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ing Item Compromise and Preknowledge in 
Computerized Adaptive Testing 
 
Yiqin Pan1, Sandip Sinharay 2 Oren Livne2 & James A. Wollack3 

Abstract 
Item compromise and preknowledge have become common concerns in educational testing. We 
propose a machine learning approach to simultaneously detect compromised items and exami-
nees with item preknowledge in computerized adaptive testing. The suggested approach pro-
vides a confidence score that represents the confidence that the detection result truly corre-
sponds to item preknowledge and draws on ideas in ensemble learning, conducting multiple 
detections independently on subsets of the data and then combining the results. Each detection 
first classifies a set of responses as aberrant using a self-training algorithm and support vector 
machine, and identifies suspicious examinees and items based on the classification result. The 
confidence score is adapted, using the autoencoder algorithm, from the confidence score that 
Pan and Wollack (2022) suggested for non-adaptive tests. Simulation studies demonstrate that 
the proposed approach performs well in item preknowledge detection and the confidence score 
can provide helpful information for practitioners. 
Keywords: test security, item preknowledge, machine learning, computerized adaptive testing, 
support vector machine, autoencoder 
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Item preknowledge refers to the phenomenon in which several examinees have access 
to several live/operational items prior to taking a test (Foster, 2013). The examinees 
who may have benefited from item preknowledge are referred to as examinees with 
preknowledge (EWP) and the leaked items are referred to as compromised items (CI). 
Preknowledge tends to provide unfair advantage to EWP and hence threatens the fair-
ness and validity of scores. To protect test integrity, several methods have been de-
veloped to detect item preknowledge (e.g., Cizek & Wollack, 2017). A common de-
tection strategy used in previous methods is to flag the examinees or items that mani-
fest an aberrant pattern in responses or response times. For instance, an examinee may 
be flagged if he/she has a score vector that is unlikely under a hypothesized item re-
sponse theory model (e.g., Belov & Armstrong, 2011;  Drasgow, Levine, & Williams, 
1985; McLeod, Lewis, & Thissen, 2003; Sinharay, 2017), and an item may be flagged 
if an unexpectedly high percentage of responses to the item are correct (e.g., Choe, 
Zhang & Chang, 2018; Liu, Han & Li, 2019; Zhang, 2014; Zhang & Li, 2016).  Most 
of these methods are primarily theory-driven; that is, they are based on various sets of 
assumptions about how the data should behave under item preknowledge. Although 
useful in certain contexts, such models often inadequately represent the complexities 
of realistic testing situations and display poor fit to empirical data. For instance, sev-
eral approaches (e.g., Wang, Xu, Shang, & Kuncel, 2018) use a hierarchical model 
(van der Linden, 2007) to modeling item responses and response times and flag ex-
aminees/items with aberrant patterns, but the hierarchical model has been found to not 
fit real data adequately (e.g., Domingue, Kanopka, Stenhaug, Soland, Kuhfeld, Wise, 
& Piech, 2021; Sinharay & van Rijn, 2020).  

Machine learning (ML) algorithms learn from data to make predictions or decisions 
about unknown events without explicit instructions (Alpaydin, 2004). These methods 
can be generally categorized as either supervised learning methods or unsupervised 
learning methods (Alpaydin, 2004). In supervised learning, the algorithm learns a 
mapping function from input variables (e.g., examinees’ response vectors) to output 
variables (e.g., aberrant response, normal response) given a labeled set of input-output 
pairs—this step is often referred to as the “training” of the algorithm and the labeled 
data4 used in training is referred to as training data.  After the training, the algorithm 
is used to predict an output (e.g., aberrant or normal) for a new set of unlabeled data 
(Kotsiantis, Zaharakis & Pintelas, 2007).  

Unsupervised machine learning evaluates the similarity between and among different 
variables for purposes of finding special or interesting patterns, including latent 
groups or clusters, embedded in the data (e.g., Figueiredo & Jain, 2002). In unsuper-
vised learning algorithms in the context of detection of test fraud, only input variables 
(e.g., item responses, response times, other process data, etc.) are evaluated for pur-
poses of uncovering underlying patterns among the data (Längkvist, Karlsson & 
Loutfi, 2014).  

 
4 Labeled data are a group of samples that have tags, such as responses with an ‘aberrant’ tag. Likewise, 

unlabeled data are data without tags. 
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ML algorithms are not reliant on specific theories. Unlike statistical procedures (like 
regression methods) that intend to make theory-based inferences from samples, ma-
chine learning algorithms specialize in recognizing generalizable and predictive pat-
terns. In other words, statistical methods concentrate on explicitly verifying assump-
tions about the problem and refining the specified models, or providing quantitative 
statements about the confidence for the models; machine learning methods focus on 
forecasting unseen outcomes, while making minimum assumptions about the data-
generating process. Thus, statistical models are chosen based on our domain 
knowledge in statistics while machine learning models are chosen because of their 
empirical capabilities. Several researchers have successfully applied ML techniques 
to detect item preknowledge. Thomas (2016) used the support vector machine (SVM) 
model to detect CI on a certification exam for which approximately 60% of the items 
were suspected of being compromised, which resulted in 75% detection accuracy. 
Man, Harring, and Sinharay (2019) applied a series of ML methods to detect EWP in 
two data sets from licensure examinations. Zopluoglu (2019) used examinees flagged 
for preknowledge to train an extreme gradient boosting algorithm to detect EWP in 
large-scale testing. Zhou and Jiao (2022) investigated the application of the stacking 
ensemble machine learning method to detect cheating behaviors, using the item re-
sponse and response time of examinees. Pan and Wollack (2021) proposed an unsu-
pervised approach based on deep clustering to detect CI in non-adaptive/linear testing, 
which was able to classify well provided the amount of preknowledge is not over-
whelming and aberrance effect is at least moderate. Although past studies provide 
strong evidence of the promise of ML methods in preknowledge detection, existing 
approaches are only designed for linear tests, and have not yet been extended to com-
puterized adaptive tests (CATs) that are typically more susceptible to item pre-
knowledge (e.g., McLeod, Lewis, & Thissen, 2003). In an attempt to fill this void, we 
develop a ML approach to simultaneously detect EWP and CI for CATs in this paper.  

The ML approach flags suspicious examinees and items in two steps. In Step 1, a set 
of responses is classified as aberrant. A desired classification procedure involves first 
training a classifier using labeled data, and then applying the trained classifier to label 
the unlabeled data points. However, this paper considers cases where there are no 
labeled data for classifier training. Therefore, we draw on the ideas underlying the 
self-training algorithm (Zhu & Goldberg, 2009) to conduct the classification proce-
dure. The self-training algorithm is a procedure that can label a large amount of unla-
beled data with a small amount of training data and reduces the dependence on prior 
information about the compromise status. In implementing the classification proce-
dure, we bring in domain knowledge to identify a small set of responses as aber-
rant/normal training data, and use SVM, a robust classification model (Suykens & 
Vandewalle, 1999), as the classifier. Generally, both SVMs and neural networks out-
perform other classification models when dealing with multi-dimensions and contin-
uous features (Kotsiantis et al., 2007; Suykens & Vandewalle, 1999). Neural networks 
require a large amount of observed data in training, but the amount of our training 
data is small. Therefore, we use SVM as a classifier. In Step 2, the ML approach flags 
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as suspicious the examinees and items appearing in the aberrant response set with a 
strong preknowledge signal.  

However, if we detect preknowledge by repeating these two steps only once, the de-
tection performance on different datasets may vary widely. Also, the extent of errors 
in the detection procedure may be reduced by repeating these two steps on different 
subsets of the dataset. Thus, we employ ensemble learning on top of this process (Sagi 
& Rokach, 2018), sampling multiple subsets of the data with replacement to flag the 
suspicious items and examinees separately and then combining the results to a final 
detection result. 

After finishing the detection procedure, to assist practitioners in deciding whether to 
use the detection result, the ML approach also provides a confidence score adapted 
from Pan and Wollack (2022; PW22) to provide a measure of confidence that the 
detection result reflects actual item preknowledge. The rest of this paper includes de-
scriptions of (a) the proposed detection algorithm; (b) the confidence score for CATs; 
(c) results from a simulation study to examine the performance of the ML approach; 
and (d) the implications and limitations of this study, and directions for future explo-
ration. 
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Figure 1  
Flowchart of the ML Algorithm 

 
Note. The steps within the yellow frame constitute what we refer to as one repetition. The 
steps within the grey frame constitute what we refer to as one iteration. 
 

