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Student Growth Percentiles 
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Abstract 
The wealth of student data collected in education enables machine learning to be a promising 
option to provide further insight into predicting important outcomes in a student’s education as 
machine learning approaches can handle increased data sources and data volume. As a promi-
nent machine learning approach, Gradient Boosted Models (GBMs) have been shown to be a 
potential alternative methodology in place of the commonly used quantile-regression (QR) 
based procedure to estimate student growth percentiles (SGP). This study discusses aspects of 
using GBMs in computing growth percentiles by 1) illustrating the effects of different hyperpa-
rameters on model fit, 2) comparing GBM and QR-based SGP agreement across different sets 
of predictors, 3) using an interpretability method, SHAP (SHapley Additive exPlanations), to 
show the impact of each predictor on the predictions of the GBM model, and 4) analyzing the 
effect of sample size on GBM prediction accuracy. The dataset in this study comes from math 
tests for grades 3 to 8 across 4 years of a state summative assessment 
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Introduction 

In recent years, highly effective big data models have shown impressive results in 
modeling tabular data of many dimensions. One class of these models is called Gra-
dient Boosted Models (GBM). GBMs do not make strong assumptions about distri-
butions, can model multiple predictors, are robust to data irregularities including miss-
ing data, and are computationally very fast.  

The Student Growth Percentiles (SGP) approach is currently one of the most popular 
methods for calculating growth scores in K-12 education (Betebenner, 2008). A stu-
dent’s growth in academic performance is defined as the percentile rank of this student 
in the conditional distribution of all students with the same score on the previous grade 
or administration. SGP have been used for measuring students’ annual growth in many 
states. SGP are commonly computed using a procedure based on quantile regression 
(QR) in an R package: “SGP” (Betebenner, Van Iwaarden, Domingue, & Shang, 2022; 
R Core Team, 2022). This package computes growth percentiles using a computation-
ally demanding procedure. It requires the estimation of 100 B-spline based quantile 
regression lines and a search of the thresholds on each percentile regression line for 
every combination of the previous years’ test scores. Students’ growth percentiles are 
obtained by comparing their current-year scale scores to these thresholds among the 
regression lines. Additionally, SGP estimates may fluctuate as the B-spline function 
changes, such as increasing or decreasing the polynomial degree in the B-spline pa-
rameterization (Castellano K. E., 2011). In the past decade, quite a few studies have 
investigated the accuracy and reliability of SGP calculation (Castellano K. E., 2011; 
Monroe & Cai, 2015). As an analog to the quantile regression approach, an ordinary 
least squares (OLS) regression approach to calculate the growth percentiles, known 
as the percentile rank of residuals (PRRs), was found to perform better than SGP in 
many situations (Castellano K. E., 2011). PRR was found to be more similar to the 
gold standard, the empirical conditional percentile ranks, in multivariate normal dis-
tributed data. PRR was also more computationally efficient than SGP and more robust 
for small and sparse samples. This PRR approach can calculate growth percentiles 
accurately when the assumptions of linear regression models are not violated. 

In educational measurement, even though many problems are still addressed using 
traditional linear regression methods, interest in leveraging newer methods like GBM 
remains high, given that traditional methods may not be able to explain complex in-
teractions and may also not be appropriate when the assumption of linearity between 
the predictors and the outcome is not valid (Sinharay, 2016). The method 
“SGP(gbm)” has been proposed as a GBM based method (Tang & Li, 2019) to com-
pute student growth percentiles. SGP(gbm) has been shown to have good computa-
tional speed, good prediction accuracy, and a built-in potential to add additional co-
variates to the prediction model without requiring assumptions of independence or 
assumptions about distributions. GBMs are well known for their accurate perfor-
mance, but do not have the inherent interpretability that simpler models might have. 
SHAP (SHapley Additive exPlanations) were developed for the purpose of explaining 
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the output of machine learning models such as GBMs (Lundberg & Lee, 2017). Using 
SHAP values, users can better interpret model results from models like GBMs.  

This paper consists of 4 sub-studies. Study 1 provides details about optimizing 
XGBoost, a popular implementation of the GBM approach, for growth percentiles. 
Parameter optimization is a crucial step in deploying GBMs. Study 2 compares 
SGP(gbm) to QR-based SGP or SGP(QR) results, varying aspects such as the number 
of predictors and covariates. QR-based SGP is chosen as the baseline because it is 
usually considered as the rule-of-thumb for SGP calculation in states’ accountability 
systems. Study 3 illustrates how SGP(gbm) results can be interpreted by assigning a 
contribution value to each predictor in the model. This illustration is possible by uti-
lizing the SHAP interpretation package. The ability to interpret complex machine 
learning models can greatly enhance practical use cases based on GBM results. Study 
4 investigates the effect of sample size on SGP(gbm) prediction accuracy, providing 
insight into minimum sample sizes needed to perform SGP computation. Together, 
the 4 studies provide an overview of practical considerations in applying SGP(gbm) 
towards computing growth percentiles, as well as considerations in applying interpre-
tation packages such as SHAP on GBM results.  

 

Methodology 

The XGBoost Model 

In recent years, XGBoost, short for eXtreme Gradient Boosting (Chen & Guestrin, 
2016), has proven to be an increasingly popular method for a variety of predictive 
modeling tasks, especially of tabular data. XGBoost is an open-source implementation 
of GBM, known to be efficient, highly scalable, and easy to implement out-of-the-
box. XGBoost also handles missing data innately by treating missing values as its own 
category for predictors. XGBoost models have been found to produce more accurate 
predictions with less sensitivity to the preprocessing of features compared to general-
ized linear models (Benjamin, et al., 2017). 

XGBoost iteratively builds a collection of simple regression trees; regression trees are 
decision trees that predict continuous outcomes. The term boosting, in machine learn-
ing terms, generally refers to a broad class of models that attempt to create a “strong” 
model from many “weak” models. Weak is a somewhat subjective term, but essen-
tially refers to models that are generally very simple.  
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Figure 1.  

An example of a simple regression tree in the boosted tree model. 

