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Abstract 
Although constructed-response items have proven effective in assessing students’ higher-order 
cognitive skills, their wider use has been limited in international large-scale assessments (IL-
SAs) due to the resource-intensive nature and the challenges associated with human scoring. 
This study presents automated scoring based on artificial neural networks (ANNs) as feasible 
support for, or as an alternative to, human scoring. We examined the comparability of human 
and automated scoring for short constructed-response items from TIMSS 2019. The results 
showed that human and automated scores were highly correlated on average (r=0.91). Moreo-
ver, this study found that a novel approach of adopting expected scores generated from item 
response theory (IRT) can be useful for quality control. The ANN-based automated scoring 
provided equally high or even improved agreements when it was trained on the data which is 
weighted or filtered based on IRT-based scores. This study argues that automated scoring has 
great potential to enable resource-efficient and consistent scoring in place of human scoring 
and, consequently, facilitate the greater use of constructed-response items in ILSAs. 
Keywords: International large-scale assessment, eTIMSS, constructed-response items,  
automated scoring, artificial neural networks, natural language processing 
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Introduction 

The move to computer-based assessment has enabled international large-scale assess-
ments (ILSAs) to enhance the measurement of student achievement through novel 
items.  Innovative item formats, such as integrated scenarios and tasks that require 
higher-order cognitive processes frequently include constructed-responses (CR) 
items. The TIMSS 2019 (Trends in International Mathematics and Science Study) 
marked the transition to the eTIMSS digital format, incorporating innovative CR 
items (Martin et al., 2020). Traditional multiple-choice items are thought of as limited 
to less complex processes such as memorization of key concepts, while CR items are 
thought to elicit students’ deeper understanding by asking them to apply their 
knowledge in subject areas (Harris et al., 2019; Liu et al., 2014; Maestrales et al., 
2021). Unfortunately, CR items have been restrictively used in ILSAs because of the 
high cost of human scoring: Training human raters to attain the preferred range of 
agreement is labor-intensive (Braun et al., 1990) and particularly challenging in as-
sessments administered in up to 100 or more language versions. Zhang (2013) stated 
that the increasing use of CR items in ILSAs is time-consuming and resource-inten-
sive to score due to the high volumes of student responses. Automated scoring holds 
great potential to enable increased use of CR items, facilitating cost-efficient, fast, and 
consistent measurement. 

There have been many approaches to adopting automated scoring of CR items in 
large-scale assessments (Braun et al., 1990; Ha & Nehm, 2016; Liu et al., 2014; Liu 
& Kunnan, 2016; Madnani et al., 2013). These approaches fall into two main catego-
ries: 1) handcrafted features-based models and 2) artificial neural network (ANN) 
based models (Hussein et al., 2019). One example of the former models is the c-rater 
developed by Educational Testing Service (Sukkarieh & Stoyanchev, 2009), which 
applies scoring rules built from a set of correct model answers with predefined con-
cepts. In contrast, ANN-based scoring models automatically extract the scoring fea-
tures using machine learning and neural networks (Hussein et al., 2019). For instance, 
c-rater-ML is the automated scoring tool implementing support vector regression. It 
constructs a statistical model for learning from a set of previously human-scored re-
sponses rather than relying on descriptions of the key concepts (Liu & Kunnan, 2016). 

Although automated scoring in educational measurement is not new, the adoption of 
recently developed deep learning techniques for ANNs is lacking in ILSAs. ANNs 
and natural language processing (NLP) have significantly improved in the past few 
years (Kersting et al., 2014; Sorin et al., 2020). Recent ANNs have been utilized for 
automated item generation (von Davier, 2018), automated scoring of graphical input, 
and complex classification (von Davier et al., 2022). However, less research has in-
vestigated the feasibility of automated scoring of CR items in multilingual interna-
tional assessments possibly due to the challenges associated with machine translation 
and translation quality control. The present study explores automated scoring of se-
lected CR items from the TIMSS 2019 assessment using ANNs, comparing human 
rater- and computer-generated scores. This study shows promise for automated 
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scoring in ILSAs, demonstrating how ANN classifiers could be utilized to score CR 
items in multilingual contexts. 