Description of the Proposed Algorithm 

The fundamental assumption underlying our methodology is that item preknowledge 
will manifest as EWP, producing responses to CI more quickly and more accurately 
than expected. Based on this assumption, the ML algorithm flags suspicious exami-
nees and items in two steps  1) classification of a set of responses as aberrant; 2) 
identification of suspicious examinees and items using the classification result from 
Step 1. Steps 1-2 constitute a single repetition. Repetitions are performed until the 
number of repetitions reach a set value. To provide a convincing and reliable result, 
we incorporate ensemble learning into the ML approach. Figure 1 shows the workflow 
of our algorithm hierarchically. The left panel is the general flowchart of the ML ap-
proach. The middle panel provide a detailed flowchart for a single repetition, which 
is to flag suspicious examinee and item. The right panel includes the flowchart for 
step 1 in a single repletion, which classifies a set of responses as aberrant.  
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Overview of Step 1: Aberrant Response Classification 

The first step of each repetition identifies aberrant responses, which are later used to 
flag suspicious examinees and items. According to our assumption that EWP’s re-
sponses on CI are expected to have high accuracies, we argue that the aberrant re-
sponses, which can help to flag suspicious examinees and items, are likely to be cor-
rect. Thus, only correct responses are considered in the identification of aberrant re-
sponses. 

To reduce the need for prior information about the compromise status of items and 
examinees, the classification procedure is developed within a self-training algorithm 
framework. The self-training algorithm is an iterative process, where, in each itera-
tion, (1A) a classifier is trained based on the labeled data; (1B) the classifier is used 
to classify the unlabeled data; and (1C) the unlabeled points with the most confident 
classification result, which is a subset of unlabeled data, are added to the labeled data 
set. Iterations are performed until all data points are labeled. We will also introduce 
several modifications to the self-training algorithm so that it can be applied to the task 
of response classification.  

In step 1A, since we do not assume any prior information about compromise status, 
there is no labeled data. Therefore, we modify the way to prepare training data. In the 
first iteration, because we assume that EWP are expected to produce responses to CI 
faster than expected, we define the initial training labels on the basis of Centered log 
Response Time (𝐶𝑇), we label the extremely fast responses as aberrant, and label the 
extremely slow responses as normal (the criterion for extreme speed is considered as 
a design factor in the experiment). In each subsequence iteration, although the aber-
rant responses identified in the finished iterations can be used to train the current clas-
sifier, these responses may not still adequately represent the remaining unlabeled data. 
To circumvent this problem, we still use the unlabeled responses that are extremely 
fast or slow as training data as more iterations are performed.  

This training data preparation raises a concern. That is, although the responses con-
taining preknowledge are supposed to have shorter response times than normal re-
sponses, the difference might be not significant in the later iterations of the classifica-
tion procedure. To address this concern, we propose to use an index called pre-
knowledge propensity, calculated from the aberrant responses identified so far, to de-
scribe the extent to which we believe a particular examinee/item has preknowledge. 
Before each iteration, this procedure updates the 𝐶𝑇 of each unlabeled response using 
the preknowledge propensities of the corresponding item and examinee to increase 
contrast. 

Once the SVM classifier is trained, the self-training algorithm makes predictions for 
all unlabeled data in Step 1B. The SVM is a robust classification model, which at-
tempts to place a classification boundary between the classes but as far as possible 
from the samples. However, due to the limited training data, the classifier may not be 
able to accurately label all the unlabeled responses, particularly in the early period of 
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the classification procedure. To avoid labeling normal responses as aberrant, we use 
the responses with a high probability of being aberrant only as testing samples. 

In step 1C, the self-training algorithm adds the unlabeled points with the most confi-
dence to the labeled response set. Because we intend to recognize aberrant responses, 
we add only the responses classified as aberrant to the labeled response set, which is 
also the detected aberrant response set. After the classification procedure is com-
pleted, we output and use all intermediate aberrant response sets from all iterations 
for flagging suspicious examinees and items. 

The stopping criterion in a typical self-training algorithm is that all the data points are 
labelled. In our classification procedure, we aim to set a stopping criterion that mini-
mizes the number of responses under preknowledge in the unlabeled data. If unlabeled 
data responses are still present under preknowledge, as response times for EWP to CI 
are usually spuriously small, the observed variance would be larger than expected. 
Thus, we stop the classification process when the variance of response times among 
the remaining unlabeled responses is smaller than the expected variance of responses 
without preknowledge.  

As for the features used in aberrant response classification, our choice is motivated by 
the belief that the response time reduction caused by preknowledge might be observed 
at examinee and item levels. For an examinee with preknowledge (a compromised 
item), their answers to CI (from EWP) are likely faster than they are for secure items 
(regular examinees). Thus, we use two features in the classification procedure: the 
examinee-level centered log response times (𝐸𝐶𝑇) and the item-level centered log re-
sponse times (𝑇𝐶𝑇), which reflect the response speed after controlling for the exami-
nee speed and time requirement for the item and examinee, respectively. As with the 
use of 𝐶𝑇 to select training samples, the caveat of using 𝐸𝐶𝑇 and 𝑇𝐶𝑇 to classify 
responses is that the difference between the two response classes might be not signif-
icant in later iterations of the classification procedure. Thus, before each iteration, we 
also update the 𝐸𝐶𝑇 and 𝑇𝐶𝑇 of each unlabeled response using the preknowledge 
propensities of the corresponding item and examinee to increase contrast.  

 

Mathematical Details of the ML Algorithm 

Pre-processing Response Time Data 

The input data set consists of binary scores and log response times. Let 𝑥𝑖𝑗  denote the 
score of examinee 𝑖 (𝑖 = 1,2, … , 𝐼) on item 𝑗 (𝑗 = 1,2, … , 𝐽); 𝑥𝑖𝑗 = 1 indicates a cor-
rect response and 𝑥𝑖𝑗 = 0 an incorrect one; 𝑡𝑖𝑗 is the log response time of examinee 𝑖 
to item 𝑗. 
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The 𝐶𝑇 and classification features: 𝐸𝐶𝑇 and 𝑇𝐶𝑇 are computed by centering log re-
sponse times. Let 𝑡𝑖. be the average log response time of examinee 𝑖 over all adminis-
tered items, and 𝑡.𝑗 is the average log response time to item 𝑗 over all examinees. Then 
the 𝐶𝑇, 𝐸𝐶𝑇, and 𝑇𝐶𝑇 for examinee 𝑖 and item 𝑗 are respectively computed as 
𝐶𝑇𝑖𝑗 ≔ 𝑡𝑖𝑗 − 𝑡𝑖. − 𝑡.𝑗, 𝐸𝐶𝑇𝑖𝑗 ≔ 𝑡𝑖𝑗 − 𝑡𝑖., and 𝑇𝐶𝑇𝑖𝑗 ≔ 𝑡𝑖𝑗 − 𝑡.𝑗. 

 

Updating Centered Response Times for Classification 

In the beginning of each iteration of Step 1, the 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇 are updated based 
on the 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇 of the previous iteration, respectively. The goal of the update 
is to decrease the 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇 of the aberrant responses to smaller values com-
pared to the previous iteration, and thus to increase the contrast between the classes. 
However, the true classifications of responses are unknown. Thus, we calculate a pre-
knowledge propensity for each examinee/item to quantify the extent to which we be-
lieve the examinee/item has preknowledge. Because the examinee/item having more 
aberrant responses implies a higher propensity of item preknowledge, the pre-
knowledge propensity of examinee 𝑖 (𝑝𝑖

𝐸 ) and of item 𝑗 (𝑝𝑗
𝑇) are calculated by the 

percentage of aberrant responses among all responses of examinee 𝑖 and item 𝑗, re-
spectively. Suppose 𝑅𝐴 is the current set of detected aberrant responses, 𝐿 is the test 
length, and 𝐴𝑑𝑗 is the number of administered times for item 𝑗. Then  

𝑝𝑖
𝐸 : =

|{𝑗|(𝑖, 𝑗) ∈  𝑅𝐴}|

𝐿
        𝑎𝑛𝑑      𝑝𝑗

𝑇: =
|{𝑖|(𝑖, 𝑗) ∈  𝑅𝐴}|

𝐴𝑑𝑗

. (1) 

A response with a higher preknowledge propensity at examinee or item level has a 
greater reduction in 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇.  

Because the amount of reduction should also consider the scale of 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇, 
the standard deviation of 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇 are also used in the update. Suppose 
𝑆𝐷𝑖.

𝐶𝑇 , 𝑆𝐷𝑖.
𝐸𝐶𝑇  and 𝑆𝐷𝑖.

𝑇𝐶𝑇  are the standard deviation of 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇, respectively, 
among the unlabeled responses of examinee 𝑖 in the previous iteration, and those for 
item 𝑗 are 𝑆𝐷.𝑗

𝐶𝑇 , 𝑆𝐷.𝑗
𝐸𝐶𝑇  and 𝑆𝐷.𝑗

𝑇𝐶𝑇 , respectively. Consequently, 𝐶𝑇𝑖𝑗 , 𝐸𝐶𝑇𝑖𝑗 , and 
𝑇𝐶𝑇𝑖𝑗  are updated as  

𝐶𝑇𝑖𝑗 ← 𝐶𝑇𝑖𝑗 − 𝑝𝑖
𝐸 × 𝑆𝐷𝑖.