 

Figure 1 shows an example of a weak regression tree. The predictor is students’ 2017-
18 math scale scores (math_18) from a state summative test, and the predicted variable 
is their 2018-19 math scale scores. The depth of this tree is 2. A decision tree starts at 
the top of the tree. As an example, assume there is a math_18 score of 2420. Looking 
at the top of the tree in Figure 1, the value of 2420 is compared to 2471.5. Since 2420 
is less than 2741.5, the “yes” path is followed since that was the condition in the first 
tree node. Then, since 2420 does not meet the next condition in the next node, the 
“no” path is followed. Finally, there are no more conditions. The end of a path is 
known as a “leaf” in tree model terminology. Since a leaf has been reached, this is the 
final model output for this simple tree. The output value is -0.325236797. The 
XGBoost model will combine the output from multiple simple models to reach the 
final output; combining the outputs is as simple as summing up all outputs from the 
full collection of weak or simple models and adding it to the mean value of the pre-
dicted data.  

Weak regression trees are constructed by searching through many potential split val-
ues among all input variables and finding the splits that minimize prediction error. 
After one tree is constructed, the XGBoost algorithm continues to build an additional 
tree. This additional tree is of the same structure as all previous trees, but the latest 
tree is tasked with minimizing the residual errors of all previous regression trees. The 
process of iteratively creating new trees that minimize the residual error of the model 
thus far continues until a stopping criterion is met. XGBoost uses a gradient descent 
algorithm to minimize the loss when adding new models.  
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Computation of SGP(gbm) 

The calculation of SGP(gbm) consists of several steps: 1) Data preparation. XGBoost 
requires numerical values, so non-numerical variables need to be converted to numer-
ical variables. For this study, students are removed from the analysis if they do not 
have complete data in both the predictor and the outcome data. The requirement of 
full data is to maintain comparability when using different sets of predictors as well 
as comparing SGP(gbm) results to QR-based SGP. 2) Hyperparameter tuning. Hy-
perparameters impact the learning process and affect the prediction accuracy of 
XGBoost. Tuning these parameters involves testing model performance using differ-
ent values for each hyperparameter and searching for the best fitting model. Tuning 
involves the use of training and test datasets. The XGBoost package has a default set 
of hyperparameter values that can generally work well on many datasets. 3) Final 
model training and prediction. All students are included in the training of the final 
prediction model. The reason for this choice has two folds. First, the model hyperpa-
rameters have been tuned in step 2 to avoid model overfitting or underfitting. Second, 
each observation should be equally influential in the training process, as the predicted 
score will be calculated for all students. This prediction model will be used to generate 
students’ predicted scores. 

After a prediction model is tuned, growth percentiles can be computed using the met-
ric of Percentile Rank of Residual (PRR, Castellano K. E., 2011). The residual for 
student i will be defined as the model-predicted “expected score” minus the observed 
score: 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑠𝑐𝑜𝑟𝑒𝑖 . (1) 

For student i, 𝑃𝑅𝑅𝑖 is the percentage of residual values smaller than or equal to the 
residual value for student i. If more than one student has the same residual value, 𝑃𝑅𝑅𝑖 
takes the average of their ranks.  

𝑃𝑅𝑅𝑖 =
# 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙≤ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖

𝑁
 × 100. (2) 

𝑃𝑅𝑅𝑖 is regarded as the student growth percentile in the SGP(gbm) methodology. A 
high 𝑃𝑅𝑅𝑖 means that student i score higher than expected given his/her previous ac-
ademic achievements. SGP(gbm) and QR-based SGP are two different approaches to 
estimating the conditional percentiles of students’ current-year scores among students 
with the same prior scores. The empirical conditional percentiles are difficult to cal-
culate because the number of conditional groups can be large, and many groups may 
have sparsity issues. Both SGP(gbm) and QR-based SGP are located towards the non-
parametric end on a parametric continuum. SGP(gbm) generally makes no assump-
tions on the input data, while QR-based SGP utilizes a B-spline parameterization for 
the quantile regression lines. 
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SHAP Values 

The growing availability of big data has led to a rise in the use of complex models. 
Consequently, more attention has been paid to being able to interpret the outputs of 
complex models. In 2017, SHAP (Lundberg & Lee, 2017) was introduced as a unified 
framework for interpreting predictions. One of the SHAP package’s main contribu-
tions is the ability to compute SHAP values for each input feature or predictor of a 
model. SHAP values adhere to the property of “additive feature contribution.” This 
means that the SHAP values of the input features for an individual sample sum up to 
the model’s prediction for that individual sample. Since SHAP values sum up to a 
model’s prediction, SHAP values are on the same scale as the outcome variable, al-
lowing for direct interpretability of a SHAP value. Technically, SHAP algorithms 
compute an approximation of the Shapley value, a well-known and theoretically 
sound concept to interpret black box machine learning models (Wagner, 2022).  

SHAP values are computed using one sample or one individual at a time. For example, 
if there are 20,000 students, then SHAP values will be computed individually for all 
20,000 samples. The SHAP formulation is as follows:  

𝜙𝑖𝑡(𝑓, 𝑥) = ∑
1

𝑀!
[𝑓𝑥(𝑃𝑡

𝑅 ⋃ 𝑡) − 𝑓𝑥(𝑃𝑡
𝑅)]𝑅∈ℛ . (3) 

In Equation 3, 𝜙𝑖𝑡(𝑓, 𝑥) is the SHAP value for student i and feature t, f is the predic-
tion model, x is the input vector for the current prediction, ℛ is the set of all feature 
orderings, 𝑃𝑡

𝑅 is the set of all features that come before feature t in ordering R, and M 
is the number of input features for the model. 𝑓𝑥 is the conditional expectation func-
tion of the model’s output.  Given the prediction model f and input vector x, the 
SHAP value for each feature in a prediction model can be calculated by iteratively 
computing the conditional expectation 𝑓𝑥 for all subsets of features with or without 
the target feature t as shown in Equation 3. The calculation of SHAP values for tree 
models can be simplified by utilizing TreeExplainer (Lundberg, et al., 2020), which 
has the advantage of calculating SHAP values in polynomial time. The SHAP value 
for a boosted tree model is the sum of SHAP values on each tree. For a single tree, the 
algorithm finds all the subsets of features on each node and their corresponding 
weights. 𝜙𝑖(𝑓, 𝑥) is then obtained by keeping track of these subsets and approximately 
calculating 𝑓𝑥 using the weights and predictions for each node. For an intelligible yet 
thorough explanation of how the SHAP algorithm approximates Shapley values for 
tree models, interested readers can refer to Lundberg et al. (2020). 