 

Background 

Constructed-Response Items in ILSAs 

Large-scale assessments have paid increasingly more attention to technology-en-
hanced, interactive, and open-response items while shifting from paper-based to com-
puter-based assessments. Technology-based assessment enables the use of more com-
plex and innovative items that generally depend on intricate computer functionality 
(Bryant, 2017). Particularly, computer-based assessments allow for wider use of CR 
items. Well-crafted CR items are commonly believed to assess a broader range of 
higher-order thinking skills (e.g., analyzing, designing, and integrating) in contrast to 
selected response multiple-choice (MC) items (Darling-Hammond & Adamson, 2010; 
Hancock, 1994; McClellan, 2010; Jodoin, 2003). CR items may elicit constructive 
cognitive processes by requiring students to produce their own answers, employing 
their knowledge and reasoning abilities (Lissitz et al., 2012), while MC items mostly 
focus on skills such as recognition, recall, or prompted information retrieval (Darling-
Hammond & Adamson, 2010). Moreover, CR items may provide deeper insight into 
student thinking since they allow students to construct heterogeneous or even idiosyn-
cratic answers rather than choosing from a set of responses provided on the test 
(Federer et al., 2015). 

Despite the potential strengths of CR items, their wider use has been limited in ILSAs 
due to their scoring requirements. The human scoring of CR items is by its nature 
labor-intensive, costly, and time-consuming, and may lead to validity and reliability 
issues originating from rater effects such as severity and leniency, inconsistency, and 
halo effects, as well as other issues (McClellan, 2010; O’Leary et al., 2018; Wahlen 
et al., 2020; Zhang, 2013). CR items may be prone to problems of scoring subjectivity, 
especially when scorers are insufficiently trained and human judgment is involved in 
deciding whether an answer is correct (Brown & Hudson, 1998). Bejar (2012) stated 
that individual raters build their own mental scoring rubric that can be affected by a 
variety of factors such as personal attributes or background. These differences in per-
sonal mental rubrics may make the scoring behavior of human raters inconsistent and 
can cause rater effects, resulting in systematic differences in scores (i.e., construct-
irrelevant variance). Even after rigorous training and calibration, rater scoring perfor-
mance cannot be taken for granted (McClellan, 2010), and additional quality control 
is required to ensure valid inferences from scores. TIMSS employs elaborate scoring 
consistency checks to mitigate these risks, but these are costly and time-consuming 
for participating countries.  

Fortunately, a growing number of studies have shown that automated scoring can play 
a viable role in the scoring of CR items, suggesting that high levels of agreement 
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between human rater- and computer-generated scores can be achieved (Ha, 2016; 
Kersting et al., 2014; Liu et al., 2016; Shermis et al., 2010; Shermis & Burstein, 2013). 
Automated scoring can be beneficial either by performing second scoring or by sub-
stituting for human raters entirely (von Davier et al., 2022). In particular, it not only 
greatly reduces the cost and time involved in scoring but also provides high con-
sistency and quick score turnaround, offering instant feedback to students (Attali et 
al., 2008; Higgins et al., 2011; Williamson et al., 1999, Zhang, 2013). Noteworthily, 
the Duolingo English Test provides experimental evidence of the operational use of 
automated scoring. Being a computer-adaptive English proficiency test, the Duolingo 
English Test creates, scores, and analyzes items using machine learning and NLP (Set-
tles et al., 2020). The automated scoring of the Duolingo English Test was found to 
be highly reliable as can be seen in the moderate-to-high correlations between its com-
puter-generated scores and relevant test scores such as TOEFL writing and IELTS 
writing (Cardwell et al., 2021). 

 
Progress in Automated Scoring 

A number of studies have been conducted to measure the accuracy and reliability of 
automated scoring of students’ written responses (Dikli, 2006; Wahlen et al., 2020). 
In 1965, Page developed the first automated scoring engine, Project Essay Grader 
(PEG), suggesting the comparability of human scoring and computer scoring (Page, 
1966). PEG focused on extracting text surface features to predict scores using multiple 
regression. He analyzed a set of 138 English essays written by high school students in 
grades 8-12, scoring with four human raters and one computer rater. He not only found 
that computer-generated scores were similar to human raters (r = 0.50) but also as-
serted that computers will perform better than human raters as individual random er-
rors are eventually eliminated from computers while these have to be assumed in hu-
man raters. E-rater developed by ETS used surface features like PEG but also consid-
ered textual coherence to predict human holistic scores (Enright & Quinlan, 2010; 
Miller, 2003). E-rater provided evidence for construct validity demonstrating that e-
rater and human raters assess essentially the same construct (Attali, 2007). Although 
initial findings were encouraging, both PEG and e-rater were criticized for their lack 
of consideration of content or deeper semantic information (Wang, 2020). 