𝐶𝑇 − 𝑝𝑗
𝑇 × 𝑆𝐷.𝑗

𝐶𝑇 , 

𝐸𝐶𝑇𝑖𝑗 ← 𝐸𝐶𝑇𝑖𝑗 − 𝑝𝑖
𝐸 × 𝑆𝐷𝑖.

𝐸𝐶𝑇 − 𝑝𝑗
𝑇 × 𝑆𝐷.𝑗

𝐸𝐶𝑇 , 

𝑇𝐶𝑇𝑖𝑗 ← 𝑇𝐶𝑇𝑖𝑗 − 𝑝𝑖
𝐸 × 𝑆𝐷𝑖.

𝑇𝐶𝑇 − 𝑝𝑗
𝑇 × 𝑆𝐷.𝑗

𝑇𝐶𝑇 . 

Note that in the first iteration, since the current set of detected aberrant responses is 
empty, the update leads to no changes in 𝐶𝑇, 𝐸𝐶𝑇 and 𝑇𝐶𝑇. 



AN APPROACH FOR DETECTING PREKNOWLEDGE IN CAT  393 

Selecting Training Samples and Training a Classification Model 

In this step, which is shown in the right panel of Figure 1, we first select several of 
the fastest responses as aberrant training samples (𝑅𝑇𝑅(𝐴)), and several of the slowest 
responses as normal training samples (𝑅𝑇𝑅(𝑁)) from the unlabeled response set 
(𝑅𝑈), then train a SVM model that classifies responses as either normal or aberrant.  

The number of selected fastest responses, as well as the number of selected slowest 
responses, is denoted as 𝑧. This training-sample selection criterion 𝑧 is expected to be 
a small value, and will be considered as a design factor to explore its impact on detec-
tion. In the first self-training iteration, the set of unlabeled responses 𝑅𝑈 is 60 % 
of the correct responses; otherwise, the 𝑅𝑈 is the response set including all the sam-
pled responses except the ones that have been identified as aberrant. 

There are two types of SVM including hard-margin SVM, which requires all data 
points be classified correctly, and soft-margin SVM, which allows misclassification 
of outliers (Abu-Mostafa et al., 2012). Two examples are presented in Figure 2. As 
the boundary between normal and aberrant samples becomes more blurred in the later 
iterations, we employ soft-margin SVM. For soft-margin SVM, an error penalty pa-
rameter 𝐶 has to be specified to describe the weight of the penalty term for misclassi-
fication. A large value of 𝐶 makes soft-margin SVM similar to hard-margin SVM, 
while a small 𝐶 might result in overfitting (Abu-Mostafa et al., 2012). We use a com-
monly used intermediate value, 𝐶 = 1.  
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Figure 2 
Example of classification using Hard-Margin SVM vs. Soft-Margin SVM. 

 
 

In addition, SVM can perform a non-linear classification efficiently using kernel func-
tions, such as polynomial kernel and radial basis function kernel (Abu-Mostafa et al., 
2012). Three examples are presented in Figure 3. Since the reductions of response 
times in compromised responses are expected to be reflected at both the examinee and 
item level, the aberrant responses might be distributed in the bottom left corner of the 
feature space, forming an approximately fan-shaped area. An example is presented in 
Figure 4. Therefore, we use kernel SVM with a 3rd-degree polynomial kernel function. 

 
Figure 3 
Examples of SVM with Different Kernels. 

 

 
Figure 4  
A Possible Distribution of Responses in the Feature Space. 

 Examinee-Level Centered log Response Time

Item-Level Centered log Response Time

Normal Responses

Aberrant Responses
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Selecting Testing Samples and Conducting Classification 

In this step, we first select testing samples (𝑅𝑇𝑆) from the unlabeled response set 𝑅𝑈 
used in the previous step. The responses whose corresponding items and examinees 
both appear in the aberrant training data are used as 𝑅𝑇𝑆. Then we predict the classes 
of the 𝑅𝑇𝑆 using the SVM classifier trained in the previous step.  

 Suppose the examinees and items associated with the aberrant training responses are 
respectively denoted as 𝐸TR(𝐴): = {𝑖|∃𝑗 (𝑖, 𝑗) ∈ 𝑅𝑇𝑅(𝐴)} and 𝑇TR(𝐴): = {𝑗|∃ 𝑖  (𝑖, 𝑗) ∈

𝑅𝑇𝑅(𝐴)}. Then the testing response set is 

𝑅𝑇𝑆: = {(𝑖, 𝑗) |  𝑗 ∈ TTR(𝐴)   and   𝑖 ∈ 𝐸TR(𝐴)   and   (𝑖, 𝑗) ∈ 𝑅𝑈}. 

Note that with this selection strategy, all the aberrant training samples are also used 
as testing samples, and their labels are set according to the classification result. This 
means their labels could switch from aberrant to normal or vice-versa. 

 

Updating the Aberrant Response Set 

After classification, the testing responses are predicted as either normal or aberrant. 
The responses predicted as aberrant are added to the aberrant response set 𝑅𝐴 and are 
removed from the unlabeled data set 𝑅𝑈, namely, 

𝑅𝐴 ← 𝑅𝐴 ∪ 𝑅𝑇𝑆(𝐴) 

𝑅𝑈 ← 𝑅𝑈\𝑅𝑇𝑆(𝐴). 

 

Classification Iteration Stopping Criterion 

The algorithm stops when the variance of response time among the remaining unla-
beled responses is smaller than the expected variance of responses without pre-
knowledge (𝑣𝑎𝑟𝑒𝑥𝑝). We estimate 𝑣𝑎𝑟𝑒𝑥𝑝 by the variance of response times among all 
the correct responses that are slower than the mode. The log response times of a data 
set that presents no preknowledge usually follow a normal distribution (e.g., van der 
Linden & Sotaridona, 2006); hence its variance can be estimated using only the slower 
half of the response times (e.g., the average Euclidean distance between the data points 
greater than the mean and the mean is the same as the variance of data), which are 
unlikely to be compromised. As the mode of the response time is less sensitive to 
deviations due to preknowledge than the mean and median, the slower half of the 
response times are defined as being slower than the response time mode. 

Supposing that the mode of the response time among all the correct responses is 𝑡𝑚𝑜, 
𝑣𝑎𝑟𝑒𝑥𝑝 is calculated as:  
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𝑣𝑎𝑟𝑒𝑥𝑝 =
Σ(𝑖,𝑗)∈𝑅𝑆𝐶(𝑡𝑖𝑗 − 𝑡𝑚𝑜)

2

|𝑅𝑆𝐶|
, (2)  

where 𝑅𝑆𝐶 = {(𝑖, 𝑗)|𝑡𝑖𝑗 > 𝑡𝑚𝑜, 𝑥𝑖𝑗 = 1}. Because the number of modes (each with fre-
quency of 1) would be large if too many decimal places are kept, to find a representa-
tive value, we round 𝑡𝑖𝑗 to two decimal places for each response time when calculating 
𝑡𝑚𝑜. 

In addition, to ensure that the algorithm works appropriately, the classification proce-
dure stops when no response is predicted as aberrant, or the number of unlabeled re-
sponses is smaller than the training-sample selection criterion 𝑧. 

 

Identifying Suspicious Examinees and Items 

After the classification procedure is stopped, we use all the interim and final aberrant 
response sets, {𝑅1

𝐴, 𝑅2
𝐴, …, 𝑅𝐾

𝐴}, where 𝐾 is the number of iterations, to identify the 
suspicious examinees and items via an iterative process. For a particular 𝑅𝑘

𝐴, we con-
sider the examinees/items appearing in the set 𝑅𝑘

𝐴 as the candidates of suspicious ex-
aminees/items, and flag as suspicious candidates with a strong preknowledge signal. 
The suspicious candidates flagged in the last iteration are outputted as the result of the 
current repetition. 