In the current study, the TreeExplainer method is used to compute SHAP values for 
evaluating the importance of predictors in XGBoost models. For a specific input fea-
ture, the absolute SHAP values computed from all samples are then averaged; this 
“mean absolute SHAP value” is one way to determine the overall contribution of a 
particular input feature across all samples. 
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Data 

This study utilizes test scores from grades 3 through 8 of a state’s summative tests and 
students’ demographics from four consecutive school years, namely, 2015-16, 2016-
17, 2017-18, 2018-19. The subjects include ELA and Mathematics. Missing values 
exist in the data file. For each prediction model, observations with missing values in 
the predicted variable or observations which had missing values in any of the predic-
tors were removed. In this study, data from one cohort is analyzed: students in Grade 
8 in 2018-19. The predicted variable is Grade 8 math scale score in 2018-19, which 
ranges from 2265 to 2802, with an average standard error of 29. In total, 36,591 stu-
dents were included in the analysis.  

 

Study Design 

This section outlines the four studies that are conducted. Study 1 focuses on parameter 
optimization of GBM; Study 2 answers research questions about the comparison be-
tween SGP(gbm) and QR-based SGP; Study 3 illustrates SHAP analysis for interpret-
ing SGP(gbm); Study 4 explores requirements on sample sizes for the method. 

 

Study 1: The Optimization of XGBoost Hyperparameters 

The purpose of Study 1 is to investigate the impact of hyperparameters on model per-
formance. Three influential hyperparameters for XGBoost are learning rate, maxi-
mum depth of trees, and number of trees (Wen, Ye, & Gao, 2020). As such, different 
levels of each hyperparameter are tested on model performance and model fit. 

Learning rate, also known as “shrinkage factor”, controls the weighting of new trees 
added in the model. The value ranges from 0 to 1. Lower learning rate slows the learn-
ing process and requires a greater number of trees. Learning rate is commonly set at 
a number between 0.001 and 0.5. Nine levels are selected for the learning rate: 1, 0.5, 
0.3, 0.2, 0.1, 0.05, 0.01, 0.005, and 0.001. 

The number of trees, also known as the number of estimators or rounds, plays an 
important role in balancing computation efficiency and the complexity of an XGBoost 
model. If the number of trees is too small, the learning process might be terminated 
before an optimized model is built. If the number of trees is too large, not only does 
the model take a long time to train, but the model can also become very complex and 
overfitted. The choice of the number of trees is related to the learning rate. Consider-
ing that some small learning rates are used in this study, a few relatively large numbers 
of trees are selected. Eleven levels are selected for the number of trees: 50, 100, 200, 
300, 400, 500, 1000, 1500, 2000, 3000, and 5000. 
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Maximum depth of trees constrains the depth of each tree in the model. Lower depth 
of trees, leading to simpler trees, is often used to avoid model overfitting. Two levels 
are selected for studying the maximum depth of trees: 2 and 4. 

Optimization of hyperparameter tuning usually starts with splitting the data into a 
training set and test set. The model will be trained on the training data with varying 
sets of hyperparameters. The predictors and predicted variable in this study are se-
lected according to the state’s current SGP model for grade 8 students. The predictors 
are these students’ previous math scale scores in 2015-16, 2016-17 and 2017-18. The 
predicted variable is the Grade 8 cohort’s math scale scores in 2018-19. 

The prediction accuracy of XGBoost models will be evaluated by Root Mean Squared 
Error (RMSE). RMSE is the square root of the average of squared errors between the 
model’s predicted current-year math scale scores and students’ observed scores. 
RMSE is a well-known indicator for prediction errors. Lower RMSE means higher 
prediction accuracy. Model overfitting can be indicated by the difference of RMSE 
on the training data and test data. When the prediction model is more accurate on the 
training data set compared to the test data set, a model overfitting issue is likely to 
exist. In contrast, model underfitting happens when the prediction accuracy is low on 
both training and test data. The best fit model performs well on both training and test 
data. Usually, a cross validation procedure is used to find the best set of hyperparam-
eters for a well-fitted model.   

 

Study 2: SGP(gbm) comparisons with traditional Quantile Regression SGP 

Growth Percentiles calculated by SGP(gbm) are compared with quantile-regression 
based SGP. The hyperparameters for the prediction model of SGP(gbm) are chosen 
by a 5-fold grid-search cross-validation procedure. Based on the findings from study 
1, the levels of the candidate hyperparameters are chosen from narrower ranges: a) 
number of trees: 500, 1000, 1500, and 2000; b) learning rate: 0.001, 0.002, 0.003, 
0.004, 0.005, 0.006, 0.007, 0.008, 0.009, and 0.010; c) maximum depth of trees: 2 and 
4. In the grid-search cross-validation procedure, the full data is randomly partitioned 
into 5 equal sized subsamples, named “folds”. XGBoost is iteratively trained on 4 of 
the subsamples (training data set) and tested on the other subsample (validation or test 
data set). For each combination of hyperparameters, the prediction accuracies of 
XGBoost on the test data sets is averaged across 5 folds. The average prediction error 
is calculated for all sets of the hyperparameters of interest. The set of hyperparameters 
with the lowest prediction error is regarded as the “best” set of hyperparameters. A 
final model is trained on the full data using the “best” hyperparameters.  

The QR-based SGP was calculated by the widely-used SGP package in R (Betebenner 
et al., 2022). The following evaluation criteria are used to compare the two methods:  

1) Pearson’s correlation coefficients 
2) The average of the absolute differences 
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3) The density of absolute differences  
4) The percentage of students who have similar SGP estimates, where similar-

ity is defined to be an absolute difference between 1 to 20 units.  
 

