0.307 0.480 0.366 

Smog Index 0.353 0.318 0.581 0.738 0.580 0.432 0.364 0.348 

Syllable Count 0.945 0.933 0.958 0.955 0.967 0.941 0.947 0.613 

Predicted Scores 

Based on CoLA  

Linguistics Acceptability 0.647 0.614 0.196 0.334 0.285 0.421 0.634 0.541 

 

In general, the correlations were high (usually above 0.7) for length related features. 
This includes the number of words, the number of sentences, the number of commas, 
the number of nouns, the number of verbs, the number of adjectives, and the number 
of adverbs as well as readability related features including syllable count. Length-
based features and features that naturally scale with length are well approximated, 
indicating that length is implicitly used as a feature. The quality of these approxima-
tions also suggest that length is also important in score point determinations. Based 
on the average number of words in Table 1 and the correlations presented in Table 9, 
our approximation of length is better when the average response is shorter.  

Average word length and the ratio of difficult words to the number of words are ap-
proximated well in essay prompts 1, 2, and 8, where word choice is a part of the ru-
brics. It should be noted that most readability measures are badly approximated 
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regardless of what traits are used, indicating that most readability indexes are not be-
ing used by neural networks.  

Further, we considered the feature defined as linguistic acceptability, which is the 
output probabilities of a model trained on the CoLA (Sanh et al., 2020). The average 
of the Spearman’s rank-order correlation coefficients between the set of linear models 
on the class states and the linguistic acceptability over the 5 tests sets is presented in 
Table 9 as well. The linear models approximating linguistic acceptability did not dis-
play high correlations generally, indicating that linguistic acceptability is generally 
not approximated well as a linear function of the class states. However, the highest 
correlation values were obtained for persuasive and narrative essay prompts. This may 
indicate that the models trained for persuasive and narrative prompts have a much 
stronger dependence on linguistic acceptability in their score predictions. 

 

Saliency Methods and Local Explainability 

We present the results of two responses chosen that are relatively short and contain a 
relatively high number of spelling and grammatical errors. The heat maps for the sa-
liency values of two selected responses from the ASAP dataset using a DeBERTa 
model trained on conventions are presented in Figure 2. In these heat maps, the back-
ground colors were chosen between white and red, where words with white back-
grounds had no negative effect on score while those with red backgrounds had a larger 
negative effect on score. 

To clarify more general trends, we processed approximately 100 responses of approx-
imately the same length using a convention model for prompt 7 and considered how 
words were used in assigned scores. This gave us an assessment of the contributions 
for approximately eighteen thousand words. We used a vocabulary of approximately 
100k words to determine whether a word is in a vocabulary (In-Vocab) or not in the 
vocabulary (Out-of-Vocab). This count excluded punctuation and special tokens used 
in the competition, such as those beginning with ``\@" in Figure 2.  

Table 10 summarizes the saliency statistics. The application of the saliency map gave 
us an evaluation of the contribution of each word in the responses tested. An average 
Z-score of -0.769 for Out-of-Vocab words indicates that the misspellings, on average, 
had a much more detrimental effect to scores than their correctly spelled versions. 
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Figure 2 

Saliency Map for Two Sample Responses 
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Table 10  

Saliency Statistics 

 Average Score Standard Deviation Z-Score N 

In Vocab 6.93 × 10−3 8.87 × 10−3 0.018 18608 

Out of Vocab −0.114 × 10−3 0.01116 -0.769 422 

Overall 6.80 × 10−3 8.99 × 10−3  18608 

 

Summary and Discussion 

This study demonstrated the development of deep neural networks based DeBERTa 
models for automated scoring of the overall and trait-level scores and the approxima-
tions of rubric-relevant information or features about a response within the class 
states. Overall, this study found that the number of errors per sentence was better ap-
proximated by the class states for overall scores and all traits when convention errors 
are part of the rubrics. This suggests that the neural networks may be using some 
version of this feature in its calculations for all traits in persuasive and narrative 
prompts. This could be as validity evidence of the scores automatically generated by 
these models. Further, length-based features are implicitly used by the DeBERTa 
models and are important to score point predictions even though one of the major 
criticisms of AES is that length is too important in score predictions (Perelman, 2013).  