The process evaluates the preknowledge signal of each candidate in the set of the 
suspicious examinees by a proposed index 𝛽𝐸 and the signal of each candidate in the 
set of the suspicious items by 𝛽𝑇, where 𝛽𝐸 is a measure of the extent to which the 
examinee’s responses match the pattern of being significantly faster on CI than for 
uncompromised items and 𝛽𝑇 is a measure of the item’s matching of the pattern of 
being significantly faster on EWP than for other examinees. The index 𝛽𝐸 compares 
the average correct response time (𝐴𝑇) for a specific examinee on CI and the 𝐴𝑇 for 
the same examinee on all remaining items. As the CI are unknown, we use the suspi-
cious items flagged in the previous iteration as an estimation of the CI. Suppose 𝑇𝑘−1

𝑆  
is the set of suspicious items identified for the 𝑘 − 1𝑡ℎ iteration, ∁𝑇𝑘−1

𝑆  is the comple-
ment of 𝑇𝑘−1

𝑆 , 𝐸𝑘
𝐶𝑆 and 𝑇𝑘

𝐶𝑆 are the sets of candidates of suspicious examinees and 
suspicious items in the 𝑘𝑡ℎ iteration, 

𝐸𝑘
𝐶𝑆 = {𝑖|∃𝑗, (𝑖, 𝑗) ∈ 𝑅𝑘

𝐴}    and   𝑇𝑘
𝐶𝑆 = {𝑗|∃𝑖, (𝑖, 𝑗) ∈ 𝑅𝑘

𝐴}, 

and 𝐴𝑇𝑀,𝑁 is the 𝐴𝑇 for an examinee set 𝑀 and an item set 𝑁,  

𝐴𝑇𝑀,𝑁 = 𝐶𝑇̅̅̅̅
{(𝑖,𝑗)|𝑖∈𝑀,𝑗 ∈𝑁, 𝑥𝑖𝑗=1 } =

Σ{(𝑖,𝑗)|𝑖∈𝑀,𝑗 ∈𝑁,𝑥𝑖𝑗=1 } 𝐶𝑇𝑖𝑗

|{(𝑖, 𝑗)|𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑥𝑖𝑗 = 1 }|
, (3) 

then 𝛽𝑖
𝐸 for examinee 𝑖 in 𝑘𝑡ℎ iteration is calculated as:   
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𝛽𝑖(𝑘)
𝐸 = {

𝐴𝑇𝑖,∁𝑇𝑘−1
𝑆  − 𝐴𝑇𝑖,𝑇𝑘−1

𝑆 ,      𝑘 > 1

𝐴𝑇
𝑖,∁𝑇𝑘

𝐶𝑆  − 𝐴𝑇
𝑖,𝑇𝑘

𝐶𝑆 ,      𝑘 = 1
. (4) 

The index 𝛽𝑇 is computed in a similar way, comparing the 𝐴𝑇 on a specific item for 
EWP and the 𝐴𝑇 on the same item for all remaining examinees. Since the EWP are 
unknown, 𝐸𝑘

𝑆, the set of suspicious examinees flagged in this iteration, are used as an 
estimate of EWP. Suppose ∁𝐸𝑘

𝑆 is the complement of 𝐸𝑘
𝑆, then 𝛽𝑗

𝑇 for item 𝑗 in 𝑘𝑡ℎ 
iteration is calculated as:   

𝛽𝑗(𝑘)
𝑇 = 𝐴𝑇

∁𝐸𝑘
𝑆,𝑗

− 𝐴𝑇
𝐸𝑘

𝑆,𝑗
. (5) 

After 𝛽𝐸 (𝛽𝑇) is calculated for each candidate of the suspicious examinees (items), 
this approach flags the candidates having 𝛽𝐸 or 𝛽𝑇 greater than 0 as the suspicious. 
Thus, in the 𝑘𝑡ℎ iteration, the set of suspicious examinees is 𝐸𝑘

𝑆 =

{𝑖|𝛽𝑖(𝑘)
𝐸 > 0  𝑎𝑛𝑑 𝑖 ∈ 𝐸𝑘

𝐶𝑆}, and the set of suspicious items is 𝑇𝑘
𝑆 =

{𝑗|𝛽𝑗(𝑘)
𝑇 > 0  and 𝑗 ∈ 𝑇𝑘

𝐶𝑆}.The final values, 𝐸𝐾
𝑆 and 𝑇𝐾

𝑆, are outputted as the result for 
the current repetition. 

 

Repetition Stopping Criterion  

Following the ensemble learning algorithm, we conduct repetitions continuously until 
the number of repetitions reach a set value. Because there is no golden rule for the 
number of repetitions, we consider this value as a design factor in the experiment to 
assess the approach's sensitivity to this value. 

 

Combining Results of Repetitions 

After all the repetitions are stopped, we combine the results from all repetitions to a 
final detection result following the strategy proposed in PW22.  We first count the 
times of each examinee/item being flagged as suspicious, and then output the exami-
nees/ items whose flagged times are no less than a criterion as the final detected ex-
aminees/items. 

As with PW22, the examinee-criterion and item-criterion are determined empirically. 
Suppose we have set 𝑃 possible examinee-criteria and 𝑄 possible item-criteria, firstly, 
each examinee-/item-criterion is used to generate an examinee/item set that includes 
all the examinees/items whose flagged times are no less than the criterion. Next, for 
each pair of generated examinee set and generated item set, we calculate a pre-
knowledge signal index 𝛽 that is a sum of 𝛽𝐸 and 𝛽𝑇. Let the generated examinee sets 
be 𝐸1

𝐺 , 𝐸2
𝐺 , … , 𝐸𝑃

𝐺 , and the generated item sets be 𝑇1
𝐺 , 𝑇2

𝐺 , … , 𝑇𝑄
𝐺 , then for the combina-

tion of a generated examinee set 𝐸𝑝
𝐺 (𝑝 = 1,2 …,) and a generated item set 𝑇𝑞

𝐺 (𝑞 =

1,2, … , 𝑄), the preknowledge signal 𝛽𝑝𝑞 is calculated as 
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𝛽𝑝𝑞 = 𝛽𝑝
𝐸 + 𝛽𝑞

𝑇 = (𝐴𝑇𝐸𝑝
𝐺,∁𝑇𝑞

𝐺 − 𝐴𝑇𝐸𝑝
𝐺,𝑇𝑞

𝐺) + (𝐴𝑇∁𝐸𝑝
𝐺,𝑇𝑞

𝐺 − 𝐴𝑇𝐸𝑝
𝐺 ,𝑇𝑞

𝐺) . (6) 

The criteria generating the combination with the greatest 𝛽 are used as the examinee- 
and item- criteria, and the corresponding 𝐸𝐺 and 𝑇𝐺 are output as the final set of 
detected examinees and items. 

We experiment with examinee-criteria threshold values of 80 %, 82 %, 84 %, 86 %, 
88 %, 90 %, 92 %, 94 %, 96 %, 98 %, and 100 % of the maximum flagged times 
across all examinees, and similarly, with item-criteria threshold values of 80 %, 82 %, 
84 %, 86 %, 88 %, 90 %, 92 %, 94 %, 96 %, 98 %, and 100 % of the maximum flagged 
times across all items.  

 

Confidence Score Corresponding to the Detection Results in CAT 

As mentioned above, we assume that item preknowledge will manifest as EWP, pro-
ducing responses to CI more accurate than expected on average. Based on this as-
sumption, we adapt the confidence score proposed in PW22 to provide a measure of 
confidence that the detection result corresponds actual item preknowledge. The con-
fidence score evaluates the extent to whichthe scores of detected examinees/items are 
unexpectedly high, and was calculated in two steps: (1) the expected scores were pre-
dicted by an autoencoder; (2) the degrees of un-expectancy at the examinee and item 
level were calculated by the expected scores; the confidence score was computed as 
the average of these two un-expectancy degrees.  

Our confidence score differs from the confidence score in PW22 in two ways. First, 
PW22 directly uses the score data as the training/testing data in the first step. How-
ever, the autoencoder cannot be trained by or applied to sparse matrices as are typical 
with CAT response data. Thus, we proposed a strategy to estimate missing values and 
use the data after imputation as the training/testing data. Second, the confidence score 
in PW22 considers the un-expectancy degree at both examinee and item levels, while 
our proposed confidence score is calculated by the un-expectancy degree at the exam-
inee level only. PW22 shows that the un-expectancy degree at the item level makes 
the confidence score ineffective (e.g., the detections with low error rates have low 
confidence scores) when there are multiple groups of EWP having access to multiple 
sets of CI and these sets are only partially overlapped. As the examinees will likely be 
assigned to different items in CAT, the EWP might be exposed to different CI, and 
thus the confidence score in PW22 might be ineffective for detection results in CAT. 
To overcome this problem, because the ML approach detects EWP and CI simultane-
ously and better performance in the detection of EWP usually implies better perfor-
mance in the detection of CI, we use the un-expectancy degree at the examinee level 
only as the confidence score. 
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Predicting Expected Responses by Autoencoder 

 
       5   
An Example of the Autoencoder. 

 
 

In this step, following the PW22 method, we first train an autoencoder and then use 
the trained model to predict expected scores.  The autoencoder is used because it per-
forms well in data denoising (Vincent, Larochelle, Bengio, & Manzagol, 2008). This 
model is a fully connected neural network, which first compresses the input into a 
reduced representation, and then generates an output from the reduced that is as close 
to the original input as possible (an example is presented in Figure 5). Since the goal 
is to reconstruct the input, the removed information should be the noise in the input, 
and the reduced representation as well as the reconstructed output should keep the 
essential information in the input. Because the predicted expected scores are expected 
to reflect the examinee’s true ability and ignore the noise in the input scores, we use 
the autoencoder to predict expected scores.  