In addition, some other factors are considered in the comparison between SGP(gbm) 
and QR-based SGP: the number of prior years’ scores as predictors and covariates in 
the prediction model of SGP(gbm). For grade 8 students in the current study, three 
prior years’ scores are available for calculating the growth scores, which is also the 
applied rule for SGP calculation as specified in the state’s growth model documenta-
tion. However, the number of prior years’ scores might be varying across years and 
states. For states who have only collected two consecutive years of data, only one 
prior year’s scores can be used as the predictor in growth modeling. Also, the number 
of prior years’ scores increases as students’ test scores are collected from lower grades 
to higher grades. This study also investigates how the difference between SGP(gbm) 
and QR-based SGP changes as different numbers of prior years’ scores are included. 
The impact of including demographic variables in models with one prior year and 
multiple prior years is also illustrated. 

 

Study 3: SHAP analysis for interpreting prediction models 

After an SGP(gbm) model is fit to a particular set of input features and an outcome, 
SHAP values can be used to assign a contribution weight to each input feature, quan-
tifying how important each predictor is to predicting the outcome. In this study, SHAP 
analysis for an SGP(gbm) model are presented and discussed.  

 

Study 4: Investigating impact of sample sizes on the accuracy of  
estimation for the prediction models 
 

Currently, growth scores are often computed for a large population annually. The data 
typically includes all students in a state. There may be times when it could be appro-
priate to compute growth scores for a smaller population, like a district or a group of 
students who need special education (Castellano & Ho, 2013). This experiment inves-
tigates model performance of SGP(gbm) when using smaller data sizes. The data sets 
with various sample sizes are randomly sampled from the state-level data file. The 
sample size (n) levels included are: 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 
3000, 4000, and 5000. A previous study (Castellano K. E., 2011) shows that QR-based 
SGP can provide stable estimates when the sample size reaches 5000. Therefore, 5000 
is chosen as the maximum n count for the small data analysis. The minimum sample 
size of 500 is close to the n count of a grade in a medium-size district or a large school. 
100 replications were conducted for each sample size level. 
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For small data sets, model overfitting and low prediction accuracy are two concerns. 
5-fold grid-search cross validation, like the procedure used in study 2, is carried out 
on the training dataset to tune the prediction models on the small data sets. The levels 
of candidate hyperparameters for small datasets are different from those for large data 
sets, as simpler models may be preferred for smaller datasets. The levels of number 
of trees are: 50, 75, 100, 200, 300, 400, and 500; learning rates: 0.01, 0.02, 0.03, 0.04, 
0.05, 0.06, 0.07, 0.08, 0.09, and 0.10. The maximum depth of trees is fixed at 2. After 
the best set of hyperparameters is chosen, the final model is trained on the full training 
data set. Finally, the average RMSE of predicted scores by GBM on the training and 
test data sets across 100 replications are compared at different sample sizes (n). Study 
4 focuses on the prediction accuracy of GBM, which cannot be compared to quantile 
regression. Therefore, a simple OLS linear regression model is used as a baseline for 
comparison.  

 

Results  

Study 1 Results: Hyperparameter Tuning and Model Comparison 

To show the impact of XGBoost hyperparameters on model fitting, several prediction 
models with varying hyperparameters are built for the grade 8 cohort’s math scale 
scores. After removing students with missing values, 29471 students with complete 
data on 4 years’ math scale scores are included in study 1. The full data was randomly 
split into a training data set (67%) and a test data set (33%). For each trained model, 
RMSE of the predicted scores was computed for both the training and test data set.  

 
Figure 2.   

Training and Test set RMSE differences across learning rates and maximum depth of 
trees. 
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In Figure 2, the difference between RMSE on test data and RMSE on training data is 
shown. A smaller difference means that the model is performing more similarly on 
the seen training data and the unseen test data, which means that the model’s predic-
tive accuracy is generalizing to unseen data well. From the figure, the difference de-
creases as the learning rate decreases from 1 to 0.001, indicating that the GBM model 
is less overfitted with a lower learning rate. When the maximum depth of trees de-
creased from 4 to 2, the difference between the two sets is relatively lower, indicating 
less overfitting. In Figure 2, the number of trees was fixed to 1000. When the number 
of trees is very small, a higher learning rate might lead to model underfitting issues.  

 

 
Figure 3.  

The Influence of the number of trees on RMSE. 

 

Next, the influence of number of trees is visualized in Figure 3. The learning rate is 
fixed to 0.01 and the maximum depth of trees is fixed to 2. Figure 3 shows that RMSE 
on both training and test set mainly decreases as the number of trees increases, alt-
hough RMSE seems to plateau at a certain point. The y-axis is the RMSE of predicted 
scores, while the x-axis is the number of trees in the XGBoost models. When the 
number of trees is only 50, the model is underfitted, with high RMSE values for both 
training and test data.  
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Table 1:   

Examples of Underfitting, Overfitting, and Proper Fit 

Number of 
trees 

Learning 
rate 

RMSE_test RMSE_train RMSE_diff Label 

100 0.01 69.38 70.13 -0.75 Underfitted 

1000 0.30 59.05 41.80 17.25 Overfitted 

1000 0.01 55.20 54.38 0.82 Fit well 

 

Table 1 highlights several conditions where the models are either underfitted, over-
fitted or fit well, as shown in the Label column. The underfitted model has higher 
RMSE on both training and test data. The overfitted model has a much lower RMSE 
on the training data, comparing to the test data. RMSE difference (i.e., the RMSE_diff 
column) shows the difference between RMSE on the test data and training data. The 
overfitted model has a high value of RMSE_diff. After increasing the number of trees 
from 100 to 1000 and decreasing the learning rate from 0.3 to 0.01, the overfitting 
problem is alleviated. Based on these results, hyperparameter tuning is essential to 
ensuring that the XGBoost models fit well to be used to calculate growth scores.  

