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Abstract 

Recurrence Plots (RPs) were developed at the end of the 1980’s as visualization tools for 

complex dynamics exhibited by time series measures from physical and dynamic systems. 

At the beginning of the 1990’s RPs were further developed into Recurrence Quantification 

Analysis (RQA), which allowed for numerical characterizations – and analyses – of such 

time series. In the past couple of years, RQA has been further developed to analyze cou-

pling between two time series, the dynamics of multivariate time series, and can be used 

to derive correlations between two multivariate time series. The aim of the current paper 

is to expand on another line of development, which is to extend recurrence-based tech-

niques to the analysis of sample data – here, specifically to use RQA in order to perform 

the classical or so-called first-order Configural Frequency Analysis (CFA), as developed 

by Lienert in the 1970’s. First, RQA and some of its extensions will be introduced, that 

allow to properly deal with multidimensional categorical time series or sequences. Then, 

we will combine these existing techniques to create a framework that can perform a CFA-

type of analysis, based on a bootstrap approach. 
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Introduction 

The current paper introduces an extension of Recurrence Quantification Analysis 

(RQA), which allows to perform the basic Configural Frequency Analysis (CFA) as 

originally proposed by Lienert (1970). Configural Frequency Analysis provides a 

mean to detect whether certain patterns (i.e., configurations of categories) in categor-

ical data sets, where each unit of observation is classified in terms of multiple catego-

ries, occurs reliably more or less often than what would be expected from the basic 

occurrences category given the assumption of independence. RQA, on the other hand, 

was originally proposed as a method to visualize (Eckmann et al., 1987) and quantify 

(Webber & Zbilut, 1994; Zbilut & Webber, 1992) nonlinear correlation patterns 

within time series from physics and physiology (Marwan et al., 2007). 

RQA has, however, turned out to be a very versatile technique, and applications have 

been developed to use recurrence quantification analysis for the analysis of multidi-

mensional categorical sequences (Angus et al., 2012; Cox et al., 2016), to test for 

differences in distributional shapes between multiple samples (Wallot & Leonardi, 

2018), and to analyze multidimensional time series (Wallot et al., 2016). The present 

paper builds on both of these developments to demonstrate how the basic RQA routine 

can be extended to perform analysis of multidimensional categorical data sets in order 

to detect the presence of specific patterns of categories. 

To do so, I will first briefly introduce the basic recurrence plot for nominal data, the 

chromatic recurrence plot, and the multidimensional recurrence plot, which are com-

bined to display the distribution of patterns of categories in a data set. Because recur-

rence-based analyses are model-free, there is no specific test statistic associated with 

their application. Hence, I will develop a bootstrap procedure that will allow to per-

form a global test for the distribution of patterns within a data set, in analogy to the 

2-omnibus test of the basic or so-called first order Configural Frequency Analysis. 

Finally, I will apply this procedure to the original data by Lienert (1970) set on syn-

dromes associated with LSD-intake, and compare its results to the classical CFA-pro-

cedure. 

 

 

Recurrence Quantification Analysis (RQA) 

Recurrence Quantification Analysis (RQA) is based on the Recurrence Plot (RP), 

which was first introduced by Eckmann et al. (1987). In subsequent years, Joseph 

Zbilut and Charles Webber (1992) introduced the quantification of those plots to nu-

merically capture the dynamics and (nonlinear) autocorrelation properties of time se-

ries. Accordingly, the Recurrence Plot and Recurrence Quantification Analysis have 

originally been developed as  means to visualize and quantify the dynamics of time 

series and sequences. These applications were geared towards continuously sampled 
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signals, but soon it became clear that RQA could also be applied to categorical data 

(Dale & Spivey, 2006; Dale et al., 2011). 

How does a recurrence plot look like? Let us use the example of the following nominal 

sequence to illustrate RPs: THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN 

– the famous phrase sung by the character Eliza Doolittle in the musical “My fair 

lady”. As the name indicates, recurrence plots are about repetitions in a sequence, and 

a rhyming sentence like the one above likely contains elements – or whole subse-

quences – that appear in time and again throughout the sequence. 

