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Identifying Aberrant Responses in Intelli-
gent Tutoring Systems: An Application of 
Anomaly Detection Methods 
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Abstract 
Examinees’ unexpected response behaviors during an assessment may lead to aberrant re-
sponses that contaminate the data quality. Since aberrant responses may jeopardize the validity 
of inferences made based on assessment results, they should be handled for modeling students’ 
learning and progress more accurately. Although the detection of aberrant responses is widely 
studied in non-interactive low-stakes assessments, exploring aberrant responses in interactive 
assessment environments such as intelligent tutoring systems (ITS) is a relatively new venue. 
Furthermore, current aberrant response detection methods are not feasible for the ITS context 
due to the extreme sparsity of response data. In this study, we employed six unsupervised anom-
aly detection methods (Gaussian Mixture Model, Bayesian Gaussian Mixture Model, Isolation 
Forest, Mahalanobis Distance, Local Outlier Factor, and Elliptic Envelope) for identifying ab-
errant responses in an ITS environment. We compared the results of these methods with each 
other and explored their association with students’ affective states. We found that the anomaly 
detection methods flagged similar responses as aberrant although Local Outlier Factor yielded 
very different results. Mahalanobis Distance appeared to be a conservative approach in detect-
ing aberrant responses, whereas the Isolation Forest and Gaussian Mixture methods emerged 
as more liberal. Overall, the unsupervised anomaly detection methods provide a viable option 
for identifying aberrant responses in ITS. We recommend that researchers and practitioners 
consider using multiple anomaly detection methods to identify aberrant responses more accu-
rately. 
Keywords: aberrant responding, unsupervised anomaly detection, intelligent tutoring system, 
response time, hint use 
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Intelligent tutoring systems (ITS) have emerged as a viable option for assessing stu-
dents’ learning gains while providing one-on-one tutoring to students outside of the 
classroom (Feng et al., 2009). ITS are interactive learning environments that aim to 
provide personalized instruction, assessment, and feedback to each learner. By com-
bining tutoring assistance with assessment, researchers and practitioners can blend 
instruction and assessment to better support student learning. In addition to personal-
izing instruction and assessment, ITS also gather rich information about student be-
haviors such as speed, attempts to answer questions, and help-seeking, which could 
be stored and used for modeling complex learning behaviors. However, these systems 
fall under the umbrella term of low-stakes assessments. One distinctive attribute of 
low-stakes assessments is the lack of personal consequences or value for students. 
That is, although the results of low-stakes assessments may be useful for informing 
school accountability, funding decisions for educational institutions, and performance 
comparisons at the national or international levels, they are not used for higher-stakes 
decisions about students, such as grading students’ performances, granting awards to 
students, or making graduation decisions (Finn, 2015). Therefore, students do not ob-
serve any direct consequences associated with low-stakes assessments and may regard 
them of little to no value (Lindner et al., 2019; Wise & Kong, 2005). 

The tension between measuring students’ knowledge and the absence of personal con-
sequences in low-stakes assessments may lead to aberrant response behaviors due to 
the lack of effortful response behavior. In low-stakes assessment contexts, students 
with aberrant response behavior fail to show their true ability levels because they do 
not genuinely attempt the items by putting sufficient effort. An indication of the lack 
of sufficient effort is spending either an unrealistically short or long response times 
on each item. Researchers labeled these aberrant response behaviors with different 
names, such as rapid guessing (i.e., spending a very short response time on an item) 
(e.g., Rios et al., 2017; Soland & Kuhfeld, 2019; Wise, 2017); disengaged responding 
(e.g., Gorgun & Bulut, 2021; Wise & DeMars, 2005; Yildirim-Erbasli & Bulut, 2021); 
or insufficient effort responding (e.g., Liu et al., 2020; Ulitzsch et al., 2022a). Re-
searchers have also identified other forms of aberrant responding peculiar to ITS en-
vironments. This type of response behavior is referred to as either gaming behavior 
or off-task behavior (e.g., Baker et al., 2004; Baker et al., 2008; Walonoski & Heffer-
nan, 2006) in the literature. Specifically, students may exploit hints in a very short 
response time while attempting to answer the items correctly by abusing the system 
properties. In this study, we assemble all these deviant responses as aberrant response 
behavior. Accordingly, we define aberrant responses as unexpected or deviant re-
sponses from the expected response behavior or patterns (Kim et al., 2016). 

In the following sections, we discuss the types and indicators of aberrant response 
behaviors in low-stakes assessments and methods used to identify aberrant responses. 
Next, we propose to harness anomaly detection methods based on unsupervised ma-
chine learning to identify aberrant responses in ITS. We argue that the convergence 
between multiple anomaly detection methods can help us understand the prevalence 
of aberrant responding in ITS and the rate of convergence across these proposed mod-
els. We evaluate the unsupervised anomaly detection methods with a publicly 
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available ITS dataset, ASSISTment. Our study provides preliminary evidence on the 
utility of unsupervised anomaly detection methods for identifying aberrant responses 
in ITS. 

 

Literature Review 
 
Aberrant Responses in Low-stakes Assessments 
 

Aberrant responses are deviations from expected observations and are typically linked 
to other response mechanisms, such cheating, non-effortful test-taking, and careless 
responding (Hawkins, 1980; Ulitzsch et al., 2022a). Unlike responses based on genu-
ine attempts with sufficient test-taking effort, aberrant responses may not reflect what 
students know or can do (Swerdzewski et al., 2011; Wise & Kong, 2005). Therefore, 
inferences or conclusions made based on low-stakes assessments involving aberrant 
responses might be unwarranted, especially if students attempt to answer the items 
without putting enough effort (Haladyna & Downing, 2004). In addition to unjustified 
inferences, absence of effortful responding may also bias statistical estimates, predic-
tive models, classification outcomes, psychometric properties, and individual scores 
(e.g., DeSimone et al., 2018; Rios & Soland, 2021; Schmitt & Stuits, 1985; Wise et 
al., 2009). For example, Rios et al. (2017) found that scores obtained from low-stakes 
assessments were typically underestimated in the presence of non-effortful or disen-
gaged responses. Similarly, students’ test scores were largely distorted when they at-
tempted the items in a disengaged mode (Wise et al., 2021). 