 

Study 2 Results: Comparisons Between SGP(gbm) and QR-based SGP 

In study 2, SGP(gbm) is compared with QR-based SGP. First, SGP(gbm) is compared 
with the SGP calculation used in the state’s accountability report in 2019. The state’s 
SGP values are calculated by a QR-based procedure implemented in R (Betebenner 
et al., 2022). For grade 8 students, 3 previous years’ math scale scores are included in 
quantile regression to calculate math SGP in this year. SGP(gbm) also includes three 
previous years’ scores as the predictors. The hyperparameters for the XGBoost model 
were selected by a 5-fold cross-validation procedure. The best set of hyperparameters 
was used for model training and prediction of SGP(gbm). Specifically, the number of 
trees was 1000, the maximum depth of trees was 2, and the learning rate was 0.01. 
Furthermore, percentiles can take values between 0 and 100, but QR-based SGP val-
ues are integers between 1 and 99. The value of 0 was converted to 1, while 100 was 
converted to 99. To compare with the QR-based SGP, SGP(gbm) is also rounded as 
an integer and converted to values between 1 and 99.  

Results show that the correlation coefficient between SGP(gbm) and QR-based SGP 
was very high (0.99-1.00, see Table 3). The following two figures are presented to 
illustrate the distribution of the absolute difference between individual SGP(gbm) and 
traditional SGP. 
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Figure 4.  

Density of the absolute difference between SGP(gbm) and QR-based SGP. 

 

 
Figure 5.  

Plot of percentages of the absolute difference (Abs_Diff) between SGP(gbm) and QR-
based SGP. 
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As shown in Figure 4, the 95th percentile of the distribution is 6. This means that 95 
% of students received very similar growth scores comparing SGP(gbm) and QR-
based SGP, with a difference of 6 or less. Results in Figure 5 show the percentages of 
students at varying levels of absolute difference between QR-based SGP and 
SGP(gbm). According to existing studies (Lockwood & Castellano, 2017), the stand-
ard errors for individual SGPs by the traditional quantile regression method could be 
as large as 20, largely due to the measurement errors of scale scores. The marginal 
standard error of measurement for grade 8 math scores in the current test is 29. There-
fore, SGP estimates by different methods are regarded as similar when the absolute 
difference is within the range between 0 and 20. The percentage of students with the 
absolute difference of each value in this range are shown in the bar plot. The highest 
percentage (28.81 %) belong to students with an absolute difference of 1, and the 
second highest percentage is attributed to those with an absolute difference of 2, 21.67 
%. Meanwhile, 18.48 % students received the same SGP estimates by the two meth-
ods. The average absolute difference of SGP estimates for all students is very low: 
2.11.  

 

Numbers of Previous Years’ Predictors 

The estimates of growth percentiles by SGP(gbm) and QR-based SGP are compared 
across prediction models using different numbers of previous years’ predictors. For 
students in lower grades or students who only take the test in two consecutive years, 
the number of predictors is limited. For grade 8 students in 2019, most of them have 
three previous years’ scores: grade 5 in school year 2015-16, grade 6 in school year 
2016-17, and grade 7 in school year 2017-18. The students’ SGP could be estimated 
by 1-prior, 2-prior, or 3-prior years’ scale scores. In this study, the influence of the 
number of predictors on SGP(gbm) estimates is investigated. 1-prior means that only 
the math scale score from the 2017-18 school year is used as the predictor. 2-prior 
means that the predictors included are the math scale scores from the 2016-17 and 
2017-18 school years. 3-prior includes math scale scores from 2015-16, 2016-17, and 
2017-18.  

 

Table 2:  

Compare SGP Estimates of 1-Prior, 2-Prior and 3-Prior Models for Each Method 

  Correlation coefficient Average absolute difference 

SGP(QR) 
3-prior vs 2-prior 1.00 1.55 
2-prior vs 1-prior 0.96 5.70 
3-prior vs 1-prior 0.96 5.98 

SGP(gbm) 
3-prior vs 2-prior 1.00 1.71 
2-prior vs 1-prior 0.96 5.73 
3-prior vs 1-prior 0.96 6.04 

 



Calculating Growth Percentiles using Gradient Boosted Models  459 

Table 2 shows the correlation coefficients between SGP estimates with different num-
ber of predictors by SGP(gbm) and quantile-regression based SGP separately. In gen-
eral, for both approaches, the estimates of student growth percentile are very similar 
when the number of priors decreases from 3 to 2. However, the change of SGP esti-
mates is much more evident when the number of priors decreases from 2 to 1. This 
could indicate that SGP estimates are not linearly influenced by the number of years 
of scores included in the predictors. Increasing the number of prior years’ scores in 
the prediction model causes less impact on SGP when the number of prior years is 
higher. 

 

Table 3: 

Compare SGP Estimates from SGP(gbm) and SGP(QR) with Different Predictors 

 
 

Correlation coefficient Average absolute difference 

SGP(gbm) 
vs 

SGP(QR) 

1_prior 1.00 1.95 

2_prior 0.99 1.98 

3_prior 0.99 2.11 

 

The Pearson’s correlation coefficients between the SGP estimates from SGP(gbm) 
and QR-based SGP were slightly smaller when the number of priors change from 1 to 
3, while the average absolute difference increased. This means that the SGP estimates 
from SGP(gbm) and QR-based SGP are less similar when more previous years’ scale 
scores are included in the prediction model. A possible reason is that more predictors 
increase model complexity, allowing for more opportunity for divergence. This find-
ing is consistent with a previous study (Castellano K. E., 2011), where the author 
examined the effect of the number of previous years’ scale scores included in different 
SGP estimation approaches on the recovery of the estimated growth percentile metrics 
of a benchmark. It was demonstrated that when there was only one prior year, the 
differences between the estimated growth percentiles and their benchmark were 
smaller. 