The architecture of our autoencoder is the same as the one in the PW22 method. The 
input is an examinee’s response score vector to all the items in the item pool. To 
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compress the input by 50%, the sizes of the hidden layers are 100%, 90%, 80%, 70%, 
60%, 50%, 60%, 70%, 80%, 90%, and 100% of the test length. The output is the 
reconstructed score vector.  For a detailed description of the autoencoder, refer to 
PW22.  

We prepare the training/testing data for the autoencoder in a way different from 
PW22. The training data is prepared based on the observed binary scores. Firstly, we 
impute the scores of missing responses with estimated binary scores. Secondly, to 
make sure the training data reflect the uncompromised response patterns as much as 
possible, we replace the observed scores with estimated binary scores for the re-
sponses of the detected examinees to the detected items. To estimate the binary score 
for a particular response, we use a Bernoulli trial with a probability, which is com-
puted using the average scores of the examinee and of the item. When calculating the 
average scores, to reduce the impact of item preknowledge, we use only those re-
sponses believed to be uncompromised (i.e., excluding responses from detected ex-
aminees to detected items). Suppose 𝑋′ is the binary score matrix that does not contain 
the detected examinees’ scores on the detected items, then the estimated binary score 
for the response from examinee 𝑖 to item 𝑗 is a draw from a Bernoulli trial with 

 𝑝 =
𝑥′̅̅ ̅

𝑖.+𝑥′̅̅ ̅
.𝑗

2
, where 𝑥 ′̅

𝑖. and 𝑥 ′̅
.𝑗 are the average scores respectively of examinee 𝑖 and 

item 𝑗, both calculated using 𝑋′.  

The testing data are also prepared based on the observed binary scores. However, only 
the missing scores are replaced with estimated binary scores. After the resulting ma-
trix is input to the model, the reconstructed scores are treated as the expected scores. 

 

Calculating Confidence Scores 

We use the degree of un-expectancy at the examinee level only to calculate the confi-
dence score. In each detection, the suspicious examinees and items are flagged based 
on the same aberrant response set. If the aberrant response set corresponds to item 
preknowledge, both the flagged examinees and items are likely associated with true 
EWP and CI. Thus, to some extent, better performance in detecting EWP implies bet-
ter performance in detecting CI, and the un-expectancy degree at the examinee level 
can be used as the confidence score. 

We calculate the degree of un-expectancy at the examinee level in the same way as 
PW22. A response is treated as unexpectedly correct if it has an expected score lower 
than 0.5 but is observed to be correct. Although the proportion of unexpectedly correct 
responses among all the responses from the detected examinees could be used to eval-
uate the degree of un-expectancy, this proportion might be an over- or under-evalua-
tion when the prediction of expected scores is not accurate. Because such over-/under- 
evaluation also happens among the responses of the remaining examinees, the exam-
inee-level un-expectancy degree is designed to be a ratio. This ratio compares the 
proportion of unexpectedly correct responses among all the responses from the 
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detected examinees to the one among the remaining responses. A confidence score 
close to 1 or smaller than 1 indicates that the detection result does not reflect actual 
item preknowledge. We set the criterion for identifying low confidence score at 1.15. 

 

Simulation Study 

To evaluate the performance of the new item-preknowledge detection approach and 
the confidence score, we performed a simulation study in which we (a) simulated re-
sponse data that includes item preknowledge and rapid guessing; (b) applied the ML 
algorithm and confidence score to detect EWP and CI; and (c) analyzed the perfor-
mance of the ML algorithm and the confidence score under various conditions.  

We simulated responses in a CAT framework, while applying different models to 
generate responses contaminated by item preknowledge. A common criticism of data-
driven detection methods is that they may be sensitive to other forms of aberrance. 
For item preknowledge, rapid guessing may have the greatest negative impact on de-
tection performance, since it also leads to fast responses. Thus, to demonstrate 
whether the ML approach can effectively distinguish item preknowledge from other 
anomalous behaviors in detecting preknowledge, we also simulated rapid guessing. In 
doing so, we manipulated four design factors: the proportion of CI (.1, .2, .4), the 
proportion of EWP (.1, .2, .4), the training-sample selection criterion (250, 500) and 
the number of repetitions (30, 60). The test length, the item pool size and the number 
of examinees were fixed at 50, 500 and 1000. Crossing all factors resulted in 36 
(3 × 3 × 2 × 2) study conditions. In addition, a baseline condition that involved no 
preknowledge was also considered, adding 4 (1 × 1 × 2 × 2) more study conditions. 
For each combination of the proportions of CI and EWP, 30 replications were simu-
lated; CI/EWP were randomly sampled from all items/examinees without replacement 
for each replication separately. Thus, a total of 300 (3 × 3 × 30 + 1 × 1 × 30) da-
tasets were simulated. For each dataset, we conducted detection twice, setting the 
training-sample selection criterion to 250 and 500, respectively. For each detection, 
the detected examinees and items were outputted when the number of repetitions 
reaches 30 and 60 for the purpose of performance evaluation.  

The simulation was implemented in Python 3.7. The source code is included with this 
paper as supplemental material. 
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Data Simulation Models 

Generating Uncompromised Responses 

We generated uncompromised responses and response times using the joint model for 
item scores and response times within the hierarchical framework of van der Linden 
(2007).  

Level 1 models. In the first level, the three-parameter logistic (3PL) model was used 
to generate item responses as follows:  

 𝑃(𝑥𝑖𝑗 = 1|𝜃𝑖 , 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) = 𝑐𝑗 +
1 − 𝑐𝑗

1 + 𝑒−𝑎𝑗(𝜃𝑖−𝑏𝑗)
  

where 𝜃𝑖 is the ability of examinee 𝑖, 𝑎𝑗, 𝑏𝑗 and 𝑐𝑗 are the discrimination parameter, 
difficulty parameter and guessing parameter of item 𝑗, respectively, and 𝑃(𝑥𝑖𝑗 = 1) is 
the probability of examinee 𝑖 giving a correct response to item 𝑗.  

The response times were generated from the log-normal response time model (van der 
Linden & Sotaridona, 2006), as follows:  

 𝑡𝑖𝑗  ~𝑁(𝜙𝑗 − 𝜁𝑖 , 1/𝜆𝑗
2),  

where 𝜁𝑖  denotes the speed parameter of examinee 𝑖, 𝜆𝑗 and 𝜙𝑗 are the discrimination 
parameter and time-intensity parameter of item 𝑗, respectively, and 𝑡𝑖𝑗 is the log re-
sponse time of examinee 𝑖 on item 𝑗.  

Level 2 model. In the second level, the person parameters were generated from a 
bivariate normal distribution as:  

 (𝜃𝑖 , 𝜁𝑖) ∼ 𝑁2(𝜇𝑃, Σ𝑃),  

with  

 𝜇𝑃 = (𝜇𝜃 , 𝜇𝜁),  

 Σ𝑃 = (
𝜎𝜃

2 𝜎𝜃,𝜁

𝜎𝜁,𝜃 𝜎𝜁
2 ).  

Following Choe et al. (2018), we used the following values of 𝜇𝑃 and Σ𝑃: 

𝜇𝑃 = (0.5, 0), 

Σ𝑃 = (
1 0.12

0.12 0.02
). 

For purposes of this simulation, all model parameters and hyperparameters were the 
same as were used by Choe et al. (2018) in their simulation, and were based on the 
application of the two-level hierarchical framework to real data from a high- stakes, 
large-scale standardized CAT. This real data consists of raw responses and response 
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times from approximately 2000 examinees with an item pool of 540 items. Here, the 
size of the item pool was fixed to be 500; accordingly, in each replication, 500 items 
were randomly selected from the 540 used in Choe et al. The descriptive statistics of 
the item parameters are presented in Table 1. 

 

Table 1  
Descriptive Statistics for Parameters of 540 Items 

 𝑎 𝑏 𝑐 𝜆 𝜙 

Mean 0.836 0.319 0.161 1.757 0.366 

SD 0.276 1.112 0.057 0.522 0.500 

Max 1.840 3.011 0.500 3.186 1.802 

Min 0.247 -4.067 0.000 0.716 -0.890 

 

Generating Responses Containing Item Preknowledge  

The EWP and CI were determined by the particular simulation condition. For the re-
sponses of EWP to CI, the item scores were generated randomly from a Bernoulli 
distribution with 𝑝 = .9, irrespective of the item’s difficulty or the examinee’s 𝜃 (Eck-
erly, 2017; Sinharay, 2017). With this probability, the item responses corresponding 
to item preknowledge had an expected accuracy of 90 %. As in Choe et al. (2018), the 
log response times were obtained by drawing values randomly from a normal distri-
bution, 𝑁(−2, 1/3.52). Using this distribution, we simulated a response time that is 
objectively fast, irrespective of the examinee’s 𝜁.  