Beyond surface-level models, latent semantic analysis (LSA) is a machine learning-
based technique that uncovers the underlying semantic structure using a singular value 
decomposition (Landauer et al., 1998; Landauer & Dumais, 1997). LSA deduces the 
relationship between words and documents, aiming to quantify the deeper semantic 
content (Hearst, 2000). There have been consistent improvements in LSA and LSA-
based approaches are still being employed for automated scoring. Using generalized 
LSA, Islam, and Hoque (2010) trained on 960 essays written by undergraduate stu-
dents and, subsequently, analyzed 120 testing essays. They achieved high accuracy of 
automated scoring with human-machine score correlations ranging from 0.89 to 0.96. 
With an LSA-based automated scoring, LaVoie et al. (2020) scored short answer 
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responses (N = 1,863) written by Reserve Officers’ Training Corps cadets from the 
Consequences Test, a measure of creativity and divergent thinking. Automated scores 
demonstrated very high convergence with human raters (r = 0.94) and provided sim-
ilar patterns of predictive and concurrent validity as human scores (i.e., scores from 
Cadet Order of Merit Listing and Cadet Grade Point Average).  

Rapid advances in machine learning enable automated scoring to be more adaptable 
and accurate than traditional approaches. Artificial neural networks (ANNs), and es-
pecially deep neural networks, are powerful machine learning algorithms that simulate 
the information processing capability of the human brain (Dongare et al., 2012; Wil-
liamson et al., 2004). Many ANNs consist of three types of layers such as an input 
layer of neurons, one or more hidden layers, and a final layer of output neurons (Wang, 
2003). The current study focuses on feed-forward neural networks with a single hid-
den layer (see Figure 1) where the inputs are fed into the input layer without any feed-
back from the output layer. A hidden layer exists in-between input and output layers 
and higher-order statistics are extracted to generate output layers (Sazli, 2006). 

Through repeated exposure to data (input and desired output), ANNs learn from the 
data by conditioning individual neurons either excitatory or inhibitory to certain pat-
terns. The power of ANNs is that they can be applied to new data once they learn 
patterns and relationships in the data (Agatonovic-Kustrin & Beresford, 2000; Weso-
lowski & Suchacz, 2012). Nowadays, ANNs are widely used for a variety of purposes 
including classification, prediction, pattern recognition, or clustering (Abiodun et al., 
2018), and more recently, natural language generation (NLG; e.g., Karpathy, 2015; 
Vaswani et al., 2017; von Davier, 2019).  

 
Figure 1 

Single Hidden Layer Neural Networks 
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The latest advancements in natural language processing (NLP) are also playing an 
important role in education including automated scoring, automated item generation, 
writing assistants, and automated feedback (Alhawiti, 2014; Flor & Hao, 2021, Lee et 
al., 2019). NLP aims to program machines to process spoken or written language (nat-
ural language) input and turn it into a useful form of representation (Chary et al., 2019; 
Rokade et al., 2018). In automated scoring, computers are trained to learn the rela-
tionship between features of student responses (e.g., number of words, instances of 
conjunctions) and human-generated scores (Correnti et al., 2020). After forming these 
associations, features of new student responses are evaluated with machine learning 
algorithms, and then computers produce predicted scores for individual responses. 
Recent neural networks can be effectively trained in solving NLP tasks by addressing 
many challenges accompanied by the processing of natural languages, such as break-
ing sentences, extracting semantic information, converting unstructured data into a 
structured format, or translating multilingual data (Bahja, 2020).  

Despite the huge promise of automated scoring based on ANNs and NLP, little is 
known about its application to multilingual international assessment. The current 
study aimed to apply automated scoring and examine its comparability with human 
scores in the context of ILSAs. We implemented supervised learning algorithms for 
ANNs on constructed-response items from TIMSS 2019. 

 

Methods 

Item Selection and Rationale 

This present study used four released CR items from TIMSS 2019 and analyzed stu-
dent responses collected from the United States. The current work describes the meth-
ods and results for US English responses. The technologies used were selected with 
an eye to multilingual capabilities and generalizability to languages other than English 
(results for other languages are reported in a separate paper). All four items were di-
chotomously scored items in which students received full credit for correct responses 
and no credit for incorrect responses. The four items were homogenous in terms of 
eliciting a short response from students. Two items (SE71054 & SE71077) were rel-
atively easy, while the other two items (ME72209 & SE62005) were moderate-to-
high difficulty. The sample size of each item was 1,230 (SE71054), 1,238 (SE71077), 
1,197 (ME72209), and 1,239 (SE62005) students.  