 

Other Covariates 

In SGP(gbm), the prediction model is flexible, as the models can take additional co-
variates, such as students’ scale scores in other subjects and their demographics as 
inputs. It is advised that careful consideration should always be given to the variables 
included in a model, even when it is computationally easy and convenient to include 
whatever is available. This study further investigated the inclusion of the demographic 
variables: students’ gender, Free Reduced Lunch (FRL), English Language Learner 
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(ELL), Individual Education Plan (IEP) and ethnicity are added as extra predictors in 
addition to English language arts/literacy (ELA) and math scale scores from the three 
prior years. Student’s gender was re-coded into a binary variable, 1 for female and 0 
for male. FRL, ELL, and IEP were binary variables, indicated by 0 and 1 showing the 
‘No’ vs. ‘Yes’ statuses. Ethnicity was a categorical variable and re-coded into 6 binary 
variables: American Indian, Asian, Black, Hispanic, Pacific Islander, and White with 
1 for ‘Yes’ in a specific ethnicity group and 0 for ‘No’ in other ethnicity groups.   

In order to investigate the influence of covariates on SGP(gbm), students’ de-
mographics and ELA scale scores from previous years were added as additional pre-
dictors to the prediction models for calculating SGP(gbm) in Math. The number of 
prior years was also manipulated across the tested models. Three of the model hy-
perparameters (learning rate, number of trees, maximum depth of trees) were tuned 
by cross validation for each prediction model. The SGP estimates by SGP(gbm) are 
compared to QR-based SGP with the same number of priors. QR-based SGP calcula-
tion doesn’t take ELA scale scores or the demographics into consideration. 
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Table 4:  

SGP(gbm) Models for Math with and without Additional Covariates 
   Relation to SGP(QR) without Covariates 

Number 
of Prior 
Years 

Predictors  RMSE Correlation  

Coefficient 

Average Absolute 

Difference 

Models With Math Scale Scores 

1-prior math_18 56.64 1.00 1.97 

1-prior 
math_18,  
Demographics 

55.60 0.98 4.74 

2-prior 
math_17, 
math_18 

54.51 0.99 1.99 

2-prior 
math_17, 
math_18,  
Demographics 

53.71 0.98 4.43 

3-prior 
math_16, 
math_17, 
math_18 

54.37 0.99 2.11 

3-prior 

math_16, 
math_17, 
math_18,  
Demographics 

53.53 0.98 4.47 

Models With Math and ELA Scale Scores 

1-prior 
math_18, 
ELA_18 54.64 0.96 6.30 

1-prior 
math_18, 
ELA_18,  
Demographics 54.11 0.95 6.90 

2-prior 
math_17, 
math_18, 
ELA_17, ELA_18 53.15 0.97 5.51 

2-prior 

math_17, 
math_18, 
ELA_17, ELA_18, 
Demographics 52.72 0.96 6.10 

3-prior 

math_16, 
math_17, 
math_18, 
ELA_16, ELA_17, 
ELA_18 52.98 0.97 5.53 

3-prior 

math_16, 
math_17, 
math_18, 
ELA_16, ELA_17, 
ELA_18,  
Demographics 52.48 0.96 6.13 
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Table 4 presents the RMSE of the predicted scores, the correlation coefficients, and 
average absolute difference between SGP(gbm) and QR-based SGP. After adding the 
covariates, RMSE of the predicted scores is slightly lower, indicating higher predic-
tion accuracy of the prediction models. For example, the RMSE decreased from 56.64 
to 55.60 for the model with 1-prior years’ math scale scores (math_18) as the predic-
tor. The model with all the covariates in the predictors has the lowest RMSE of 52.48. 
This means that, comparing to the model with no additional covariates, the prediction 
accuracy of the model with covariates is slightly higher, while the difference between 
SGP(gbm) and QR-based SGP also increased. Moreover, adding ELA scale scores in 
the prediction model seems to be more influential to SGP(gbm) than adding the de-
mographics. The importance of the predictors is further investigated in study 3, where 
SHAP is applied to measure the contribution of the predictors in the prediction model. 

 

Computation Efficiency of SGP(gbm) Comparing to the QR-based SGP 

The estimation of SGP by the QR-based procedure can be time consuming, as it in-
volves the creation of numerous regression lines that relate prior with current students’ 
scale scores. Specifically, the SGP is commonly known as an integer, ranging from 1 
to 99. That means 99 quantile regression lines are estimated for the 1st to 99th condi-
tional percentiles of the current-year test scores. In addition, B-spline parameteriza-
tion instead of a linear model is used to fit the regression lines, meaning that more 
parameters need to be estimated. An individual’s SGP is obtained by comparing 
his/her current score to the curvilinear quantile regression lines. In this study, QR-
based SGP was simultaneously estimated for all subjects and grades in a state sum-
mative test using the R package. Each grade/subject has about 30,000 students in the 
data set. It took about 15 minutes for the “SGP” package in R to estimate all students’ 
SGP after the data and meta data were prepared in the right format. The computation 
time is expected to be higher for a larger state. 

In contrast, SGP(gbm) requires the training of one XGBoost model, which is often 
fast. The total training time might be influenced by XGBoost hyperparameters. How-
ever, even if the number of trees is set to 1000, the model could be trained within 10 
seconds for the state data for about 30,000 students. Therefore, SGP(gbm) is a prefer-
able choice when growth scores need to be calculated on-the-fly. If a XGBoost model 
is built for calculating SGP(gbm) for a new data set, some extra time is needed for 
hyperparameter tuning. Usually, only some of the hyperparameters need to be ad-
justed to obtain a well fitted model. A grid search for hyperparameter tuning should 
be carried out when XGBoost is fit to a new data set. After the best set of parameters 
are found, it is not necessary to repeat hyperparameter tuning for that dataset.   

In this study, the computation time of SGP(gbm) is about 1-2 seconds for one subject 
at one grade, including the computation of model evaluation statistics and growth per-
centiles. The calculation of SGP(gbm) with hyperparameter tuning could take a few 
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minutes to several hours for the full data, depending on the granularity of the hyperpa-
rameter grid search space. 