Similar results were also reported in the context of ITS. In a recent study, Gorgun and 
Bulut (2022) found that when disengaged responses were removed from the training 
data during the pre-processing stage, the accuracy of both Bayesian and deep 
knowledge tracing models could significantly improve when predicting students’ per-
formances within an ITS environment. Furthermore, aberrant responses in ITS are 
often associated with poorer learning (Baker, 2007; Pardos et al., 2014). Due to having 
numerous aberrant responses, some students may even appear as if they are unlearning 
the content (Schultz & Arroyo, 2014). These findings corroborate the importance of 
identifying and handling aberrant responses to enhance not only data quality, but also 
the performance of predictive or psychometric models based on ITS data. Previous 
research indicated that aberrant responses could be handled through filtering or other 
correction methods (Aggarwal, 2016; Blázquez-García et al., 2021; Wise & DeMars, 
2005). However, the successful detection of aberrant responses requires identifying 
what constitutes aberrant response behavior before performing any statistical analysis. 
That is, it is essential to differentiate expected and aberrant response patterns in the 
context of the assessment tool. In the next section, we discuss the possible manifesta-
tions of aberrant response behavior within the ITS context. 
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Identifying Aberrant Responses in ITS 
 

Aberrant responses have been widely studied in low-stakes computerized assess-
ments, including large-scale international assessments (e.g., Programme for Interna-
tional Student Assessment, International Reading Literacy Study, Trends in Interna-
tional Mathematics and Science Study; Eklöf, 2007), statewide assessments (e.g., Na-
tional Assessment on Educational Progress; Braun et al., 2011; Swerdzewski et al., 
2011), and computerized formative assessments used for universal screening and pro-
gress monitoring in K-12 (e.g., Agnew et al., 2021; Gorgun & Bulut, 2021; Yildirim-
Erbasli & Bulut, 2021). In those studies, researchers differentiate two types of re-
sponse behavior: solution behavior when the student engages with the item in an ef-
fortful fashion and non-effortful response behavior when the student does not expend 
maximal effort to answer the item (e.g., Pastor et al., 2019; Wise & DeMars, 2010; 
Wise & Gao, 2017). Rapid guessing (i.e., spending an unrealistically short response 
time) is the most widely studied form of non-effortful response behavior within the 
context of low-stakes non-interactive assessments (Deribo et al., 2021; Kroehne et al., 
2020; Wise, 2017). Researchers also argued that in timed low-stakes non-interactive 
assessments, some students may stop investing effort and spend extremely long re-
sponse times on items, leading to idle response behavior (Gorgun & Bulut, 2021). In 
most of these studies, response times have been used as a proxy for identifying aber-
rant responses. That is, non-effortfulness is operationalized through item response 
times. 

In addition to low-stakes computerized assessments, there has been a growing interest 
in identifying aberrant responses in the ITS environment. However, these studies have 
exclusively focused on gaming behavior as a specific form of aberrant response be-
havior. Given the rich information that ITS can store during students’ interactions 
within the tutoring system, researchers can use a wide variety of proxies to model 
different types of aberrant responses. This includes response times, the number and 
frequency of hint requests, the time difference between each action, the number of 
attempts, item difficulty, the number of errors, very fast (or slow) responses, students’ 
first action (i.e., a hint request or an attempt), response accuracy, and students’ affec-
tive states. 

To date, four types of detectors have been proposed for capturing gaming behavior in 
ITS. Knowledge-engineered gaming detectors utilize expert knowledge to identify in-
dicators of gaming behavior (Paquette et al., 2014). These detectors mostly focused 
on hint abuse and systematic guessing to model gaming behavior in ITS. In one such 
study, Walonoski and Heffernan (2006) used expert coded data for gaming detection. 
Although their anomaly detector was successful in identifying the non-gaming behav-
ior (98% accuracy), its performance in detecting gaming behavior was quite low (19% 
accuracy). This may partly be explained using an imbalanced data set in terms of the 
number of gaming instances. Other researchers also focused on using expert coders 
for identifying different types of aberrant responses in the ITS environment. For ex-
ample, Johns and Woolf (2006) defined three types of response behavior: motivated 
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response, unmotivated guess, and unmotivated hint. They employed a dynamic mix-
ture model based on item response theory (IRT) to estimate the students’ proficiency 
while adapting to students’ motivation levels. They found that taking student motiva-
tion into account improved the model performance. Similarly, Beal et al. (2006) re-
ported that an individual’s motivation level could predict their current performance in 
the ITS environment better than their prior performance. Beck (2005) tried to jointly 
model the probability of correct response with disengagement. Although the model 
based on response times correctly predicted the probability of a correct response, it 
failed to identify disengagement. 

The second type of gaming detector used machine learning to capture students’ gam-
ing behavior. Using a machine learning approach, Baker et al. (2008) developed an 
anomaly detector based on a latent response model for identifying when students at-
tempt to game the system. Their anomaly detector was successful for detecting only 
the harmful type of gaming behavior associated with poor learning outcomes. Baker 
et al. (2010) also analyzed the relationship between gaming behavior and affective 
states of students and found that boredom and confusion were associated with poorer 
learning and aberrant behaviors such as system gaming. Combining the first two de-
tectors, researchers also proposed a hybrid approach for detecting gaming behavior. 
Paquette et al. (2015) combined expert-coded models with machine learning and 
achieved comparable results to knowledge-engineered detectors. They also evaluated 
the model generalizability of these three approaches (i.e., knowledge-engineered, ma-
chine learning, and hybrid) across two ITS data sets. Interestingly, they found that the 
knowledge-engineered model achieved better generalizability to new data sets 
(Paquette et al., 2015). However, it is important to highlight that developing such a 
knowledge-engineered model may be costly (Huang et al., 2022). Finally, an exten-
sion of a knowledge-engineered approach is proposed based on IRT. In addition to 
expert engineered features, Huang et al. (2022) included contextual features to an IRT-
based gaming detector. Their approach outperformed the previous detectors and had 
higher generalizability across three different data sets. 