These items were selected since we wanted to examine whether automated scoring 
using ANNs can produce computer-generated scores that are comparable to human-
generated scores for short CR items in TIMSS. The average lengths of responses for 
SE71054, SE71077, ME72209, and SE62005 were 59 words, 63 words, 99 words, 
and 114 words, respectively. Also, according to human scores, 62.0% and 58.3% of 
students provided correct responses for SE71054 and SE71077, respectively. In con-
trast, merely 18.3% and 29.2% of students wrote correct responses for ME72209 and 
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SE62005, respectively. The human scores were obtained from professional human 
raters who scored the responses based on detailed scoring guides after receiving ex-
tensive training by the TIMSS & PIRLS International Study Center (Fishbein et al., 
2020). 

 

Procedure for Automated Scoring 

Preparing Data Set 

Using simple holdout validation, the data was split into training and validation sets at 
a ratio of 8:2; student responses were randomly assigned to the training (80%) and 
validation set (20%). The holdout method was introduced to avoid overfitting often 
caused by training and evaluating a model on the same data (Raschka, 2018). Both 
training and validation set preserved the same class distribution of the data since the 
random sampling occurred within each class (correct vs. incorrect responses). Also, a 
single unweighted and unfiltered validation set was used for individual items to eval-
uate the performance of ANNs across different training approaches. 

 

Preprocessing 

Preprocessing is an essential component of text classification since it converts the 
original form of natural language into a more suitable form to process (Romanov et 
al., 2019). In this study, student responses in the training set were preprocessed in 
multiple steps using NLP tools (e.g., quanteda, quanteda.textstats & hunspell) avail-
able in R: tokenization, lowercasing, spelling correction, stopwords removal, and 
stemming. (Benoit et al., 2018; Benoit et al., 2021; Ooms, 2019). 

 

Step 1: Tokenization 

Tokenization is the process of splitting a stream of written text into individual words, 
phrases, or other meaningful elements called tokens (Uysal & Gunal, 2014), making 
it easy to manage text data with a set of tokens. In this study, punctuations were re-
placed with a single whitespace and then student responses were tokenized into words. 
For example, the sentence “Whales are mammals.” was converted to “Whales are 
mammals” without a period, and then was split into three tokens of “Whales”, “are”, 
and “mammals”. 
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Step 2: Lowercasing 

Lowercasing refers to the conversion of every word in the data to lowercase so that 
semantically identical words (e.g., “Whales” and “whales”) would not be regarded as 
different tokens (Oliinyk et al., 2020). It is helpful to increase the quality of classifi-
cation in terms of accuracy and dimension reduction disregarding domain and lan-
guage (Uysal & Gunal, 2014). After lowercasing, the aforementioned tokens were 
transformed to “whales”, “are”, “mammals”.  

 

Step 3: Spelling Correction 

As students should not be penalized for their spelling errors (Madnani et al., 2013), 
we implemented a unique spelling correction method incorporating edit distance and 
hunspell package (Ooms, 2019) in R. First, separate lists of correctly spelled words 
(i.e., good words) and misspelled words (i.e., bad words) were created from the train-
ing set. To further the example above “whales” would be a member of the list of good 
words, while “whalkes” would be a bad word, as it is not a correctly spelled word 
found in customarily used spelling correction dictionaries. Next, two different sug-
gested word lists for bad words were generated; one was based on the edit distance 
approach while the other was on the hunspell dictionary. Here, edit distance (d) de-
notes the minimum number of operations (e.g., insertions, deletions, and replace-
ments) needed to transform a bad word (𝑠𝑖) into a good word (𝑠𝑗). The final good word 
will be chosen among a list of good words where l is the total number of suggested 
good words. In the example, the edit distance of the bad word “whalkes” relative to 
the good word “whales” is one, as only a single deletion of the letter “k” is needed. 
For the edit distance-based list, a good word showing the maximum value from the 
following equation was selected as an alternative for individual bad words. 

 
𝑔𝑜𝑜𝑑 𝑤𝑜𝑟𝑑(𝑖, 𝑗) =  𝑚𝑎𝑥(𝑗=1…𝑙) [

𝑙𝑜𝑔(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓𝑠𝑗) 

𝑑(𝑠𝑖 , 𝑠𝑗)2
] 

 

(1) 

In other words, we selected the final good word to replace a bad word in the training 
data based on the (log) word frequency of the good word, weighted by the inverse of 
the squared edit distance between a good word and a bad word.  