 

Study 3 Results: The Feature Importance of Predictors in GBM 

Study 3 generates and compares the feature importance values of predictors for the 
prediction models used in SGP(gbm). Figure 6 shows the feature importance of each 
predictor in a prediction model with all 3 prior years’ scale scores and students’ de-
mographics as the predictors. Feature importance is the mean absolute SHAP value 
computed from each individual student’s data. Math scale score in school year 2017-
18 is the most important predictor in predicting math scale score in school year 2018-
19. The second most important predictor is math scale score in school year 2016-17. 
Meanwhile, students’ demographic variables play a less important role in the predic-
tion model compared to the other predictors. Among all the demographic variables, 
gender has the highest feature importance value.  

 

 
Figure 6.  

Feature importance (mean absolute SHAP value) of predictors in the full prediction 
model. 
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Table 5:  

The Change of Feature Importance Values Across Models with Decreasing Number of 
Predictors 

Predictors 

Model 

1st  2nd  3rd  4th  5th  6th  

math_18 55.75 56.07 56.15 56.78 59.12 82.26 

math_17 21.98 22.11 22.40 22.82 26.09  

math_16 6.98 6.96 7.19 6.25   

Gender 6.80 6.70 6.83    

FRL 1.53 1.33     

ELL 0.99 0.97     

IEP 0.28 0.02     

Asian 1.44      

Black 0.59      

White 0.52      

Hispanic 0.34      

American Indian 0.20      

Pacific Islander 0.02      

Total  97.42 94.16 92.57 85.85 85.21 82.26 

 

Table 5 shows the feature importance in the 6 models with a decreasing number of 
input features. The 1st model contains all 13 predictors that were available in this 
study’s dataset. The predictors are shown in descending order of feature importance 
values, except that the ethnicity features are grouped together even if “Asian”, 
“Black”, “White” and “Hispanic” are more important than “IEP”. The results of this 
table show how the contribution scores of the assigned SHAP values might shift when 
adding or removing predictors from the model. Each model after the 1st model has 
several of the predictors removed. The last row of the table, the “Total” value of SHAP 
values, decreases as predictors are removed. This indicates that the model loses some 
predictive accuracy as predictors are removed.  

After removing the ethnicity features from the 1st model, the 2nd model contains 7 
features, among which math scale scores in school year 2017-18 is still the most im-
portant predictor, with a feature importance value of 56.07, while the order of feature 
importance of other predictors remains consistent from model 1 to model 2. The 3rd, 
4th, and 5th models continue to contain fewer features by removing the least important 
features of the preceding model. The trend in which feature importance changes by 
variable addition or removal can be observed in the table.  

The last row in Table 5 shows that the sum of SHAP values of all predictors is de-
creasing from the 1st model to the 6th model, as the prediction models are slightly less 
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accurate when the number of predictors is smaller. However, in model 6, where there 
is only one predictor, the feature importance value of 2017-18 math scale scores in-
creased to 82.26 compared to a value of 59.12 from model 5. This indicates that, as 
expected, 2017-2018 math scale score is correlated with the other predictors used in 
the previous models, such as 2016-2017 math scale scores used as a second feature in 
model 5. When multiple correlated input features are used in a prediction model, 
SHAP values will be relatively lower than if those correlated input features were in a 
prediction model without the other correlated input features.  

 

Study 4: Investigating impact of sample size on the accuracy of 
estimation for prediction models 
 
This study shows how well an XGBoost model can perform on small data sets. 1-prior 
and 3-prior year covariate prediction models are evaluated. The prediction accuracy 
of the trained model on the training and test data set is calculated. The average RMSE 
across 100 replications of a XGBoost model is compared to that of a linear regression. 

 

Table 6:  

The Best Hyperparameters and Prediction Accuracy for Small Data Sets (1-Prior) 

 Best Hyperpa-
rameter Set 

Prediction Accuracy 

Sample 
Size 

Learn-
ing 

Rate 

Number 
of Trees 

RMSE_test 
SGP(gbm) 

RMSE_diff 
SGP(gbm) 

RMSE_test 
(Linear) 

RMSE_diff 
(Linear) 

500 0.09 75 57.99 5.99 58.56 0.14 

600 0.09 75 57.53 4.98 58.29 -0.15 

700 0.09 75 57.50 4.58 58.23 -0.19 

800 0.09 75 57.80 4.75 58.85 0.64 

900 0.09 75 57.76 4.33 59.03 0.73 

1000 0.07 100 57.21 3.48 58.34 -0.13 

1500 0.09 75 57.10 2.57 58.49 -0.03 

2000 0.05 150 57.03 2.08 58.66 0.10 

2500 0.05 150 57.41 2.32 58.99 0.51 

3000 0.05 150 56.94 1.55 58.67 0.10 

4000 0.05 150 57.12 1.56 58.91 0.42 

5000 0.05 150 56.82 0.97 58.60 -0.04 

Note: The explored levels of number of trees include 50, 75, 100, 200, 300, 400, and 500; 
learning rates include 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.10. The 
maximum depth of trees is fixed at 2. 
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Table 6 depicts results of using sample sizes ranging from 500 to 5000. Looking at 
the Best Hyperparameter Set column, these results represent the best performing hy-
perparameter set for each sample size across 100 replications of a grid search using 
the specific sample size.  In the Prediction Accuracy columns of the table, four differ-
ent RMSE results are presented. RMSE_test for both the XGBoost model and the OLS 
linear regression model are presented. RMSE difference (RMSE_diff) is also pre-
sented, which is the difference between the test set and training set RMSE. Low 
RMSE_test is better, as the model is more accurate. Additionally, RMSE difference 
that is closer to 0 is better, since the prediction model can generalize well from seen 
training data to unseen test data. In the table, RMSE_diff for the GBM model de-
creases as sample size increases. RMSE_diff of the linear model appears stable across 
sample sizes, seemingly unrelated to sample size. The prediction accuracy of GBM is 
always higher than that of the linear models for 1-prior models, indicated by lower 
RMSE values (range from 56.82 to 57.99) on the test data sets. RMSE_diff is 5.99 
when the 1-prior prediction model is optimized for sample size of 500 and decreases 
to 0.97 when the sample size is 5000. This means that the XGBoost model is more 
likely to be overfitted when the sample size is smaller. RMSE_diff in all the tested 
conditions is relatively small, considering the scale of the predicted variable. Com-
pared to a linear model, the prediction accuracy of GBM is mostly higher, in spite of 
the challenge of model overfitting. 