 

Unsupervised Machine Learning Models for Detecting  
Aberrant Responses 
 

A major challenge concerning the aberrant response identification is the lack of 
ground truth. This may prevent researchers to evaluate the false-positive or false-neg-
ative rates, as well as to train supervised machine learning models. To address this 
issue, researchers often label the data with respect to aberrant responses by employing 
field observations or human coders (e.g., Baker et al., 2004; Walonoski & Heffernan, 
2006). Several studies (e.g., Baker et al., 2004) created the labelled data through 
twenty-second long in-class observations of students interacting within ITS. The ob-
servers categorized students’ behaviors while interacting with ITS as either on-task, 
off-task, inactivity, or gaming the system (for details regarding the coding process and 
scheme, see Baker et al., 2004). They found that 50% of students engaged in off-task 
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behavior and 24% of students gamed the system at least once. They also found that 
students who gamed the system had poorer academic performance than those who did 
not attempt to game the system, which is a consistent finding observed in other studies 
focusing on both interactive and non-interactive low-stakes assessments (e.g., Huang 
et al., 2022; Lindner et al., 2019). 

Nonetheless, there are several possible limitations of the manual labeling process. 
First, when labeling aberrant responses manually, ensuring consistency within and 
between human coders might be very challenging. Second, creating a clear coding 
scheme that reflects the behavioral mechanism underlying the aberrant responses 
could also be difficult in practice. Third, with large-scale data sets involving thousands 
of learners’ responses and actions in ITS, it is practically impossible to manually label 
all the observations with the behavior of interest (e.g., gaming the system). Finally, if 
the labeling procedure was to be completed through real-time observations (i.e., while 
students complete the items or tasks presented on ITS), some students might feel un-
comfortable and thus fail to demonstrate their genuine behaviors. 

To address some of the limitations mentioned above, researchers often choose to op-
erationalize aberrant responses through proxy variables such as response time use and 
hint requests. However, the use of proxy variables may also constrain the types of 
aberrant responses to be detected, since the researcher must explicitly define what an 
aberrant response looks like based on the selected proxy variable (see knowledge-
engineered models, e.g., Huang et al., 2022; Paquette et al., 2014). Furthermore, the 
current detection methods established with non-interactive assessments might not 
work well with interactive ITS data sets. Most of these methods require researchers 
or practitioners to reformat the data presentation (e.g., from long format to wide for-
mat), creating a highly sparse data set due to having many items with varying number 
of students taking these items (Minn, 2022). Therefore, new approaches are needed to 
flag students’ interactions to properly identify aberrant responses in ITS. 

A better approach would be to combine empirical findings (i.e., findings of previous 
studies on aberrant response behavior), expert knowledge (i.e., interactions within the 
ITS that expert coders identified as aberrant), and theoretical background (e.g., Wig-
field & Eccles, 2000, Expectancy-Value Theory) with exploratory data mining tech-
niques (i.e., unsupervised machine learning models; Romero and Ventura, 2020). This 
approach would allow us to identify aberrant responses in ITS when the ground truth 
(i.e., correct labels of aberrant responses) is unavailable or unknown. Furthermore, 
this theory-supported data-driven approach may help us discover new patterns of ab-
errant responding in the data set. Previous studies have exclusively focused on gaming 
behavior in ITS, but anomaly detection procedures utilizing data mining techniques 
can help us discover new patterns of aberrant responding. 
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Present Study 
 

In this study, our primary goal is to test the feasibility and utility of various anomaly 
detection methods for identifying aberrant responses in interactive learning environ-
ments (e.g., ITS). Furthermore, we aim to provide further empirical evidence concern-
ing aberrant responses and prevalence rates in a publicly available ITS data set. In 
addition to detecting aberrant responses, we also gather validity evidence for different 
anomaly detectors by two means: We analyzed the feature distribution for aberrant 
and normal responses to investigate whether feature distributions for both groups are 
congruent with the theorized expectations and we correlated students’ affective states 
(i.e., boredom, confusion, engaged concentration, frustration) with the anomaly de-
tection results (i.e., whether a response is identified as aberrant or not) to provide 
convergent validity evidence. Baker et al. (2010) found that while boredom was con-
sistently associated with poorer learning and gaming behavior, engaged concentration 
is negatively related to such behavior. Thus, we anticipate finding similar trends with 
the aberrant responses identified through anomaly detection methods. Following 
Baker et al. (2010), we hypothesize that there is a positive correlation between the 
affective state of boredom and aberrant responses, and that there are negative correla-
tions between affective states of frustration, engaged concentration, and confusion and 
aberrant responses. 

The research questions of the current study are as follows: 

1. What is the feature distribution for each anomaly detection method? 
2. To what extent the aberrant responses identified by the anomaly detection 

methods overlap with one another? 
3. What are the correlations between affective states (i.e., boredom, confusion, en-

gaged concentration, frustration) and aberrant responses across different anom-
aly detection methods? 

 

Method 

Data 

To compare the performances of different anomaly detection algorithms, we used the 
2012-2013 ASSISTment school data set with affect indicators (Pardos et al., 2013)3. 
The data were collected from middle and high school students in New England, USA 
(Pardos et al., 2014; Pedro et al., 2013). The data set contains 36 variables including 
students’ interactions within ITS and their predicted affective states such as boredom, 
confusion, frustration, and engaged concentration. The variables about students’ in-
teractions within the ITS environment involved problem start and end times, how 

 
3 The ASSISTment data set is available at https://sites.google.com/site/assistmentsdata/datasets/2012-13-

school-data-with-affect. 

https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
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many hints a student requested when answering the items and whether the student 
requested all the hints, response accuracy, the number of actions and actions se-
quences, the response time to the first action, and whether the student requested a hint 
or attempted the item first. There were also some variables about the problems in the 
ITS data set such as problem ID, whether it is a scaffolding or main question, skill ID 
and skill name, problem type (e.g., constructed response or multiple choice), and item 
position. 