For the hunspell-based list, the most frequently appearing word in the training set was 
chosen as an alternative among the suggested words offered by the hunspell diction-
ary. Next, the final suggested word list was produced by comparing the edit distance 
list and hunspell list; a good word from the edit distance list was used if the edit dis-
tance between the good word and the bad word was less than 3, otherwise, a bad word 
was replaced with a good word from the hunspell-based list. 
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This procedure ensured that any incorrectly spelled word (bad word) in the training 
set was corrected predominantly based on correctly spelled words (good words) in the 
remainder of the training set. Only if the edit distance to any good word exceeded a 
certain threshold, other (hunspell) suggested words were used for spelling correction.  

It is important to note that the list of good words comprises all correctly spelled words 
in the training set, irrespective of whether the response containing the words was 
scored correctly or incorrectly. 

 

Step 4: Stopwords Removal 

Stopwords (e.g., so, the, from) are frequently occurring words that barely deliver any 
information (Ghag & Shah, 2015). For instance, “are” from the aforementioned three 
tokens were removed, and thereby, “whales” and “mammals” remained.  

 
Step 5: Stemming 

Stemming is the process of reducing words to their word roots (i.e., stem) generally 
done by deleting any attached suffixes or prefixes from the word (Jivani, 2011). Stem-
ming converted “whales” and “mammals” into “whale” and “mammal”, respectively. 

 

Bag-of-Words 

After preprocessing, the bag-of-words model was applied to represent student re-
sponses with a vector of word counts that occur in them (Boulis & Ostendorf, 2005). 
This vectorized representation of words (i.e., features) enables machines to process 
the features for training and classification (Shao et al., 2018). In this study, only fea-
tures (words) appearing at least 0.05% in the training set were included in the feature 
matrix for more efficient dimension reduction.  

 

Training and Testing the Model 

All models were trained using ANNs with the caret package in R (Kuhn et al., 2020). 
The ANNs used in this study were fully-connected feed-forward neural networks, 
consisting of three layers (i.e., one input layer, one hidden layer, and one output layer). 
The number of neurons in the input layer was equal to the number of features extracted 
from the bag of words. The two hyper-parameters in the hidden layer (e.g., size and 
decay) were optimized for the best candidate model after multiple iterations. The out-
put layer was one neuron, indicating either a correct or an incorrect response. 
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5-fold cross-validation (CV) was implemented on a training set (80%) and the final 
model was tested on a previously unseen validation set (20%) to avoid potential data 
leakage in preprocessing; in spelling correction, the lists of good words and bad words 
were created based on the full training set, and then spelling correction was performed 
for the test set, therefore an independent unseen validation dataset was withheld which 
was not used in any preprocessing The presence of an independent validation set pre-
vents possible data leakage from the training set to the validation set and enables a 
more appropriate evaluation of the final model performance.  

Regarding the validation set, the same preprocessing procedure was applied as the 
training set. The only difference was that bad words in the validation set were replaced 
with good words in the suggested words list created from the training set. The prepro-
cessed validation set was represented on the feature matrix extracted from the training 
set so the models classified the validation set using the same feature matrix. 

 

Different Approaches for Data based on IRT-based Scores 

This study used three different approaches for weighting the training data to investi-
gate whether data manipulation has any impact on the classification performance of 
models: 1) all data unweighted, 2) all data weighted, and 3) match data unweighted. 
All data unweighted was untouched raw data while all data weighted and match data 
unweighted were based upon the agreement between scores generated by human raters 
and item response theory (IRT; Lord & Novick, 1968). As some human raters produce 
incorrect or inconsistent scores (von Davier et al., 2022), this study used the scores 
generated from IRT scaling and population modeling as a second opinion to purify 
the data. Using additional IRT-based scores can be helpful to obtain truly correct or 
incorrect responses by mitigating the inconsistencies of human scoring. Given that the 
quality of the training set influences the accuracy and efficiency of machine learning 
tasks (Gupta et al., 2021), having additional expected scoring allows for obtaining 
cleaner data.  

Specifically, the item parameters (i.e., item discrimination and difficulty) reported in 
the eTIMSS 2019 (Foy et al., 2020, Chapter 12) were fixed in a 2-parameter logistic 
(2PL) IRT model (see Table 1) to calculate the probability of a student n with the 
ability 𝜃 to get the correct response for an item i. Item discrimination (a) is the point 
biserial correlation between a correct response to the item and the total score. Item 
difficulty (b) is the average percentage of students who correctly responded to the 
item (Martin et al., 2017). With population modeling, the general student proficiency 
(θ) was computed by considering the relation between student proficiency and con-
textual variables (von Davier, 2020, Chapter 11). 