 

Generating Responses Containing Rapid Guessing  

A common pattern of rapid guessing is that the examinee produces a sequence of rapid 
guesses to multiple items towards the end of the test as time expires in the hope of 
getting some correct by lucky guessing (Wise, 2017). Rapid guessing was also simu-
lated, manifesting as several examinees giving rapid guesses to the last several items 
on the test. The examinees with rapid guessing were assigned by randomly sampling 
10 % of the normal examinees without replacement. For each such examinee, we used 
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the Gamma (10, .5) distribution to determine the number of guessed answers, pro-
ducing an average of 5 rapidly guessed answers (out of 50).  

For the selected rapid-guessing responses, the item scores were generated by drawing 
values randomly from a Bernoulli trial with 𝑝 = .25, because four is the most common 
number of answer options for multiple-choice items. Paralleling what was done for 
responses contaminated with preknowledge, the log response times for these re-
sponses were simulated randomly from the normal distribution 𝑁(−2, 1/3.52). 

 

CAT Simulation Algorithm 

The CAT algorithm used in this paper employed the a-stratification with b-blocking 
item selection approach (Chang, Qian, & Ying, 2001). Before using the CAT algo-
rithm to simulate responses, we (1) prepared item and examinee parameters according 
to the methods mentioned above, (2) stratified items by 𝑏-parameter values, and then 
grouped them by 𝑎-parameter values from each 𝑏-parameter stratum to construct sev-
eral item strata; the number of item strata was fixed to be 5 and the item pool size was 
fixed to be 500; the item pool was divided into 5 strata of 100 items each; (3) specified 
EWP and CI by random selection with the number of such examinees/items deter-
mined by the particular simulation condition. Then we iterated the following three 
steps for each examinee to generate responses. 

1. Ability Estimation. The updated ability, 𝜃̂, was estimated in this step. At the be-
ginning of the test, as there was no response data for ability estimation, we set the 
updated ability equal to drawing a random value from normal distribution 𝑁(0,1). 
After response data was collected from one or more items, 𝜃̂ was updated by the ex-
pected a posteriori (EAP) estimate of ability. 

2. Item Selection. Suppose the number of administered items was 𝑛adm and the num-
ber of items that would be administered among each stratum was 𝑛s (as the test length 
and the number of item strata were fixed at 50 and 5, 𝑛𝑠 was 10). Then this item 
selection approach selected as the next item the one with 𝑏-parameter closest to 𝜃̂ in 
the (⌊𝑛adm/𝑛s⌋ + 1)𝑡ℎ item stratum. 

3. Generation of Item Responses. When the current examinee was an examinee with 
preknowledge and the selected item was a compromised item, we generated the re-
sponse using the method for simulating compromised responses. If the current re-
sponse was selected to have rapid guessing, it was generated using the corresponding 
method. Otherwise, the response was considered a typical/non-aberrant response and 
was simulated using the joint model of van der Linden (2007). As a result of this 
strategy, the simulated contamination affected both the estimation of 𝜃 and the item 
selection (e.g., simulating a compromised response for an examinee with pre-
knowledge likely increased the interim 𝜃 of this examinee, which likely resulted in 
the administration of an item that was different from what this examinee would have 
seen without preknowledge).   
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Results 

We first evaluated the performance of the ML approach, and then assessed the effec-
tiveness of the confidence score. 

 

Performance of the ML Approach 

The performance of the ML approach was measured using three metrics: the false-
negative rate (FNR), false-positive rate (FPR), and precision. False negatives refer to 
the situation in which an examinee/item is associated with EWP/CI, but is not detected 
by the ML approach. Thus, the FNR is calculated as the ratio of the number of true 
EWP/CI that are not detected to the total number of true EWP/CI. False positives, on 
the other hand, occur when an examinee/item is not associated with EWP/CI but is 
detected as such. Hence, the FPR is computed as the ratio of the number of exami-
nees/items that are incorrectly identified as EWP/CI to the total number of flagged 
examinees/items. The precision is the proportion of correctly identified exami-
nees/items to the number of detected examinees/items.  

In addition, to understand how sensitive the ML approach is to the specific levels of 
various design factors, we conducted an analysis of variance (ANOVA) for the results 
on the detection of EWP and CI. Since the data could not meet the assumptions of 
ANOVA, Aligned Rank Transform (ART) ANOVA, which is a non-parametric ap-
proach to ANOVA, was used instead. Each ART ANOVA used four simulating fac-
tors as independent variables, and the FNR, FPR and precision as dependent variables. 
The ART ANOVA results and corresponding effect sizes (partial 2) were attached 
in Appendix A. Also, to investigate the consistency of performance in detection of 
EWP and CI, we calculated the standard deviation across 30 replications for each of 
the evaluation metrics. The results were attached in Appendix B.  

Moreover, to compare the ML approach with the existing approaches, we applied the 
approach proposed in Boughton, Smith, and Ren (2017; BSR) to detect EWP and CI 
in the same simulated data. According to BSR, we first estimated the posterior pre-
dictive distribution of log response time based on a lognormal response time model 
defined by van der Linden (2007), then standardized each log response time using the 
mean and variance of the predictive distribution, and lastly flagged examinees and 
items using the standardized response times. 

Results on Detection of EWP. The ART ANOVA results for the detection of EWP 
show the proportions of EWP and CI have a great impact on the detection perfor-
mance. When the dependent variable is the FPR (or precision), although all four fac-
tors have statistically significant main effects, the proportion of EWP, the proportion 
of CI and the interaction have the largest effect sizes, the partial 2s of which are .10 
(.09), .12 (.08) and .10 (.07). For FNR, three factors (the proportions of EWP and CI, 
and the number of repetitions) have statistically significant main effects. The effect 
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sizes corresponding to the proportion of EWP (partial 2 = .31), the proportion of CI 
(partial 2 = .58), and their interaction (partial 2 = .22) are considerably larger than 
that for the other factors (partial 2s < .03).  

Next, we present some details regarding the performance in the detection of EWP. 
Because the effect sizes for both the training-sample selection criterion and the num-
ber of repetitions are so small, results are shown for only one level of each (when the 
training-sample selection criterion is 500 and the number of repetitions is 60). Results 
for the other conditions are available from the authors upon request. 

Figure 6 shows the FNR, FPR, and precision for the detection of EWP. Note that in 
the interest of clearly seeing how results vary across conditions, the vertical scale of 
the FPR graph extends from 0 to .10, whereas the other two graphs show results from 
0 to 1.0. In general, the ML approach performs well in detecting EWP. The FNR 
decreases as the proportion of EWP or CI decreases. Although it is relatively high 
when both the proportions of CI and EWP are low, it is still acceptable. The ML ap-
proach controls the FPR at a very low level. When the examinees have preknowledge, 
the FPR is smaller than .02 under most conditions. Also, the ML approach produces 
very high precisions across all the conditions, indicating that most of the flagged ex-
aminees are truly EWP. Meanwhile, according to the standard variance of the evalu-
ation metrics, the approach has stable performance in detecting EWP. 

 
Figure 6 
Performance for the ML Approach in the Detection of EWP 

 
 

Figure 7 shows the performance of BSR in the detection of EWP. Compared to BSR, 
the ML approach generates much lower FNRs under all conditions, and lower FPRs 
and higher precisions under most conditions. The one exception is when the propor-
tion of CI is .4. In this condition, the FPR for BSR is 0; hence, the precision is 1 across 
all replications. However, the primary objective of the methodology is to identify true 
preknowledge while limiting the FPR to an acceptable level, and under those same 
conditions, FNR for BSR is much higher than that for the ML approach developed 
here, while FPR for BSR is overly conservative. Thus, compared to BSR, the ML 
approach significantly improves the overall performance in the detection of EWP. 
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Figure 7 
Performance for BSR in the Detection of EWP 

 
 

Results on Detection of CI. The ART ANOVA results for the detection of CI are 
similar to those for the detection of EWP. When the dependent variable is the FPR (or 
precision), although all four factors have statistically significant main effects, the pro-
portions of EWP and CI have the largest effect sizes, the partial 2s of which are .15 
(.27) and .30 (.77). For FNR, three factors (the proportions of EWP and CI, and the 
number of repetitions) have statistically significant main effects. The effect sizes cor-
responding to the proportion of EWP (partial 2 = .48) is considerably larger than that 
for the other factors (partial 2s < .04). Thus, similar to the detection of EWP, results 
for the remaining analyses are only presented for the simulation conditions where the 
training-sample selection criterion is 500 and the number of repetitions is 60. 

 
Figure 8 
Performance for the ML Approach in the Detection of CI 
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Figure 9 
Performance for BSR in the Detection of CI 

 
 

Figure 8 shows the FPR, FNR, and precision for the detection of CI. In general, the 
ML approach performs well in detecting CI. The FNR is at its highest when the pro-
portion of EWP is low (e.g., .1), though in absolute terms, the ML approach produces 
FNRs smaller than .3 under all conditions. The FPR is generally small across all the 
conditions, increasing as the magnitude of item preknowledge decreases. The FPR 
appears to be relatively high when the data involves no item compromise. The preci-
sion is above .7 across all conditions and increases significantly as the proportion of 
CI increases. As for the standard variance, the performance in detecting CI across 
replications also shows high consistency. 