In the case of such nominal sequences, defining repetitions is simple: If an element 

“A” occurs on the sixth slot of the sequence, and then occurs again on the 15 th slot of 

that sequence, then it recurs. This is easy because these elements are categorical, and 

hence we can distinguish between identity relations, like A is A, and A is NOT B. If 

we want to view such sequences thorough the lens of a recurrence plot, we first have 

to chart the sequence against itself to create a two-dimensional plot (Figure 1). 

The recurrence plot is a two-dimensional binary matrix, displayed as black and white 

dots. The black dots on the plot indicate recurrence, the white dots the absence of 

recurrence. For example, our sequence THE RAIN IN SPAIN FALLS MAINLY IN 

THE PLAIN, has an “A” on the 6th, 15th 20th, 26th, and 41st slot. Accordingly, if we 

look at the recurrence plot in Figure 1, we see black dots on the 6th row, and the 6th, 

15th 20th, 26th, and 41st columns in that plot, indicating the positions where “A” recurs. 

Further features of the recurrence plot are the central diagonal, the line of identity 

(LOI), running from the lower-left to the upper right of the plot. The line of identity 

simply indicates that the same sequence is perfectly recurrent with itself at lag0, since 

the same sequence is charted on both, the x- and the y-axis. Moreover, the recurrence 

plot is symmetrical about the LOI, so we see the same patterns of recurrences in the 

upper-left and the lower-left triangles of the plot. 

If we were interested in analyzing sequences, we could now calculate different 

measures describing its sequential properties based on different patterns on the plot, 

such as isolated recurrences, diagonally adjacent recurrences, and vertically/horizon-

tally adjacent recurrence (Marwan et al., 2007). If we were to analyze continuously 

sampled data, that is, a proper time series, we would furthermore have to set specific 

parameters – the embedding parameters – to optimize the quantification of recurrences 

on that plot (e.g., Abarbanel, 1996). For readers interested in such applications, I refer 

those readers to tutorial introductions describing these applications (Wallot, 2017). 

In the current paper, however, we are exclusively interested in dealing with nominal 

data, hence no embedding parameters are needed. Furthermore, since we are not in-

terested in quantifying sequential properties, but are rather interested in the relative 

occurrences of different combination of categories, we also do not need to apply re-

currence measures that are quantifying sequential properties. Rather, we want to use 

a recurrence plot quantify the different number of occurrences of categories, as well 

as their clustering. In order to do so, we need to consider two extensions of the basic 
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recurrence plot shown in Figure 1, which multidimensional recurrences and chromatic 

recurrence. 

 

 

Figure 1. Illustration of a recurrence plot for categorical data, using the text sequence 

THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN from the musical my fair 

lady. For categorical data, recurrences are determined through identity (i.e., “A” 

equals “A” and only “A”, and is distinct from every other letter). As can be seen in 

the plot, the latter Appears in the sequence five times in positions 6, 15, 20, 26, and 

41, as indicated by the black recurrence points. 

 

First, let us consider multidimensional recurrence quantification analysis. As the name 

implies, this extension of RQA allows for the analysis of multivariate time series data. 

To do so, let us expand on our example above. The line of the text taken from “My 

fair lady” continues in the musical by the exclamation of I THINK SHE HAS GOT 

IT I THINK SHE HAS GOT IT by Professor Higgins in response to Eliza Doolittle’s 

perfect pronunciation of THE RAIN IN SPAIN STAYS MAINLY IN THE PLAIN. 

However, we have now another important sequence of categorical data, which is the 
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speaker – Eliza Doolittle (coded as 0) and Professor Higgins (coded as 1). So our two-

dimensional categorical sequence looks like that: 

THE RAIN IN SPAIN STAYS MAINLY IN THE PLAIN I THINK SHE HAS GOT IT I THINK SHE HAS GOT IT 

00000000000000000000000000000000000000000000111111111111111111111111111111111111111111111 

These cannot be integrated into a single recurrence plot, and two separate recurrence 

plots would give quite different pictures of the sequential properties (Figure 2). As 

can be seen, we now find recurrences in the text between the two speakers (Figure 

2a), if we consider only the text, and we find a perfect separation of the speakers, but 

without any of the sequential text properties, if we consider the speakers only (i.e., the 

sequence of 0’s and 1’s – Figure 2b). 