 

 
𝑃𝒊,𝒏(𝜃) =  

exp [𝑎𝑖(𝜃𝑛 −  𝑏𝑖)]

1 + exp [𝑎𝑖(𝜃𝑛 −  𝑏𝑖)]
 (2) 
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Table 1 

The IRT Item Parameters  

Item a (discrimination) b (difficulty) 

SE71054 0.941 0.272 

SE71077 1.100 0.285 

ME72209 1.057 1.470 

SE62005 1.250 0.666 

 

Next, the IRT-based scores were generated with a maximum a priori (MAP) estima-
tion which indicates the highest probability for student n to solve an item i. This esti-
mation allows for the comparison of the human-generated score 𝑥𝑖,𝑛[𝑟] by rater r and 
IRT-based score 𝑦𝑖,𝑛[𝑚𝑎𝑥]. If MAP is above 0.5, 1 was assigned as the IRT-expected 
score, otherwise, 0 was assigned. Human-generated scores can either agree upon or 
disagree with IRT-based scores. For instance, if the human-generated score and IRT-
based score are both either 1 or both 0 for student n’s response to item i, we can say 
the human score and IRT-based score are matched.   

 

 𝑀𝐴𝑃 =  𝑦𝑖,𝑛[𝑚𝑎𝑥] =  𝑚𝑎𝑥(𝑥=0,1){𝑃(𝑋 = 𝑥|𝜃𝑛 , 𝑎𝑖 , 𝑏𝑖)} (3) 

 

All data weighted included all student responses regardless of the match between the 
human-based scores 𝑥𝑖𝑛[𝑟] and the IRT-based scores 𝑦𝑖𝑛[𝑚𝑎𝑥]. After holding out the 
20% of student responses from the whole dataset for validation, the training set con-
sisted of the matching and mismatching responses at a weight ratio of 2:1; the re-
sponses where the human and IRT-based scores matched included both human and 
IRT ratings, so they were effectively doubled while for the responses for which human 
and IRT scores did not match we only used the human ratings in the training set. The 
2:1 ratio was determined to emphasize the responses where the human and IRT-base 
scores agree upon, with the assumption that human scores for the matching responses 
are more reliable than for the mismatching responses. Therefore, the existence of IRT 
scores can be regarded as similar to a second scorer’s evaluation for the matching 
responses. Concerning match data unweighted, this data only consisted of student re-
sponses for which human and IRT scores agreed upon.  

 

 



J. Y. Jung, L. Tyack & M. v. Davier 

 

482 

 Results  

Sample Sizes for Different Data based on IRT-based Scores 

The sample sizes of all data unweighted, all data weighted, and match data un-
weighted can be found in Table 2. On average, 78% of IRT-based scores matched the 
human-generated scores; 72%, 79%, 83%, and 78% of matches were found for 
SE71054, SE71077, ME72209, and SE62005, respectively.  

 

Table 2 

Sample Sizes for Different Approaches for Data based on IRT-based Scores 

Item 

Train 

Validation 
All data  

unweighted 
All data 

weighted 
Match data  
unweighted 

SE71054 985 1694 709 245 

SE71077 991 1788 797 247 

ME72209 958 1756 798 239 

SE62005 992 1776 784 247 

* Note. Match: human score = IRT-based score; all data weighted: match: mismatch = 2:1 
 

Notably, filtering the data based on a match between the human and IRT-based scores 
did not harm the representativeness of the raw data. Table 3 showed that the class 
distribution in all data unweighted was maintained in match data unweighted for most 
items (SE71054, SE7107, and SE62005). The only exception was ME72209, which 
showed an imbalance in match data unweighted. The ratio of incorrect and correct 
responses for ME72209 changed from 79.9%:20.1% in all data unweighted to 
93.6%:6.4% in match data unweighted. The IRT model may overpredict incorrect re-
sponses for this item because of its high level of difficulty. 
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Table 3.  

Class Distribution of All Data Unweighted and Match Data Unweighted 

Item 
Difficulty 

(p) 

All data unweighted Match data unweighted 

Incorrect Correct Sample Size Incorrect Correct Sample Size 

SE71054 0.63 459 

(37.3%) 

771 

(62.7%) 

1230 327 

(36.9%) 

558 

(63.1%) 

885 

SE71077 0.57 528 

(42.6%) 

710 

(57.4%) 

1238 409 

(42.1%) 

563 

(57.9%) 

972 

ME72209 0.20 957 

(79.9%) 

240 

(20.1%) 

1197 933 

(93.6%) 

64 

(6.4%) 

997 

SE62005 0.30 867 

(70%) 

372 

(30.0%) 