Figure 9 shows the performance of BSR in the detection of CI. Overall, the perfor-
mance of BSR in detection CI is inferior to that of the ML approach proposed here. 
Only when no CI is present, BSR produces slightly lower FPRs. However, the differ-
ence is negligibly small.  

 
Figure 10 
Performance for the ML Approach after the Confidence Score is Considered in the Detec-
tion of EWP 
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Figure 11 
Performance for the ML Approach after the Confidence Score is Considered in the Detec-
tion of CI 

 
 

Effectiveness of the Confidence Score  

The confidence score is proposed to assist practitioners in deciding whether to use the 
detection result. To assess the effectiveness of our confidence score, we re-evaluated 
the data, treating any detected items or examinees as having no preknowledge, when 
the confidence score was smaller than the criterion. These adjusted results were then 
compared to the results before imposing the confidence score criterion to examine the 
overall impact.  

Figures 10 and 11 present the data from Figures 6 and 8, respectively, after first im-
posing the confidence score criterion. For the detection of EWP, the performance im-
proves after the confidence score is considered. The most important difference is with 
respect to method’s performance in purely no-preknowledge data, where the FPR de-
creases from .02 to.0006. In the conditions for which preknowledge was simulated, 
the overall pattern of results changed very little. Similarly, for the detection of CI, the 
confidence score also helps to decrease the FPR for the no-preknowledge condition 
from .05 to .006. These results are consistent with PW22, indicating that the confi-
dence score can improve detection performance, particularly under the no-pre-
knowledge condition. Despite the success at reducing the FPR in the no-preknowledge 
condition, across true preknowledge conditions, results are effectively unchanged.  

To obtain a better understanding of the effectiveness of the confidence score, we also 
created scatter plots to visualize the relationship between the FNR, FPR and confi-
dence score under various simulation conditions for the detection of EWP and CI. 
These scatter plots were presented in Appendix C. Each dot in the scatter plots repre-
sents one result on the detection of CI or EWP. The position of each dot on the hori-
zontal axis indicates the FNR, and the position on the vertical axis indicates the FPR. 
The color of dot demonstrates the confidence. Note that the horizontal scale is not 
presented in the first plot, as the FPR does not exist under the no-preknowledge 
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condition. Consistent with the results shown in PW22, the confidence score is higher 
when the detection result is better.  

 

Discussion 

We propose a ML-based approach to simultaneously detect EWP and CI in CAT. To 
assist practitioners in deciding whether to use the detection result, the ML approach 
also provides a confidence score that represents the confidence that the detection re-
sult reflects actual item preknowledge. Simulation studies show that the ML approach 
performs well at flagging EWP and CI while limiting the erroneous detection to a very 
low level. The results also indicate that the confidence score is highly effective in 
providing helpful information for practitioners, particularly for the no-preknowledge 
condition. 

The simulations show that the detection performance becomes better as the magnitude 
of preknowledge increases. The ML approach generates relatively high FPRs or FNRs 
when the magnitude of preknowledge is low. When the proportion of CI is low (e.g., 
.1), the detection of EWP generates relatively high FNRs. One explanation is that the 
ML approach flags as suspicious the examinees matching the pattern of being signif-
icantly faster on the detected items than on the remaining items (in Step Identifying 
Suspicious Examinees and Items). However, even though an examinee is truly associ-
ated with EWP, the preknowledge signal of this examinee might not be strong enough 
to be flagged when there are only a few CI. For the same reason, the detection of CI 
also generates relatively high FNRs, when the proportion of EWP is low (e.g., .1). 
According to this explanation, the FNR could be controlled at a lower level by adjust-
ing the threshold of the preknowledge signal. Namely, when the number of detected 
items/examinees is small, the threshold is modified to a smaller value in the flagging 
of suspicious examinees/items.  

Although the FPRs are consistent with where we would like them for typical experi-
mental research studies in the educational and psychological sciences (e.g., < .05), 
given the costs associated with item development and the risks associated with falsely 
accusing examinees of cheating, when doing test security work, programs often like 
to see FPR that are lower. The FPR could be reduced by adjusting the possible exam-
inee- and item- criteria in Step Combining Repetition Results, such as increasing the 
criteria to 90%, 92%, …, 100 % of the maximum flagged times. Also, in Step Identi-
fying Suspicious Examinees and Items, modifying the threshold of the preknowledge 
signal in the other direction, changing it to a greater value, would help to control the 
FPR at a lower level.  

When the magnitude of preknowledge is null, that is, the data involves no item pre-
knowledge, the ML approach generates relatively high FPRs. This is not out of expec-
tation. The ML approach will always flag a set of objects even in a no-preknowledge 
condition, as our fundamental argument is that the correct responses with relatively 
short response times among the population are aberrant. There are always responses 
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with relatively short response times, and thus there are always flagged objects. Alt-
hough the ML approach cannot recognize the no-preknowledge condition, the confi-
dence score can successfully recognize this condition in most replications.  

Compared to the confidence score in PW22, our confidence score has a better perfor-
mance as it increases FNR very little. In PW22, most detections whose FNR increases 
after the confidence score was considered were for the case where the CI exposed to 
different EWP were only partially overlapped. Thus, one explanation for this improve-
ment is that the nature of the ML approach allows us to calculate the confidence score 
using the un-expectancy degree at the examinee level only, so that our confidence 
score is still effective under the CI-partially-overlapped condition. 

In addition to the promising detection performance, another notable contribution of 
the ML approach is that it provides an example of using a supervised learning model 
to classify responses when the compromised status is unknown. Most of the detection 
approaches that require no prior information are developed based on the response sim-
ilarity or the consistency between the response patterns among examinees. However, 
these approaches could not work well when EWP have access to different subsets of 
CI or the testing form is CAT. To overcome this limitation, we use domain knowledge 
in preknowledge to label a small set of responses and develop a supervised classifica-
tion algorithm based on the labeling result. To improve classification performance, 
we further integrate multiple techniques into the algorithm, such as semi-supervised 
learning and ensemble learning. Classification performance at an acceptable level is 
provided when all the strategies and techniques work together. 

The ML approach described here makes choices for multiple criteria and thresholds 
(e.g., the criterion for identifying small confidence scores), which can be regarded as 
hyperparameters. Hyperparameters are parameters that can control the detection pro-
cess. In practice, the nature of preknowledge problem varies. The practitioners can 
alter the hyperparameters in accordance with the nature of their problem to obtain 
better detection. The optimal selection of the hyperparameter values depends on the 
preknowledge situation. For example, when the proportion of responses with item 
preknowledge is high, using a relatively small threshold in combining the detection 
should produce better detection performance. Further, the optimal choice of the hy-
perparameter values is on the basis of the rigor of the detection. For instance, for a 
detection that is committed to controlling the false positive rate at an extremely low 
level, even at the expense of the false negative rate to some extent, selecting a greater 
value as the criterion for identifying a low confidence score should yield a more de-
sired detection result. Moreover, in the application of confidence score, the structure 
of the autoencoder could be adjusted according to the complexity of the data. If the 
complexity is high, the users could increase the number of hidden layers and the di-
mension of the reduced representation to provide a more accurate prediction for the 
expected scores. If the user-defined hyperparameters deviate from the settings here, it 
is generally recommended that they assess the effectiveness of user-defined criteria 
using simulation studies that replicate the characteristics of the testing program and 
expected preknowledge condition to the greatest degree. 
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A limitation of this research is that only one model and one anomalous behavior were 
considered in the data simulation. Firstly, only the 3PL model was used to generate 
item responses. Because the detection does not depend much on response accuracy 
and does not involve the item parameters, the choice of the IRT model likely has little 
impact on the performance. However, there are many certification and licensure pro-
grams that use the Rasch or 2PL model. Hence, other IRT models could have been 
used to assess the detection performance of the ML approach under various condi-
tions. Secondly, the lognormal distribution used to generate the response times involv-
ing preknowledge is a common and seemingly reasonable choice for the purposes of 
this study (Choe et al., 2018), but other distributions could have been used. Thirdly, 
although our approach was able to maintain strong psychometric properties even with 
random guessing simulated, the robustness of the ML approach to other types of ab-
errance should still be explored. 