 

Data Pre-Processing 

Before applying anomaly detection methods, we implemented several steps for pre-
processing the data. First, we removed the duplicate rows and rows with either nega-
tive response times for the first action or missing hint information. We also removed 
constructed-response items (i.e., open-response problem types) because they were 
scored as correct regardless of the students’ original responses. We retained the main 
problems, first actions being either an attempt or hint request, students with at least 
16 items, and students’ first attempt to each problem. The response times were con-
verted from milliseconds to seconds. Furthermore, we engineered some additional 
features before applying anomaly detection methods. First, we found the total re-
sponse time—the total response time as the gap between the problem end time and 
start time. We also standardized the number of hints the students requested because 
the problems have a different number of total hints available. In addition to standard-
izing hint counts, we estimated the hint requests per seconds to scale the hint (ab)use. 
Finally, some problems in the ITS data set are partially scored. The partial scores were 
assigned when the student’s first attempt was incorrect, and the student requested help. 
Following Wang et al. (2010), we recoded responses smaller than 1 (i.e., partially 
scored responses) as 0 (i.e., incorrect). The final data set included 33,825 unique stu-
dents with features including student ID, problem ID, hint count per second, whether 
the first action was an attempt or a hint request, response accuracy, attempt count, the 
total response time, the response time to first action, the standardized total number of 
hints requested, and students’ affective states (i.e., predicted frustration, boredom, en-
gaged concentration, and confusion). 

 

Anomaly Detection Methods 

To answer our research questions, we employed density-based, point-based, paramet-
ric, and distance-based anomaly detection methods. Below, we briefly describe the 
six unsupervised anomaly detection methods employed in this study. For each 
method, aberrant responses are generally defined as extreme deviations (i.e., anomaly) 
from a normative response behavior. Yet, nuances of each method will be described 
below. 
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Gaussian Mixture Model. Gaussian Mixture Model (GMM; Bouman et al., 1997; 
McLachlan & Basford, 1988) is a probabilistic density-based model that posits differ-
ent data generation processes for normal and deviant (i.e., aberrant) responses. It as-
sumes a mixture of several Gaussian distributions with unknown parameters. Each 
distribution may have a different shape, size, or density. The researcher must define 
the number of k Gaussian distributions. That is, the researcher may need to tune the 
model by finding the optimal k clusters through selecting a model that minimizes the 
Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC). Fur-
thermore, the researcher needs to define a density threshold. Therefore, this anomaly 
detection method can be used for situations where empirical evidence concerning the 
contamination rate is already known. Furthermore, this method can be employed to 
evaluate the convergence across different anomaly detection models to gather further 
validity evidence for the observations flagged as aberrant. 

Using the expectation-maximization (EM) algorithm, GMM starts by finding the clus-
ter parameters randomly and iteratively until convergence. For each data point, the 
probability of being in a given cluster is estimated to find which cluster each data 
point belongs. Any observation found in the low-density region is considered as a 
deviant observation. Given the starting values of the EM algorithm, EM may converge 
poorly, and thus it is advised to run the EM algorithm multiple times to find the opti-
mal solution. That is, the researcher needs to set the number of iterations to run the 
model several times to find the best solutions. Furthermore, the researcher may also 
inspect whether the model has converged and the number of iterations it takes to con-
verge. A final hyperparameter that the researcher should define is covariance type 
(i.e., the shape, size, or orientation that each cluster can take). In this study, we used 
full covariance type, allowing each cluster to take any shape, size, or orientation. The 
algorithm assigns an anomalous status to the observations that have a low probability 
of being in a cluster. Specifically, the density threshold determines the cut-off value 
for observations classified as anomalous and observations below that percentile are 
flagged as aberrant. 

Bayesian Gaussian Mixture Model.  Bayesian Gaussian Mixture Model (BGMM; 
Bishop & Nasrabadi, 2006) is another probabilistic density-based Gaussian method, 
which has some advantages over GMM for anomaly detection. Unlike manually de-
termining the optimal number of clusters in GMM, BGMM can determine the optimal 
number of clusters through giving zero weights to the unnecessary clusters. The re-
searcher needs to set the hyperparameter the number of components to a value that is 
expected to be higher than the anticipated number of optimal clusters. Similar to 
GMM, the researcher needs to run the algorithm several times to find the best solution. 
However, one significant drawback of BGMM over GMM is that it is computationally 
more intensive, hence it takes a longer time to converge. For non-ellipsoidal clusters, 
BGMM may fail to identify the underlying number of clusters properly and may per-
form bad. For such non-ellipsoidal clusters, several other algorithms (e.g., Isolation 
Forest or Local Outlier Factor) may perform better than GMM and BGMM. Similar 
to GMM, observations are flagged as aberrant if they are below the researcher defined 
density threshold. 
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Isolation Forest. Isolation Forest (iForest; Liu et al., 2008) is robust point-based 
anomaly detection algorithm, which has been shown to work well with high dimen-
sional data. iForest is a tree-based ensemble method and identifies anomalies with the 
assumption that anomalies are less frequent and distinct from normal observations. 
Typically, during anomaly detection, norms are identified first then the deviations 
from the normal observations are flagged as anomalous. However, iForest tries to iso-
late deviations from normal observations first. Liu et al. (2008) observed that normal 
data points require more partitions compared with anomalous data points. Hence, the 
algorithm starts by selecting a feature and then randomly picking a value between the 
maximum and minimum values of the feature to split the tree (see Figure 1). In Figure 
1, the nodes represent data points. The algorithm repeatedly partitions the random 
trees until all instances are isolated. The shorter paths in the tree structure are concep-
tualized to be anomalies because the algorithm finds it easier to distinguish them from 
the other observations (Liu et al., 2008). Thus, data points with shorter paths (e.g., red 
nodes in Figure 1) are classified as anomalous data points. 