1239 666 

(68.9%) 

300 

(31.1%) 

966 

* Note. Match: human score = IRT-based score 
 

Performance of Automated Scoring Using ANNs 

The automated scoring using ANNs was evaluated in comparison to human-generated 
scores. First, the performance of the automated scoring was comparable to human 
scoring across all four items. (see Table 4). For easy items (SE71054 & SE71077), a 
substantial agreement was found across all approaches to data; 0.93 ≤ r ≤ 0.94 in all 
data unweighted, 0.92 0.94 in all data weighted, and 0.93 ≤ r ≤ 0.96 in match data 
unweighted. The relatively difficult items (ME72209 & SE62005) also showed very 
high agreement for all approaches to data; 0.85 ≤ r ≤ 0.92 in all data unweighted, 0.87 
≤ r ≤ 0.92 in all data weighted, and 0.85 ≤ r ≤ 0.90 in match data unweighted.  

Moreover, the results suggested that the adoption of IRT-based scores can contribute 
to quality control by removing potentially incorrect or inconsistent human scores, 
which leads to more consistent training of the neural networks. When the training set 
is either weighted or filtered based on IRT-generated scores, the agreement between 
human and automated scores was equal to or even improved compared to all data 
unweighted approach. While all data unweighted and IRT-based approaches showed 
equally high accuracy for SE71054 (r = 0.93) and ME72209 (r = 0.92), match data 
unweighted and all data weighted showed the highest level of accuracy for SE71077 
(r = 0.96) and SE62005 (r = 0.87), respectively. 
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Table 4 

Performance of Automated Scoring with ANNs  

Item All data unweighted All data weighted 
Match data  
unweighted 

SE71054 0.93 0.92 0.93 

SE71077 0.94 0.94 0.96 

ME72209 0.92 0.92 0.90 

SE62005 0.85 0.87 0.85 

Average 0.91 0.91 0.91 

* Note. Match: human score = IRT-based score; all data weighted: match = 2:1 
 

For all four items, the confusion matrix for the approaches with the highest level of 
accuracy is presented below (see Tables 5-8). For the three items (SE71054, SE71077, 
and ME72209), false positive and false negative rates were commonly either equal to 
or less than 4%, while one difficult item (SE62005) showed a relatively high false 
positive rate (10%) and false negative rate (6%).  

 

Table 5 

Confusion Matrix for SE71054 

      Human Score 

    0 1 

Machine Score 

0 
All data unweighted 33% 3% 

Match data unweighted 34% 4% 

1 
All data unweighted 4% 60% 

Match data unweighted 3% 59% 

 

Table 6 

Confusion Matrix for SE71077 

      Human Score 

    0 1 

Machine Score 
0 Match data unweighted 39% 1% 

1 Match data unweighted 3% 57% 
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Table 7 

Confusion Matrix for ME72209 

      Human Score 

    0 1 

Machine Score 

0 
All data unweighted 76% 4% 

All data weighted 76% 4% 

1 
All data unweighted 4% 16% 

All data weighted 4% 16% 

 

Table 8 

Confusion Matrix for SE62005 

      Human Score 

    0 1 

Machine Score 

0 All data unweighted 60% 6% 

1 All data unweighted 10% 24% 

 

 

Discussion 

This study has shown the feasibility of automated scoring for the CR items in ILSAs. 
Using four CR items from the TIMSS 2019 assessment, the study compared human 
scores with automated scores created from the ANN-based automated scoring model. 
There is substantial agreement between human and automated scoring for all four 
items. This suggests that automated scoring has the potential to support or substitute 
human scoring for short CR items. Remarkably, the adoption of IRT-based scores can 
be a promising strategy for improving the performance of automated scoring. When 
the ANN-based models were trained on weighted or filtered data based on IRT-gen-
erated scores, the classification accuracy increased for two items (SE71077 & 
SE62005). Although more items should be analyzed to generalize this finding in a 
future study, this implies that more improved performance could be achieved with the 
high-quality data which is weighted or filtered by IRT-based scores. It has been 
pointed out that achieving high-quality data is a vital step in supervised machine learn-
ing since errors in data can nullify the speed and accuracy of the performance (Breck 
et al., 2019; Prior et al., 2020; Riccio et al., 2020). Hence, the additional IRT-based 
scores introduced to weigh the data may prove useful for quality control. 