 

 

Figure 2. Two dimensions of related categorical data. a) Depiction of a recurrence 

plot of the string that contains text by Eliza Doolittle and Professor Higgins (THE 

RAIN IN SPAIN STAYS MAINLY IN THE PLAIN I THINK SHE HAS GOT IT I 

THINK SHE HAS GOT IT). b) Depiction of a recurrence plot of the string that codes 

for the speaker of the respective piece of text (first Eliza Doolittle, then Professor 

Higgins: 

00000000000000000000000000000000000000000000111111111111111111111111

111111111111111111111). As can be seen, the two different dimensions of these re-

lated categorical sequences lead to very different recurrence plots. 

 

We can now combine these two variables in a common state-space, in which we em-

bed the two sequential series together (Figure 3a). Now we base the calculation of 

recurrences on the joint identities of both series, so that, for example, and “A” in the 

text sequence counts only as recurrence with another “A” in that sequence if the value 
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of the speaker variables is also identical (e.g., a 0 for both “A”’s). The resulting mul-

tidimensional recurrence plot is shown in Figure 3b. 

 

 

Figure 3. Illustration of a state-space and a multidimensional recurrence plot. a) “State 

space” of letters in the text (here only the letter “Y”, “A”, and the “space” between 

words are shown on the y-axis of illustrative purposes) and speakers (0 = Eliza Doo-

little, 1 = Professor Higgins). b) Multidimensional recurrence plot that contains the 

pattern of recurrences when the information from both of the categorical dimensions 

is integrated. 

 

If we were to calculate recurrence measures from such a plot, however, these measures 

would still be calculated across the two different categories (i.e., the text by Eliza 

Doolittle and Professor Higgins), and would reflect their conversation, not their indi-

vidual contributions to that conversation. In order to treat these combinations of cate-

gorical data separately – as we will have to do for a CFA-type of analysis – we will 

need to add identifiers to this recurrence plot. 

Such an analysis of different parts of a recurrence plot has been proposed by Cox and 

colleagues (2016), who called such a plot a chromatic recurrence plot. Chromatic re-

currence plots divide the structures on a plot by a category identifier, and calculate 

RQA measures separately by the identifier. The chromatic recurrence plot of our cat-

egorical data example can be seen in Figure 4. 
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Figure 4. Illustration of a chromatic multidimensional recurrence plot for the two-

dimensional categorical data, consisting of text and speaker identity. Here, recur-

rences for speaker 0 (Eliza Doolittle) are marked in black, while recurrences for 

speaker 1 (Professor Higgins) are marked in grey. 

 

Now we can compare recurrence measures across the different types of recurrence 

plots we have defined so far. The most basic recurrence measure is percent recurrence 

(%REC), which is simply the sum of all recurrence points in a recurrence plot divided 

by the size of that plot (i.e., the number of all possible recurrence points). As said 

above, there are multiple recurrence measures. In the context of the current example, 

another measure will be of central importance, the average diagonal length (ADL). 

This measure is calculated by counting the number of recurrence points that have at 

least one diagonally adjacent recurrence point, and divide the sum of these points by 

the number of the so defined diagonals. Table 1 charts the two resulting measures by 

the different recurrence plots. 
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Table 1. Recurrence measures for the different types of recurrence plots. 

Type of RP Type of measure Value 

Univariate – text %REC 11.27% 

 ADL 3.72 

Univariate – speaker %REC 50.06% 

 ADL 23.16 

Multivariate (text & speaker) %REC 50.91% 

 ADL 5.84 

Chromatic Multivariate (black) %REC 10.87% 

 ADL 4.15 

Chromatic Multivariate (grey) %REC 13.28% 

 ADL 14.43 

Note. The black and grey anisotropic recurrences effectively provide RQA measures 

of the text for the different speakers (black: Elize Doolittle; grey: Professor Higgins). 