 

Figure 1  
The iForest Algorithm 
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Mathematically, iForest can be expressed as 

 
𝑠(𝑥, 𝑛) = 2

−
𝐸(ℎ(𝑥))

𝑐(𝑛) , (1) 

where h(x) is the path length of observation x, c(n) is the average path length of an 
unsuccessful search and n is the number of external nodes. Given the formula, a score 
of an anomaly is assigned to each observation, where scores closer to 1 indicate anom-
alies. Scores smaller than 0.5 indicates normal observations. When training iForest, 
the researcher may set a contamination rate, however, in this study we set the contam-
ination rate to auto and allowed the algorithm to freely discover the anomalous points 
in the data set. 

Mahalanobis Distance. Mahalanobis Distance (MD; Mahalanobis, 1936) is a dis-
tance-based anomaly detection method, which has been widely used as a multivariate 
outlier detection method (e.g., Maniaci & Rogge, 2014; Meade & Craig, 2012; Ulitz-
sch et al., 2022b). This method creates a distance metric based on each variable in the 
data set. MD works well with multivariate data and, using covariance matrix among 
variables, it calculates the distance between a data point and the center. Formally, this 
distance is calculated as 

 𝐷2 = (𝑥 − 𝑚)𝑇𝐶−1(𝑥 − 𝑚), (2) 

where C is the covariance matrix, x is the vector of observations and m is the vector 
of mean values. We determined the cut-off value for MD by taking the quantile value 
of 0.95 and the points beyond this cut-off value were considered as anomalies. MD 
shows superior performance compared with the Euclidean distance in the presence of 
skewed data because MD considers the covariance among the variables. 

Local Outlier Factor. The Local Outlier Factor (LOF; Breunig et al., 2000) method 
is a widely used density-based method and calculates the local deviations relative to 
its surrounding points. Specifically, LOF identifies anomalies based on the density of 
the neighborhood. This method works well for anomaly detection for data sets with 
uneven distributions (Cheng et al., 2019). Similar to GMM and BGMM, a data point 
can be identified as anomalous if it is in a lower density region. The LOF method first 
finds the k-nearest neighbors for data points. Then, using the k-nearest neighbors, a 
local density metric named the local reachability density (LRD) is calculated. For-
mally defined, LRD can be computed as 

 
𝐿𝐷𝑅𝑘(𝑥) = 1/ (

∑ 𝑑𝑘(𝑥, 𝑜)𝑜𝜖𝑁𝑘(𝑥)

|𝑁𝑘(𝑥)|
), (3) 

where x is a data point, o is k-distance, and N is the minimum number of data points. 

Finally, the LOF score for a data point is found by comparing the LDR with its k-
neighbors. LOF can be given as 
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𝐿𝐷𝑅𝑘(𝑥) =
∑

𝐿𝐷𝑅𝑘(𝑜)
𝐿𝐷𝑅𝑘(𝑥)𝑜𝜖𝑁𝑘(𝑥)

|𝑁𝑘(𝑥)|
, (3) 

where the LOF score greater than 1 indicates anomalies. This method is suitable for 
identifying local anomalies because the method uses the k-nearest neighbor of a data 
point to identify whether it is an anomaly or not. Therefore, it is important to select 
the optimal number of clusters (i.e., k) where the underlying anomaly pattern reflects 
the local outliers rather than the global ones. Furthermore, a drawback of the LOF 
approach is that the number of neighbors must be manually set by the researcher. 
Therefore, hyper-tuning the number of neighbors might be challenging without any 
prior information on the data set. 

Elliptic Envelope. The Elliptic Envelope (EE; Rousseeuw & Driessen, 1999) method 
is a simple method that considers all observations simultaneously, rather than each 
individual feature separately. EE assumes a normal distribution with covariance 
among the features. Basically, EE tries to learn an optimized boundary of imaginary 
ellipse separating normal data points (i.e., inliners) from anomalous data points (i.e., 
outliers). The optimal imaginary ellipse is learned with FAST-Minimum Covariance 
Determinant algorithm introduced by Rousseeuw and Driessen (1999). The anomaly 
detection process is initialized by selecting non-overlapping subsamples of data. 
Then, MD is calculated for each subsample with the goal of measuring deviations 
between each data point and the mean of the distributions of the data. In the final step, 
the imaginary ellipse is determined by selecting the covariance matrix with the small-
est determinant in all subsamples. The data points that are far away from the shape 
coordinates are considered as anomalous data points. The researcher needs to set the 
contamination rate as a hyperparameter. 

Using the anomaly detection methods summarized above, we performed an anomaly 
detection analysis based on the features identified in the ASSISTment data set and 
compared the results in terms of the number of anomalous cases (i.e., aberrant re-
sponses) identified by each method. All analyses were conducted using the sklearn 
library (Pedregosa et al., 2011) in Python (version 3.10.4; Python Software Founda-
tion, 2022). 

 

Results 

Aberrant Responses and Feature Distributions 

With the contamination rate identified as 18% based on previous studies, GMM 
flagged 18% of data points as anomalous (i.e., aberrant). During the training process, 
we set the contamination rate, the number of Gaussian distributions, and the number 
of iterations. Based on the AIC and BIC values, the best number of Gaussian distri-
butions was 6. With GMM, we can also check whether the model was converged, and 
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the number of iterations required for convergence. In this study, GMM converged 
with 43 iterations. One advantage of GMM is that the density thresholds differentiat-
ing anomalies from normal data points could be set. That is, it is possible to decrease 
the threshold to avoid too many false positives or too many false negatives when the 
contamination rate is known (Géron, 2019). 

Similar to GMM, we set the contamination rate when using BGMM and 18% of the 
data points were flagged as aberrant. An advantage of BGMM over GMM is that in-
stead of manually searching for the optimal number of clusters, BGMM can automat-
ically identify the optimal number of clusters. That is, after starting with a large num-
ber of clusters at the beginning, the model automatically tunes itself to find the optimal 
number of clusters. Therefore, we set the number of Gaussian distributions to a high 
number of clusters (i.e., k = 20) and the model identified the optimal number of clus-
ters to be 6. However, both GMM and BGMM require a density threshold (i.e., per-
centage of anomalies that the researcher expect in a data set or a contamination rate) 
to be manually set, which might be challenging when these methods are applied to 
new, unexplored venues. In this study, we set the contamination rate informed by pre-
vious studies (e.g., Baker et al., 2004; Huang et al., 2022).  

iForest identified 17% of the data points as aberrant responses. We set the number of 
samples to be drawn from the data and contamination rate to auto in order to follow a 
purely data-driven approach. However, if rates of anomalies or aberrant responses are 
already known, it is possible to set these values congruent with those from previous 
empirical studies. Compared with GMM and BGMM, iForest is more robust and eas-
ier to use because hyperparameters such as the number of clusters or the contamina-
tion rate (i.e., aberrant response rate) do not have to be defined manually. 