It is noted that a multitude of factors could have had a detrimental effect on the quality 
of these approximations. The two major issues are data quality and quantity. The inter-
rater agreements at the trait level in the original convention data (Shermis, 2014), were 
low by production standards. As the ASAP++ data were obtained from one human 
rater, there was no adequate information to evaluate the scoring quality. Further, the 
trait-level scores were very highly correlated. Thus, it was difficult to determine 
whether the neural networks have used the non-rubric trait level information in score-
point determinations. In the absence of high-quality annotated data, the GEC models 
only provide heuristics for the number of errors. This heuristic is potentially prone to 
the same types of agreement issues as hand-scoring. Further, the distribution of sali-
ency values and their corresponding words shows more clearly that some spelling 
errors were penalized more than others. A raw total number of errors does not account 
for that variation. This is also true in hand-scoring. On the other hand, data quantity 
is a general issue in using the ASAP dataset. Typically, the datasets needed to train 
GEC models and other language models are generally much larger than the training 
sets used to train AES models (Mizumoto et al., 2011; Ng et al., 2014; Stahlberg & 
Kumar, 2021; Yannakoudakis et al., 2011). We should not expect the same quality of 
inferences from AES models trained on comparatively small quantities of data. 

One approach we considered to ensure high correlations for the features was to add 
the loss function from the linear model on the class states to the loss function used to 
produce the scores. This modification would force the neural network to encode rubric 
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relevant information in the class states. This would be a novel way to implicitly in-
corporate features was originally proposed by Uto and Uchida (2020). This approach 
could address both validity issues and possibly increase performance though this 
would not address explainability for models more generally. This is a future research 
direction. 

In general, the DeBERTa models trained on overall scores performed comparably 
with the current state-of-the-art. The trait-level AES models performed significantly 
better than those obtained in Mathias and Bhattacharyya (2018, 2020). One technique 
to improve the QWK of the models in this study is known as hyperparameter tuning. 
The literature on both AES and ASAS suggests that a very modest increase in final 
test QWK could be achieved by employing Tree-Parzan Estimator-based hyperparam-
eter tuning (Ormerod, 2022; Ormerod et al., 2021; Snoek et al., 2012). Hyperparame-
ters tuning involves training models at multiple batch sizes and learning rates for each 
trait and prompt in order to obtain optimal hyperparameters. While this would help to 
identify the optimal batch sizes and learning rates, hyperparameter tuning is difficult 
to implement without significantly more computational power. 

The final optimization employed in this study with respect to using variable cutoffs is 
merely an extension of Yang et al. (2020). By optimizing the QWK as a function of 
variable cutoff values on the development set and applying those cutoff points to the 
test set gave an average increase in QWK of 0.004 on the test set compared with using 
fixed cutoff values. This method could have been utilized to address a different prob-
lem known in AES. By using the variable cutoff points to fit the distributions of scores 
instead of maximizing QWK, we potentially resolve the well-known issue that AES 
scores tend to regress to the mean more than human scores. More work needs to be 
done on the metrics used to gauge regression to the mean.  

The models built are specific to these prompts in Shermis (2014), and hence, the re-
sults do not directly apply to generic essay grading or systems used in AWE systems. 
The results for an engine trained on a sufficiently large and broad corpus of essays 
would be more applicable to an AWE system. 
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Appendix A 

Benchmarking Grammatical Error Correction 

This appendix is dedicated to an evaluation of the quality of the counts we provide for 
convention errors. Of the several benchmarks, we use the JHU FLuency-Extended 
GUG (JFLEG) corpus (Napoles et al., 2017). The corpus is made of a test set and a 
development set with approximately 750 sentences each. The benchmark provided for 
a GEC engine is a GLEU score, which compares the output of a corrected sentence 
against four possible grammatically correct variations of each sentence in the corpus. 
The GLEU score for a GEC engine is interpreted as a measure of grammatical accept-
ability of the output. The results with no edits were used as a baseline model. The 
GLEU scores of the baseline model, the T5 model in this study, LangTool, and the 
best performing model on the test set as reported in Ge et al. (2018) are presented in 
Table A.1. The Best Performing Model of Ge et al. (2018), is a sequence-to-sequence 
model with a 7-layer convolutional encoder and decoder. This model is not publicly 
available. The Baseline Model contains the GLEU scores when the original sentences 
are unaltered and the Human reports the human level annotations reported by Ge et 
al. (2018). The relatively good performance of the model we use in this study ensures 
that the combination of the model output and ERRANT provide a reasonably accurate 
approximation of convention errors. 

 

Table A.1  

GLEU Scores for GEC Models 

DataSets Models Variation 1 Variation 2 Variation 3 Variation 4 Average 

Development 

DataSet 

Baseline Model 0.340 0.320 0.411 0.460 0.383 

LangTool 0.426 0.388 0.493 0.556 0.466 

T5 0.508 0.475 0.565 0.618 0.541 

Test DataSet Baseline Model 0.434 0.452 0.397 0.334 0.404 

LangTool 0.542 0.560 0.493 0.556 0.506 

T5 0.628 0.637 0.589 0.535 0.597 

Best Performing 

Model 

N/A N/A N/A N/A 0.624 

 Human  N/A N/A N/A N/A 0.623 

Note: The best performing model is the one on the test set from Ge et al. (2018). 

 