 

As we can see, these measures differ substantially between the two univariate and the 

multivariate recurrence plot. Moreover, we see that we get two different values – one 

for each category, i.e., the text spoken by Professor Higgins and Eliza Doolittle – for 

the chromatic multidimensional recurrence plot, which is what we will need to link 

RQA to CFA. 

 

 

Using RQA to perform CFA 

Our goal here is to perform an analysis akin to the classical Configural Frequency 

Analysis (CFA). To do this, we need to first compose clusters of combinations of 

categories, and then extract their frequencies from a recurrence plot. The outlined pro-

cedure above delivers this. Let us apply this procedure to the famous data set on LSD-

intake-related syndromes, as published by Lienert (1970). 

The original question behind this data set was related to findings suggesting that LSD 

intoxication was characterized by narrowed consciousness, thought disturbances, and 

affective disturbances. Furthermore, the data seem to suggest that in case of a LSD 

intake, either all three of these symptoms where present simultaneously, or only one 

of them, but rarely any combination of only two symptoms (e.g., narrowed conscious-

ness and affective disturbances). To quantitatively test for the presence of such a syn-

drome-pattern in the data, Lienert (1970) proposed the classical CFA methods to test 
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whether specific combinations of patterns of symptoms occurred reliably more often 

than what would be expected from the base frequencies of the individual symptoms 

in the data set. 

Sixty-five students swallowed LSD and the presence or absence of the three symp-

toms was registered. Accordingly, each participant could be placed in one of possible 

patterns that could occurred given combinations of the three symptoms (i.e., 23). Table 

2 below shows the occurrences for each of these patterns. Visual inspection of that 

table shows that all participants showed at least one of the symptoms. Moreover, the 

relative distribution of the participants across the categorial combinations seem to 

speak in favor of the suggestion, that the co-occurrence of the symptoms was interde-

pendent: There were relatively few participants that reported the presence of only two 

of the three symptoms, and comparatively more that reported either 1 or 3 of these 

symptoms. 

 

Table 2. Observed and expected frequencies patterns of symptoms for the LSD 

data set 

NC TD AD f e 

0 0 0 0 4.7 

1 1 1 20 12.5 

1 1 0 1 6.8 

1 0 1 4 11.4 

1 0 0 12 6.2 

0 1 1 3 9.5 

0 1 0 10 5.2 

0 0 1 15 8.6 

Note. The different symptoms are coded for with the letters “NC”, “TD”, and “AD”: 

“NC” = narrowed consciousness, “TD” = thought disorder, and “AD” = affective dis-

turbances. A “1” marks that the specific symptom was present in participants, a “0” 

marks that the specific symptom was absent. “f” are the observed frequencies of par-

ticipants that fall into a specific three-dimensional pattern of symptoms, while “e” is 

the expected number of participants for a specific pattern, assuming independent dis-

tribution of participants across patterns given the basic number of occurrences of each 

symptom. 
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To conduct Configural Frequency Analysis, we use the marginal sums to compute the 

expected values given the base-occurrences of each symptom and the assumption of 

independence of the symptom combinations. Now, a 2-value can be deduced from 

the observed and expected occurrences. This allows the application of individual tests 

of each of the categories regarding the deviation of its observed and expected values. 

Moreover, the sum of these deviations allows the application of a 2-omnibus test, 

testing the null-hypothesis which allows to test deviations from the null-hypothesis 

that the occurrences of the different symptoms are independently each other. 

For the LSD-data set, the 2-value for this omnibus test is 2(4) = 38.02, which indi-

cates a significant deviation from the distribution for occurrences over the patterns of 

categories given the null-hypothesis of independent combinations at alpha = 0.05. 