MD identified 9% of the data points as anomalous. This proportion was much smaller 
than the observed rate of aberrant responses in previous studies on ITS (Baker et al., 
2004; Walonoski & Heffernan, 2006). To evaluate why this discrepancy occurred be-
tween MD and other anomaly detection methods (i.e., GMM and iForest), we ana-
lyzed the correlations among the features. Except for a few features, the features used 
in modeling MD did not strongly correlate with one another. This may partially ex-
plain why we observed a lower prevalence rate of aberrant responses with MD. It also 
implies that this method could be considered as a conservative method. 

With LOF, 9% of the data points were flagged as aberrant, which was the same pro-
portion of responses flagged with MD and it was significantly lower than the propor-
tion of responses flagged by GMM and iForest. With the EE method, we flagged 18% 
of the data points as aberrant. While considering all features as a whole is an advantage 
of this anomaly detection algorithm, a significant disadvantage is the need to prede-
termine the contamination rate. Based on the previous studies involving the ITS data 
(Baker et al., 2008; Huang et al., 2022), we set the contamination rate to 18%, so it is 
not surprising to have 18% of the data flagged as aberrant. 
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Table 1 
The Feature Means for Aberrant and Normal Responses across the Anomaly Detectors 

Anomaly 

Detector 
RT 

 Hint (B) 

(%) 
Hint (S) 

Hint (F) 

(%) 

Correct 

(%) 
Attempt 

 A N A N A N A N A N A N 

GMM 83.66 41.91 64 1 1.02 -0.23 23 1 11 81 2.31 1.14 

BGMM 87.70 41.02 54 3 0.86 -0.19 13 3 6 82 2.55 1.09 

iForest 110.33 37.07 61 2 0.97 -0.20 28 0 18 79 2.28 1.17 

MD 70.67 47.43 78 6 1.50 -0.14 55 0 1 75 2.58 1.24 

LOF 55.51 48.79 8 12 0.02 0 4 5 71 68 1.32 1.36 

EE 71.62 50.25 52 3 0.85 -0.19 17 2 1 84 2.54 1.09 

Note. BGMM: Bayesian Gaussian Mixture Model; EE: Elliptic Envelope, GMM: Gauss-
ian Mixture Model; iForest: Isolation Forest; LOF: Local Outlier Factor; MD: Mahalano-
bis Distance; RT: Response Time; Hint (B): whether the student requested all hints; Hint 
(S): Standardized Hint Count; Hint (F): whether the student requested a hint or attempt 
first; A: Aberrant Response; and N: Normal Response. 
 

We provided further validity evidence for the utility of these algorithms by analyzing 
the feature distributions for aberrant and normal responses for each of these methods. 
This type of validation is similar to the knowledge-engineered detector developed for 
ITS (see Huang et al., 2022; Paquette et al., 2014). Our findings concerning the feature 
distributions are reported in Table 1. All detectors but LOF performed as expected. 
The response time use was higher for aberrant responses. This is an expected outcome 
since students with aberrant responses tend to spend more time and engage in idle 
responding behavior (see Baker, 2007). The mean response time for GMM and 
BGMM were almost identical whereas we observed different mean response times for 
different anomaly detection methods. Nonetheless, across all the methods, except for 
LOF, the mean response time was longer for aberrant responses than normal re-
sponses. Furthermore, we observed that the students with aberrant responses re-
quested more hints (see Hint (B) and Hint (F) in Table 1) except for aberrant responses 
identified with LOF. For students with aberrant responses, the percent correct scores 
were much lower, and the average attempt count was much higher than normal re-
sponses. While these results provide empirical evidence for the utility of anomaly de-
tection methods of GMM, BGMM, iForest, MD, and EE, the feature distribution for 
LOF is alarming given that the most feature distributions were against the postulated 
behaviors of disengaged students . 
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Overlap between the Anomaly Detectors 

Comparing the overlap among the data points identified as anomalous (i.e., aberrant) with 
each algorithm can help us better understand the convergence rates between different 
anomaly detectors and provide stronger evidence regarding which data points were truly 
aberrant. The UpSet plot in Figure 2 demonstrates the intersections (i.e., overlap) among 
the anomaly detectors in terms of the number of aberrant responses detected in the ITS 
data set. Among the six detectors, LOF flagged the largest number of unique data points 
as aberrant responses (> 380, 000), followed by EE (> 190, 000) and iForest (> 85, 000). 

The aberrant responses detected by the LOF method were almost entirely different, 
compared with those detected by the other anomaly detection methods. Despite the 
unique data points, the UpSet plot shows that aberrant responses detected with MD, 
iForest, GMM, and BGMM overlapped greatly with one another. There are also a 
number of data points identified as aberrant responses by more than four detectors. 
However, there is no clear pattern in terms of the overlapping detectors. We also ob-
served that aberrant responses identified by MD were almost a proper subset of GMM 
and iForest. This trend was less evident with BGMM and EE. 

 
Figure 2  
The overlap between Six Anomaly Detectors  

 
Note. BGMM: Bayesian Gaussian Mixture Model; EE: Elliptic Envelope, GMM: Gauss-
ian Mixture Model; iForest: Isolation Forest; LOF: Local Outlier Factor; MD: Mahalano-
bis Distance. Aberrant responses per method were rescaled with log10. 
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Convergence between Affective States and Aberrant Responses 

We evaluated the convergence between the affective states and aberrant responses to 
provide convergent validity evidence. First, we analyzed the correlations among 
anomaly detectors (see Figure 3). We found strong correlations among iForest, GMM, 
BGMM, EE, and MD (i.e., ranging from r = .44 to r = .76). The results of all anomaly 
detection methods, except for LOF, seemed to be correlated with each other. This was 
an interesting finding that requires further investigation to decipher the underlying 
reasons for this discrepancy. 