Another limitation is that, to calculate the confidence score, the ML approach imputes 
the missing responses using a single-imputation method based on average scores. 
While the single imputation is able to calculate an informative confidence score, other 
imputation methods should be explored. For example, the missing values could be 
predicted in the context of IRT modeling (e.g., Van Ginkel, Sijtsma, van der Ark, & 
Vermunt, 2010). Specifically, first, item and ability parameters are estimated using 
observed responses; second, the probability of correct response is calculated for each 
missing based on the estimated parameters; finally, the predicted score is a random 
draw from a Bernoulli distribution with the estimated correct probability. Also, the 
missing values could be predicted by multiple imputation (Rubin, 1987). The compar-
ison of different imputation methods could be conducted by future studies. 

There are several other limitations. First, the maximum amount of time examinees can 
spend is not limited in the simulation. In particular, there is likely no relationship be-
tween who is selected for rapid responses and the amount of time those examinees 
spent on other items. Simulating data in a way that is more reflective of the real situ-
ation can help provide more convincing evidence for the detection performance of ML 
methods (or, quite frankly, for any simulated research on the use of response time). 
Second, the proposed confidence score is designed as an omnibus test for the entire 
dataset. It would be helpful to develop a confidence score that indicates the degree of 
confidence that each detected examinee or item corresponds to item preknowledge. 
Third, the ML approach is based on ML and does not involve item response theory 
models or response times models in any manner. Integrating those models into an 
extended version of the ML algorithm might improve detection performance. Fourth, 
the detection uses dichotomous scores. However, examinees may receive partial cred-
its in the form of ordinal scores rather than binary scores. The ML approach would be 
more applicable if partial credits can be handled. Finally, we assumed that EWP show 
a significant decrease in response time for CI. However, EWP may intentionally an-
swer CI at normal speed. The detection performance would be greatly improved if this 
approach is extended to be able to recognize this situation. Exploring these avenues is 
left for future study.  
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Appendix A 

Table A1 
ART ANOVA Results for False Negative Rate on the Detection of EWP (n=1080) 

 SS df F p Partial 𝜂2 

Proportion of EWP (A) 
29701

013 
2 238.06 0.00 0.31 

Proportion of CI (B) 
57291

717 
2 718.84 0.00 0.58 

Training-Sample Selection Criterion (C) 
30656

9 
1 3.62 0.06 0.00 

Number of Detections (D) 
73143

3 
1 8.68 0.00 0.01 

A×B 
20875

189 
4 73.10 0.00 0.22 

A×C 
14171

45 
2 8.50 0.00 0.02 

B×C 
45943

1 
2 2.72 0.07 0.01 

A×D 
52043

2 
2 3.09 0.05 0.01 

B×D 
60413

9 
2 3.58 0.03 0.01 

C×D 
34826

6 
1 4.11 0.04 0.00 

A×B×C 
23724

29 
4 7.16 0.00 0.03 

A×B×D 
46839

7 
4 1.39 0.24 0.01 

A×C×D 
27721

2 
2 1.64 0.20 0.00 

B×C×D 
27395

0 
2 1.62 0.20 0.00 

A×B×C×D 
28243

9 
4 0.83 0.50 0.00 
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Table A2  
ART ANOVA Results for False Positive Rate on the Detection of EWP (n=1080) 

 SS df F p Partial 𝜂2 

Proportion of EWP (A) 
1036683

1 
2 59.00 0.00 0.10 

Proportion of CI (B) 
1248772

2 
2 73.90 0.00 0.12 

Training-Sample Selection Criterion 

(C) 
6547029 1 73.16 0.00 0.07 

Number of Detections (D) 2163126 1 23.35 0.00 0.02 

A×B 
1006924

1 
4 29.05 0.00 0.10 

A×C 3926092 2 21.10 0.00 0.04 

B×C 7665280 2 43.12 0.00 0.08 

A×D 23479 2 0.12 0.88 0.00 

B×D 216317 2 1.14 0.32 0.00 

C×D 11434 1 0.12 0.73 0.00 

A×B×C 5385499 4 14.64 0.00 0.05 

A×B×D 236788 4 0.63 0.64 0.00 

A×C×D 16858 2 0.09 0.92 0.00 

B×C×D 122825 2 0.65 0.52 0.00 

A×B×C×D 79187 4 0.21 0.93 0.00 
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Table A3 
ART ANOVA Results for Precision on the Detection of EWP (n=1080) 

 SS df F p Partial 𝜂2 

Proportion of EWP (A) 8967261 2 52.38 0.00 0.09 

Proportion of CI (B) 7678163 2 44.97 0.00 0.08 

Training-Sample Selection Criterion 

(C) 
2573127 1 28.41 0.00 0.03 

Number of Detections (D) 3669402 1 40.85 0.00 0.04 

A×B 6854337 4 19.65 0.00 0.07 

A×C 1439941 2 7.73 0.00 0.01 

B×C 3897153 2 21.63 0.00 0.04 

A×D 1848753 2 10.09 0.00 0.02 

B×D 145712 2 0.78 0.46 0.00 

C×D 116 1 0.00 0.97 0.00 

A×B×C 3027639 4 8.26 0.00 0.03 

A×B×D 165779 4 0.44 0.78 0.00 

A×C×D 7953 2 0.04 0.96 0.00 

B×C×D 55772 2 0.30 0.74 0.00 

A×B×C×D 50642 4 0.13 0.97 0.00 

 

  



AN APPROACH FOR DETECTING PREKNOWLEDGE IN CAT  419 

Table A4 
ART ANOVA Results for False Negative Rate on the Detection of CI (n=1080) 

 SS df F p Partial 𝜂2 

Proportion of EWP (A) 
5050916

4 
2 490.33 0.00 0.48 

Proportion of CI (B) 2581513 2 13.47 0.00 0.03 

Training-Sample Selection Criterion 

(C) 
106565 1 1.09 0.30 0.00 

Number of Detections (D) 1121591 1 11.55 0.00 0.01 

A×B 3289297 4 8.65 0.00 0.03 

A×C 48205 2 0.25 0.78 0.00 

B×C 39797 2 0.20 0.82 0.00 

A×D 179629 2 0.92 0.40 0.00 

B×D 238805 2 1.22 0.30 0.00 

C×D 1040 1 0.01 0.92 0.00 

A×B×C 162101 4 0.41 0.80 0.00 

A×B×D 254100 4 0.65 0.63 0.00 

A×C×D 105601 2 0.54 0.58 0.00 

B×C×D 27805 2 0.14 0.87 0.00 

A×B×C×D 85427 4 0.22 0.93 0.00 
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Table A5 
ART ANOVA Results for False Positive Rate on the Detection of CI (n=1080) 

 SS df F p Partial 𝜂2 

Proportion of EWP (A) 
1608899

9 
2 94.97 0.00 0.15 

Proportion of CI (B) 
3151244

1 
2 228.81 0.00 0.30 

Training-Sample Selection Criterion 

(C) 
725200 1 7.34 0.01 0.01 

Number of Detections (D) 4763802 1 50.23 0.00 0.05 

A×B 
1150146

3 
4 32.71 0.00 0.11 

A×C 5885970 2 31.54 0.00 0.06 

B×C 1147456 2 5.83 0.00 0.01 

A×D 68551 2 0.34 0.71 0.00 

B×D 1344230 2 6.84 0.00 0.01 

C×D 12403 1 0.12 0.72 0.00 

A×B×C 2550233 4 6.57 0.00 0.02 

A×B×D 70575 4 0.18 0.95 0.00 

A×C×D 156760 2 0.79 0.46 0.00 

B×C×D 94148 2 0.47 0.62 0.00 

A×B×C×D 117050 4 0.29 0.88 0.00 
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Table A6 
ART ANOVA Results for Precision on the Detection of CI (n=1080) 

 SS df F p Partial 𝜂2 

Proportion of EWP (A) 
2858690

3 
2 197.69 0.00 0.27 

Proportion of CI (B) 
8108904

0 
2 

1794.1

9 
0.00 0.77 

Training-Sample Selection Criterion 

(C) 
1420928 1 14.52 0.00 0.01 

Number of Detections (D) 6227748 1 66.91 0.00 0.06 

A×B 9500767 4 26.35 0.00 0.09 

A×C 5657749 2 30.26 0.00 0.05 

B×C 1975454 2 10.15 0.00 0.02 

A×D 57118 2 0.29 0.75 0.00 

B×D 3807213 2 19.92 0.00 0.04 

C×D 2023 1 0.02 0.89 0.00 

A×B×C 3777997 4 9.85 0.00 0.04 

A×B×D 11402 4 0.03 1.00 0.00 

A×C×D 192728 2 0.97 0.38 0.00 

B×C×D 38983 2 0.20 0.82 0.00 

A×B×C×D 154216 4 0.39 0.82 0.00 
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Appendix B 

Figure B1  
Standard Deviations for Evaluation Metrics in the Detection of EWP 

 

Figure B2  
Standard Deviations for Evaluation Metrics in the Detection of CI 
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Appendix C 

Figure C1 
Relationship between FNR, FPR and Confidence Score in the Detection of EWP 
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Figure C2 
Relationship between FNR, FPR and Confidence Score in the Detection of CI 

 