 

Table 7: 

The Best Hyperparameters and Prediction Accuracy for Small Data Sets (3-Prior) 

 Best Hyperparam-
eter Set 

Prediction accuracy 

Sample 
Size 

Learn-
ing 

Rate 

Number 
of Trees 

RMSE_test 
SGP(gbm) 

RMSE_diff 
SGP(gbm) 

RMSE_test 
(Linear) 

RMSE_diff 
(Linear) 

500 0.09 75 56.41 8.85 56.19 0.47 

600 0.09 75 
55.90 7.49 55.99 0.21 

700 0.09 75 55.87 6.80 55.89 0.14 

800 0.09 75 56.17 6.86 56.33 0.71 

900 0.07 100 55.94 6.04 56.49 0.80 

1000 0.09 75 55.48 5.11 55.78 -0.10 

1500 0.07 100 55.28 3.85 55.94 -0.01 

2000 0.05 150 55.15 3.12 56.09 0.13 

2500 0.05 150 
55.47 3.10 56.37 0.48 

3000 0.05 150 
55.01 2.27 56.06 0.06 

4000 0.05 150 
55.21 2.18 56.31 0.39 

5000 0.05 150 54.92 1.51 56.06 -0.03 
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Note: The explored levels of number of trees include 50, 75, 100, 200, 300, 400, and 500; 
learning rates include 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.10. The 
maximum depth of trees is fixed at 2. 
 

Table 7 displays similar patterns as observed in Table 6, with the inclusion of 3-prior 
years’ covariates. Comparing RMSE_test between the two tables, both the GBM and 
the Linear Regression models have lower RMSE values with the 3-prior model, indi-
cating that prediction accuracy improves when including more priors. The prediction 
accuracy on the test sets of GBM is slightly lower than the linear model when n = 500 
for the 3-prior prediction models. The RMSE_test of GBM is 56.41, which is slightly 
higher than that of a linear model: 56.19. However, as the sample size gets larger, the 
prediction accuracy of GBM improves, while the prediction accuracy of the linear 
regression model appears to remain relatively stable without clear improvement. 
RMSE_test for the GBM model becomes more accurate than the linear model after 
the sample size reaches 600. Similar to the trend observed from 1-prior models, the 
trend in the results from the 3-prior models is that RMSE_diff decreases as the sample 
size increases. Having a larger sample size improves both RMSE_test and 
RMSE_diff.    

 

Discussion  

This paper showed, through empirical data analyses, the procedure of training the pro-
posed SGP(gbm) model on datasets of varying predictors and of varying sample sizes, 
and comparing the results to traditional growth percentile approaches. SHAP values, 
as delivered by the TreeExplainer package, were shown to increase model interpreta-
bility of GBM by assigning a “feature importance” score to each predictor.  

In study 1, hyperparameter tuning was shown to be essential in obtaining a stable 
SGP(gbm) calculation. Specifically, the number of trees, learning rates, and the max-
imum depth of trees play a key role in avoiding model overfitting or underfitting. For 
example, when the number of trees is increased to 1000 and learning rate is decreased 
to 0.01, the procedure fits well on both the training and test data in one of tested con-
ditions. Study 2 results showed that students' growth scores are highly consistent be-
tween SGP(gbm) and QR-based SGP for some of the tested conditions. The difference 
between SGP(gbm) and QR-based SGP was influenced by adding more covariate var-
iables. Adding students' scale scores in other subjects and students’ demographic var-
iables in the prediction model improved the model’s prediction accuracy but de-
creased the similarity between SGP(gbm) and QR-based SGP. Results from study 3 
demonstrated that feature importance values provide useful information when inter-
preting XGBoost models. These feature importance values are consistent across mod-
els and shown to be significantly influenced by the predictors' collinearity as well. In 
summary, study 1 to 3 introduce how the GBM approach can provide an alternative 
to the QR-based approach for estimating student growth percentiles.  
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The fourth study focused on the sample size requirements for SGP(gbm). Although it 
is understood that machine learning models prefer a large data size, this study demon-
strated to what extent XGBoost models can be overfit for small-size data sets. As 
sample sizes increase, the XGBoost model becomes both more accurate and less over-
fit. Compared with QR-based SGP, SGP(gbm) has the advantage of providing direct 
evidence on prediction accuracy and model fit evaluation. The results of this study 
indicate that it is important that stakeholders decide whether to use GBM or a simpler 
model for small datasets, taking into consideration the assumptions of each model 
type and model fitting issues.  

Regression trees are interpretable, simple, and can easily find nonlinear relationships. 
In the past, it may have been computationally and algorithmically difficult to find the 
right ways to construct the best ensemble of trees. However, recent algorithmic and 
computational improvements have enabled regression trees to be far more practical to 
implement, effectively minimizing prediction error while maintaining reasonable 
model complexity and being very fast to train through programming optimizations. 
This study showed that SGP(gbm) can generate consistent SGP values with a well-
trained prediction model which makes no assumptions on the data. The method of 
SHAP TreeExplainer can generate easy-to-understand feature importance values for 
the prediction model. In practice, SGP(gbm) could provide efficient and accurate es-
timates of SGP for state- and district- level tests. When more covariates are added into 
the model, the estimated expected scores become more accurate, which is currently 
unavailable in the QR-based SGP approach.    

The current study is limited in several respects, however. First, only one set of testing 
data was used for evaluating the performance of SGP(gbm). The format and charac-
teristics of this data might not represent other data sets. Future studies could test this 
method in other large-scale assessment data. Second, quantile-regression based SGP 
was treated as somewhat a gold standard in the current study. However, this traditional 
approach is not without its own limitations. It might also be worth conducting simu-
lation studies where the true growth percentiles are known in order to evaluate the 
accuracy of SGP(gbm). More importantly, the accuracy of SGP(gbm) on small data 
sets could be further evaluated using a dataset where the “true” SGP is known. In the 
current empirical analyses, the true SGP is unknowable. Further work could involve 
a simulation study with the true SGP known. 
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