 
Figure 3  
Correlations among Affective States and Anomaly Detection Methods  

 
Note. BGMM: Bayesian Gaussian Mixture Model; EE: Elliptic Envelope, GMM: Gauss-
ian Mixture Model; iForest: Isolation Forest; LOF: Local Outlier Factor; MD: Mahalano-
bis Distance. 
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In line with previous studies focusing on gaming behavior within the ITS context, we 
found a significant negative correlation between aberrant responses and engaged con-
centration. Although the strength of the correlation was small (i.e., r ≈ .10), we ob-
served the same trend for EE, iForest, GMM, BGMM, and MD. Furthermore, we ob-
served positive significant correlations between boredom and aberrant responses 
across the same anomaly detection methods. However, the results of these anomaly 
detection methods were not correlated with confusion and frustration. Overall, these 
findings are in accordance with findings reported by Baker et al. (2008). Interestingly, 
we did not expect to observe non-significant correlations between LOF, engaged con-
centration, and boredom. Since LOF did not correlate well with other anomaly detec-
tion methods and affective states, it is possible that either LOF identifies a completely 
different set of anomalies, or it is heavily influenced by the distributional properties 
of the data set or features. We tuned LOF with different number of k neighbors (i.e., 
k = [2:6]) and analyzed the correlations between LOF, affective states, and other 
anomaly detectors, yet we obtained very similar results across LOF with different 
number of k neighbors. Note that the way LOF identifies the local deviations, and its 
underlying mechanism may be completely different from other unsupervised anomaly 
detection algorithms used in this study. This may also suggest that aberrant response 
patterns are global rather than local, hence methods focusing on local anomalies (e.g., 
LOF) may not be apt for identifying aberrant responses in ITS. 

 

Discussion 

In this study, we compared the performances of six anomaly detection methods for 
identifying aberrant responses in an interactive cognitive assessment environment 
(i.e., ITS). The absence of ground truth about aberrant responses complicates the iden-
tification of aberrant responses in the ITS data. Similarly, non-interactive cognitive 
assessments also lacked the ground truth about aberrant responses. Thus, the ap-
proaches used for aberrant response detection in both interactive and non-interactive 
assessment environments typically are unsupervised methods. However, detecting ab-
errant responses in non-interactive environments is less challenging because data sets 
from non-interactive assessments have fewer number of items with relatively fewer 
number of missing responses. Interactive assessments, on the other hand, are likely to 
have hundreds of items, some of which are administered multiple times whereas oth-
ers are administered only a few times. 

This feature of interactive assessments complicates the aberrant response detection in 
ITS with methods established for non-interactive cognitive assessments and renders 
most of the psychometric approaches used for aberrant response detection useless. 
The performance of aberrant response detection methods (e.g., Wise & Ma, 2012, 
threshold-based methods) used with non-interactive assessments may be evaluated 
through statistical indices (e.g., improvement in fit statistics after aberrant responses 
are removed Rios & Soland, 2021; Ulitzsch et al., 2020; Wise, 2017); however, these 
approaches are not applicable to interactive learning environments. Therefore, the 
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anomaly detection methods illustrated in this study are more promising for flagging 
aberrant responses in ITS. To the best of our knowledge this is the first study compar-
ing six different anomaly detection methods and providing validity evidence through 
analyzing feature distributions and convergence between affective states and anoma-
lies. 

An interesting finding is that the results from the anomaly detection methods used in 
this study were very similar, except for the results of LOF. LOF identified a different 
set of responses as aberrant and performed very differently compared with the other 
anomaly detection algorithms. Furthermore, LOF was not adequately correlated with 
affective states present in the ITS data set. Affective states worked as our convergent 
validity criteria to evaluate the performances of anomaly detection methods in this 
study. We expected to observe significant associations between affective states and 
aberrant responses. The performance of LOF was contradictory to what we expected 
to observe; however, it highlighted the importance of selecting proper anomaly detec-
tion algorithms to capture the underlying mechanism of aberrant responses. Thus, re-
searchers and practitioners should corroborate their choice of aberrant response de-
tector by replicating the results through other methods and means. Researchers may 
set the contamination rate informed by other anomaly detection methods to evaluate 
the congruence between the selected methods. This would allow researchers to eval-
uate whether the same instances are flagged as aberrant when the same contamination 
rate is used across the anomaly detection methods proposed in this study. 

In this study, we found that iForest, EE, MD, GMM, and BGMM performed very 
similarly. We further observed that MD was almost a proper subset of these methods, 
and thus it identified a smaller set of responses as aberrant. These findings suggest 
that, when researchers want to avoid false positives in detecting aberrant responses, 
they can choose MD during the data cleaning or pre-processing stages. However, if 
the researcher aims to remove as many aberrant responses as possible (e.g., Soland et 
al., 2021), then the other anomaly detection algorithms (i.e., iForest, EE, GMM and 
BGMM) may be better options. For example, when the goal is to make inferences 
about one’s performance, researchers or practitioners may choose a more conservative 
method (i.e., MD); however, when the goal is to develop models about students’ learn-
ing and progress at the aggregate level (Gorgun & Bulut, 2022), they may opt for more 
liberal methods (i.e., iForest). Depending on the researchers’ and practitioners’ needs, 
the overlapping aberrant data points may be used to achieve accurate yet more certain 
aberrant response flagging. Nonetheless, some situations may call for a more liberal 
method where a data point is considered aberrant whenever it is flagged as anomalous 
with one of the methods used in this study. In this respect, researchers or practitioners 
may benefit from highlighting the use and inferences that they want to make by the 
use of the assessment. Considering the use and interpretations of assessments may 
help researchers or practitioners pick the appropriate anomaly detection methods. 