Let us reproduce this test using the recurrence procedure outline above. First, we con-

struct a state-space for our data set as in the My Fair Lady example above, but with 

our three categories (and some jitter added; see Figure 5a). Now we compute a recur-

rence plot using multidimensional recurrence quantification procedure, and apply 

identifiers for each of the patterns of symptoms according to chromatic recurrence 

analysis (Figure 5b). 

 

 

Figure 5. Illustration of the state-space and recurrence plot of the LSD data set. a) 

State-space of the number of occurrences of the different patterns of symptoms (nar-

rowed consciousness, thought disorder, and affective disturbances). b) Resulting mul-

tidimensional chromatic recurrence plot. Note that the square-patches of recurrences 

are proportional in size to the number of occurrences for each symptom pattern. 
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After having computed this plot, we can now apply a recurrence measure – the average 

vertical line length (AVL) – to the data. As this measure is applied separately to the 

different identifiers, we receive a separate AVL-value for each of the 8 different pat-

terns of symptoms. As the name implies, AVL measures the average vertical line 

length of a patch of recurrence. As our different categories of occurrences always from 

squares of recurrence (see Figure 5b), AVL equals the square-root of the squares of 

recurrences associated with each category (e.g., a square-patch of 3-times-3 recur-

rences has a height of 3 vertically adjacent recurrence points; hence, AVL equals 3 for 

such a patch). This reproduces exactly the observed frequencies that appear in Table 

2 above. 

However, if we want to stay within the recurrence framework, we cannot have frac-

tions of recurrence points. A data point is either recurrent (= 1) or not (= 0), so we 

cannot analytically deduce expected frequencies as in the original CFA method, de-

scribed above. Hence, in order to compose a test of significance, we need to employ 

a two-step boot-strapping procedure. 

In the first step, we create recurrence plot based on a boot-strapped data set of equal 

sample size to the original sample (n = 65, in our case) where the combinations of 

categories are independent of each other. Then, we run this recurrence plot through 

the same procedure as the original data, and apply the AVL measure. Now we can 

calculate the difference between the AVL measure for each of the categorical patterns 

of the original data and the AVL measure for each of the independent-occurrences 

boot-strapped data. 

If we want to construct an omnibus test to evaluate the overall deviation of the ob-

served data from independently composed combinations of categories – which is our 

goal – this procedure will not suffice, because sum of the deviations is always zero. 

Also, taking the absolute value of the deviations is not enough, because this sum will 

always be positive. Accordingly, we have to add a second step, which is effectively 

bringing in a baseline deviation given the expected occurrences under the assumption 

of independence. 

In this second step, we draw another bootstrap-sample under the condition of inde-

pendence and subtract the numbers from the second sample from the one of the first 

sample, taking the absolute value. This provides us with a measure of the expected 

deviation of cases under the condition of independence. Now, we can subtract the 

absolute deviation of the independence-independence case from the absolute devia-

tion of the observed data and the independent data set, which provides us with a meas-

ure of how much bigger the deviation between of the observed data is from the inde-

pendence data compared to the independence case alone. Figure 6 illustrates the pro-

cedure. Equation 1 summarized the computation of the difference scores over which 

a confidence interval can be calculated: 
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Figure 6. Illustration of the boot strapping procedure to deduce a confidence interval 

that test the hypothesis that the deviation of the observed occurrences across the pat-

tern of categories is significantly different from the occurrences expected under the 

independence assumption. First, a recurrence plot is computed based on the bootstrap 

of the observed occurrence and another recurrence plot is computed based on the boot-

strap of the expected occurrence. For each of the patterns of categories, the AVL-

measure is computed and pairwise subtracted. Then, the absolute values of these dif-

ferences are summed. This gives an estimate of the difference between the observed 

and expected data. Second, two recurrence plots are computed based on bootstraps of 

the expected occurrences. Likewise, the AVL-measure is computed for each of the 

patterns of categories, which are subtracted from each other, and their absolute differ-

ences are summed. Finally, the sum of the differences from the expected-expected 

pair is subtracted from the sum of the differences of the observed-expected pair. This 

gives us a measure of how much bigger the deviation between the observed-expected 

data is compared to the differences one would expect from two expected pairs alone. 