https://www.zotero.org/google-docs/?GFqEbm
https://www.zotero.org/google-docs/?GFqEbm
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Additionally, it should be noted that some misalignment of automated scores and hu-
man scores is inevitable as the classification accuracy was calculated based on human 
scores. Automated scores were compared against human scores, but some human 
raters generate incorrect or inconsistent scores. Therefore, the training based on single 
human ratings is less than ideal. In an ideal situation, only responses for which at least 
two human raters agree would be used in training. However, most testing programs 
apply double scoring only to a small fraction of all responses, mainly for estimating 
rater agreement. Also, the ANNs-based models depend on the bag-of-words model 
which only depicts the frequency of individual words in the data. Automated scoring 
determines the correctness of a student response using the feature matrix extracted 
from the bag-of-words model. This indicates that if a student writes a correct answer 
with only a few or no commonly used keywords, it can be possibly scored as incorrect. 
Further studies on addressing the inconsistency of human scoring will contribute to a 
more correct evaluation of automated scoring. 

The advantage of ANN-based automated scoring is that it is expected to improve the 
accuracy and consistency of scoring while reducing the cost, time, and human efforts 
involved in training human raters. Despite such resource-intensive training, achieving 
high inter-rater reliability becomes more challenging when scoring large volumes of 
student responses in multilingual international assessments. Automated scoring can 
be generalized to multilingual responses with neural machine translation such as 
Google Translation API which supports over 100 languages. Translation of non-Eng-
lish language to English can be helpful to address potential problems associated with 
relatively small datasets of non-English language. Extensive quality control for trans-
lation is needed for quality assurance. Furthermore, automated scoring encourages 
students to review, revise, and improve their responses as this technology enables in-
stant feedback (Wilson, 2017; Wang et al., 2021) while improving writing self-effi-
cacy and performance (Wilson & Roscoe, 2020). This implies that automated scoring 
can be beneficial to writing instruction, beyond supporting or replacing human scor-
ing. 

One potential limitation of this study lies in the class imbalance of the two complex 
CR items (ME72209 and SE62005). They were highly skewed toward incorrect re-
sponses due to their complexity and difficulty. ME72209 became more imbalanced 
after cleaning the data based on the agreement between human and IRT-based scores. 
Although the data imbalance is common in a real-world context, it could lead to mis-
classification due to the bias towards a majority class (Feng et al., 2018; Hassib et al., 
2019; Huang et al., 2018). Future research could tackle the issue of imbalance with 
various methods including data-level and algorithm-level strategies (Santos et al., 
2018). Another limitation is that we did not provide a practical interpretation of stu-
dent responses for which human and IRT-based scores disagreed on. In the next step 
of work, it will be worthwhile to score and examine those mismatched responses with 
a second human rater. Although the current study relied on a single human rater, a 
double human scoring would provide more reliable scores that can be used for training 
and comparisons. 

https://www.zotero.org/google-docs/?SfYsdG
https://www.zotero.org/google-docs/?2xQ9MJ
https://www.zotero.org/google-docs/?h8YM4z
https://www.zotero.org/google-docs/?h8YM4z
https://www.zotero.org/google-docs/?LLWSqL
https://www.zotero.org/google-docs/?LLWSqL
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Moreover, it should be noted that a few items showed slightly increased accuracy in 
the validation set than in the training set. For instance, SE71054 and ME72209 dis-
played higher accuracy in the validation set compared to the training set. This can 
probably be attributed to the spelling correction for which bad words in the validation 
set were replaced with good words from the training set. The spelling correction based 
on the training set may cause the overlap between the training and validation set and 
in turn, lead to slightly inflated performance (Elangovan et al., 2021). Despite the 
unavoidable overlap, the benefit of this unique spelling correction is that bad words 
are more likely to be substituted with context-correct words. For instance, the word 
squirrel in SE71054 had 45 bad word variations in the data (e.g., squal, squalrel, 
squrries). Our spelling correction approach accurately corrected 80% of bad words, 
while the simple edit distance approach and hunspell were limited to 77.8% and 
46.7%. In future research, a close analysis of different spelling correction methods 
would be a fruitful investigation. 

 
Conclusion 

Automated scoring is a feasible and practical alternative to human scoring while re-
ducing many challenges required for training human raters. This study provides em-
pirical evidence for the use of ANN-based automated scoring for short CR items in 
ILSAs. Not only did human and automated scores show very high agreement, but their 
agreement also increased more when ANNs were trained and tested on the data where 
human and IRT-expected scores matched. The next step will be to explore the scala-
bility of this automated scoring to more CR items with varying difficulty and com-
plexity as well as to multilingual student responses.  

 
 
 
 
 
 
 
 
 
 
 
 

https://www.zotero.org/google-docs/?awMpdR
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