This study, to the best of our knowledge, is the first study comparing the performances 
of various anomaly detection algorithms based on unsupervised machine learning for 
identifying aberrant responses in ITS. We cannot pinpoint the best anomaly detection 
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method since the ITS data set utilized in this study is very contextual and the ground 
truth about aberrant responses is also absent. However, we argue that the convergence 
between different anomaly detection methods and the observed correlations between 
affective states and aberrant responses show that the anomaly detection algorithms of 
iForest, EE, MD, GMM, and BGMM could be more promising for detecting aberrant 
responses in ITS. We recommend that researchers combine multiple anomaly detec-
tion algorithms with other possible proxies in the data set (e.g., response time use, 
affective states) to flag aberrant responses more accurately and consistently. The lack 
of ground truth is a significant factor complicating the aberrant response detection. 
Therefore, we also recommend conducting some descriptive analysis of feature dis-
tributions for both normal and aberrant data points to support aberrant response flag-
ging. This would allow researchers and practitioners to support aberrant response flag-
ging with theoretical expectations. For instance, we typically expect to observe that 
aberrant responses to have higher hint requests than normal responses, reflecting hint-
abuse behavior. Corroborating the aberrant response identification process with de-
scriptive statistics can help researchers and practitioners validate their findings. 

 

Limitations and Future Direction 

Our study has several limitations. First, the absence of ground truth (i.e., which re-
sponses are truly aberrant) restricts us to employ only unsupervised anomaly detection 
methods. This situation also limited the model evaluation methods that we could use 
for understanding the false-positive and false-negative rates in the data set. Future 
studies could utilize ITS data sets with labelled aberrant responses to further evaluate 
the performances of the anomaly detection methods. Second, ITS data sets with aber-
rant responses are typically imbalanced, since the number of aberrant responses are 
much smaller than the number of non-aberrant responses. In this study, we did not 
consider the impact of the potential class imbalance problem on anomaly detection 
methods. Although some algorithms utilized in the study can handle the class imbal-
ance problem effectively (e.g., iForest; Vikram et al., 2020), the others might have 
been influenced by the presence of imbalanced classes in the ITS data set. Future re-
search is necessary to investigate the performances of anomaly detection methods 
when the class imbalance problem is addressed through sampling approaches such as 
undersampling, oversampling, and SMOTE. Third, we used the students’ first attempt 
to each question when identifying aberrant responses. This may have restricted the 
types of aberrant responses identified in the ITS data set. Future research may extend 
the findings of this study by considering multiple attempts made for each item in the 
ITS. Finally, we did not consider item or person characteristics when identifying the 
aberrant responses with the unsupervised anomaly detection methods. Yet, person 
(e.g., ability) and item characteristics (i.e., difficulty) may have influenced the perfor-
mances of the methods employed in this study. Future research can investigate the 
potential effects of such characteristics to better understand the utility of the proposed 
unsupervised anomaly detection methods for identifying aberrant responses. 
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Appendix  

Python Code 

//Libraries needed 
import numpy as np 
from collections import Counter 
//Gaussian Mixture Model 
from sklearn.mixture import GaussianMixture 
gmm = GaussianMixture(n_components = 6, n_init =15, rand
om_state = 42) 
gmm_pred=gmm.fit_predict(df) 
gmm.converged_ //check whether the model converged 
gmm.n_iter_ //number of iterations it takes to converge 
densities = gmm.score_samples(df) 
density_threshold = np.percentile(densities, 18) 
//here we set the contaminate rate to 18% 
anomalies_gmm = df[densities < density_threshold]  
//data points smaller than density threshold were flagge
d as anomalous 
//Bayesian Gaussian Mixture Model (BGMM) 
from sklearn.mixture import BayesianGaussianMixture 
bgmm = BayesianGaussianMixture(n_components=20, n_init=1
5) 
bgmm.fit(df) 
densities = bgmm.score_samples(df) 
density_threshold = np.percentile(densities, 18) 
//here we set the contaminate rate to 18% 
anomalies_bgmm = df[densities < density_threshold] 
//data points smaller than density threshold were flagge
d as anomalous 
//Isolation Forest (iForest) 
from sklearn.ensemble import IsolationForest 
iForest = IsolationForest(max_samples='auto', contaminat
ion= 'auto') 
//here we set the hyperparameters max_samples and contam
ination 
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iForest_pred = iForest.fit_predict(df) 
counter = collections.Counter(iForest_pred) 
iForest_pred_anomaly=[1 if i == -1 else 0 for i in preds
] 
//anomalies were coded with 1 
//Mahalanobis Distance (MD) 
distances = [] 
for i, val in enumerate(df): 
     p1 = val 
     p2 = centerpoint 
     distance = (p1-p2).T.dot(covariance_pm1).dot(p1-p2) 
     distances.append(distance) 
distances = np.array(distances) 
cutoff = chi2.ppf(0.95, df.shape[1])  
//Threshold value for detecting anomalies 
outlier_index = np.where(distances > cutoff ) //index of 
anomalies 
np.count_nonzero(outlier_index) //number of anomalies 
df["mahalanobis"] = np.nan 
df['mahalanobis'] = df.loc[outlier_index,'mahalanobis'] 
== 1  
df['mahalanobis'] = [1 if i == False else 0 for i in df[
'mahalanobis']]  
//anomalies were coded with 1 
//Local Outlier Factor (LOF) 
from sklearn.neighbors import LocalOutlierFactor  
lof = LocalOutlierFactor(n_neighbors=6, contamination = 
'auto', novelty = False)   
//here we need to set the hyperparameter n_neighbors 
lof_pred = lof.fit_predict(df) 
lof_pred_anomaly=[1 if i == -1 else 0 for i in lof_pred]  
//anomalies were coded with 1 
//Elliptic Envelope (EE) 
from sklearn.covariance import EllipticEnvelope 
elliptic = EllipticEnvelope(contamination =.18)  
//here we need to set the hyperparameter contamination 
ee_pred=elliptic.fit_predict(df) 
ee_pred_anomaly=[1 if i == -1 else 0 for i in ee_pred]  
//anomalies were coded with 1 