Then, the process is repeated to generate a distribution of such difference values, over 

which a confidence interval can be computed. 

∑ (|𝑜𝑖 − 𝑒𝑖|) −
𝑛
𝑖=1 ∑ (|𝑒𝑖 − 𝑒𝑖|)

𝑛
𝑖=1    (eq. 1) 

Where: 

n = number of patterns of categories (8 in the present example). 

i = the index of the pattern of categories. 

o = the average diagonal line measure of a pattern for a bootstrap based on the ob-

served occurrences. 
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e = the average diagonal line measure of a pattern for a bootstrap based on the ex-

pected occurrences. 

 

This procedure can now be used to construct a confidence interval testing the null-

hypothesis that the difference between the observed data and the independence-data 

is zero (i.e., when the values of zero is included in the confidence interval) or bigger 

than zero (when zero lies outside of the confidence interval), and thus provides an 

omnibus test for our data. In case of the LSD-dataset, the confidence bounds for the 

95%-one-tailed confidence interval are [8, 62], indicating a significant deviation of 

the observed data from the null-hypothesis of independent composition of the catego-

ries of symptoms, analogously to the results obtained from CFA. 

Similarly, confidence intervals can be deduced for each of the eight individual cells – 

the patterns of categories – using the bootstrapped absolute differences between the 

observed and expected frequencies. Table 3 shows the confidence bounds for the re-

spective 95%-one-tailed intervals. As expected, and similarly to the results obtained 

by the CFA procedure, these confidence bounds are close to 0 and suggest a less reli-

able difference, because the individual cells have fewer observations compared to the 

whole sample. 

 

Table 3. Confidence bounds for the eight individual patterns of categories. 

NC TD AD 

                      f 95%-CI 

one-tailed 

0 0 0 0 [2, 14] 

1 1 1 20 [4, 18] 

1 1 0 1 [2, 15] 

1 0 1 4 [2, 22] 

1 0 0 12 [1, 19] 

0 1 1 3 [1, 19] 

0 1 0 10 [1, 23] 

0 0 1 15 [3, 18] 

Note. The different symptoms are coded for with the letters “NC”, “TD”, and “AD”: 

“NC” = narrowed consciousness, “TD” = thought disorder, and “AD” = affective dis-

turbances. The confidence bounds show the 95%-one-tailed cut-offs. 
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Conclusion 

The current paper briefly introduced recurrence quantification analysis as a time series 

analysis technique, and proposed an extension of recurrence analysis to conducted 

analysis of multidimensional categorical sample data in analogy to configural fre-

quency analysis, originally proposed by Lienert (1970). Combining several recurrence 

analysis methods (particularly multidimensional recurrence quantification analysis 

and chromatic recurrence quantification analysis) together with a bootstrapping pro-

cedure allowed to construct a confidence interval, which can be used as an omnibus 

test for the null-hypothesis, that the categories in a multidimensional categorical data 

set cluster independently of each other, in analogy to the 2-omnibus test provided by 

CFA. 

This shows the versatility of the recurrence analysis framework to mimic various sta-

tistical procedures testing not only for properties of time series data (Marwan et al, 

2007), but extending earlier works that showed that RQA can also be used to analyze 

properties of sample distributions (Wallot & Leonardi, 2018). 

Future developments along this path could potentially include advances methods of 

configural frequency analysis, such as two-sample CFA or longitudinal CFA (see 

Stemmler, 2020). However, while the extension of RQA proposed in the present paper 

is of interest from the perspective of recurrence-based analysis, it remains an open 

question in how far these methods are superior or even qual to the existing CFA pro-

cedures. While bootstrapping procedures as employed in the current method are ro-

bust, they are also potentially less sensitive, and further research is needed that pro-

vides in-depth head-to-head comparisons between the ability of RQA and CFA to 

reliably detect differences in the distribution of occurrences across patterns of cate-

gorical data. 
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