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Abstract: 
Although the item-position effect has frequently been observed in intelligence testing 
among adults, it remains unclear whether there is such an effect in children and how it 
develops over time. Data on Raven’s Standard Progressive Matrices (SPM) were collected 
from 189 primary school-aged children (10-11 years old) twice, with an interval of one and a 
half years. The item-position effect of SPM was represented separately from the ability-spe-
cific component by means of fixed-links modeling. The variance parameters of the latent 
variables in the model were thoroughly analyzed. The results indicated that including the 
item-position factor yielded better model fit to the SPM data collected at both time points. 
The variances of both the ability-specific and item-position factors were significant, confir-
ming the presence of the item-position effect in addition to ability. The comparison of the 
scaled estimates of the variance parameters showed that the item-position effect accoun-
ted for more variances in SPM scores at Time 2 (72.08%) than Time 1 (48.10%). Further-
more, the correlation between the item-position factors (r = 0 .88) across two time points 
was much smaller than that between the ability-specific factors (r = 0 .34). Taken together, 
these results demonstrate a substantial change of the item-position effect underlying SPM 
as children grow up. 
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Introduction

The item-position effect is a method effect 
that was described by Campbell and Mohr 
(1950) and Mollenkopf (1950) in the same 
year for the first time. This effect means 
that there is some degree of dependency of 
the item statistics on the positions of these 
items within the sequence of items. For fac-
tor-analytic research into this effect an in-
vestigation by Knowles (1988) is especially 
important. Knowles reports that the reli-
abilities of the items increase from the first 
to the last items. This increase is observed in 
considering several different arrangements 
of the individual items. This observation 
suggests that the sequence of items creates 
systematic variation that increases from the 
first to the last items independently of the 
positions of the individual items. It reveals 
that systematic variation can be perceived 
as a function of the position of the item. It is 
additional systematic variation besides the 
variation due to the construct represented 
by the scale. Assume that           is the com-
plete systematic variance of the ith item (i = 
1, …, p) that is composed of the part due to 
the genuine source of responding
and the part due to the source of the 
item-position effect 

         
so that 

                                                                     

In confirmatory factor models systematic 
variance is represented by the product of 
three multipliers: the factor loading λ, the 
model-specific systematic variance σm and 
the transpose of the factor loading λ’ so that 
Equation 1 can be re-written as

                                          

Now function fIP ( ) can be introduced that 
describes how the size of the systematic 
variance is influenced by the item position. 
This function that can be defined differently 
replaces    

   
 in Equation 2 for representing 

the item-position effect. Furthermore, there 
is function fgenuine ( ) that describes how the 
genuine source of the scale reflecting the 
measured construct contributes to the sys-
tematic variance. It replaces             

       
.   The 

replacements lead to the following equation 
that provides a formal description of the 
complete systematic variance of item i:

                                         

Knowles’ observation provided the basis 
for the factor-analytic investigation of the 
effect since factor analysis is designed to 
capture systematic variation of data. The 
paper by Knowles is not especially specific 
regarding the course of the increase. What 
is apparent is that there is a small mono-
tonic increase. In a recent study, possible 
representations of increase were systemat-
ically investigated (Zeller, Krampen, Reiss, 
& Schweizer, 2017). The relational pattern 
used in this study was obtained from a large 
sample of APM (Raven, Raven, & Court, 
1997) data. Structured random data simu-
lated according to this pattern were investi-
gated. The best model fit was observed for a 
piecewise function that was adapted to the 
data. However, it did not substantially differ 
from the course of the effect according to 
the quadratic function:    
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where i = 2, …, p, p the number of items 
and fIP (1) = 0. The position number is divid-
ed by p to keep the values within a limited 
range. So far it is not clear whether the qua-
dratic function is the best function for data 
collected by all reasoning scales or whether 
the effect follows a function that is charac-
teristic for APM only. Furthermore, charac-
teristics of the sample may play a role.      

The factor-analytic investigation of the 
item-position effect started with the inves-
tigation of this effect in personality items 
by Hartig, Hölzel, and Moosbrugger (2007) 
using a model of measurement that includ-
ed one latent variable only. Such a model 
requires the integration of two effects. One 
effect is the effect that is captured by the 
scale and the other one is the item-position 
effect. It is necessary to find constraints 
that capture both effects simultaneously. 
The confirmatory factor model by Hartig et 
al. (2007) stays within the framework of the 
congeneric model ( Jöreskog, 1971) but also 
differs from it in that the factor loadings are 
constrained instead of estimated.

Furthermore, there is the two-factor mod-
el by Schweizer, Schreiner, and Gold (2009). 
Two-factor models have become popular 
for the investigation of multitrait-multi-
method data. The two-factor confirmatory 
factor model for investigating the item-po-
sition effect includes two latent variables: 
one for capturing the effect of the source 
underlying the scale and the other one for 
capturing the item-position effect. Follow-
ing McDonald (1965) we address the factor 
associated with the source captured by the 
scale as genuine factor and the other one as 
item-position factor and signify this by the 
subscript IP:

      x =  λgenuine ξgenuine  +  λIP ξIP + δ     	

where x is the p×1 vector of manifest vari-
ables, λgenuine and λIP the p×1 vectors of fac-
tor loadings, ξgenuine and ξIP the latent vari-
ables and δ the p×1 vector of error variables.

An important characteristic of the inves-
tigation of the item-position effect is the 
constraint of factor loadings. This means 
that the factor loadings are set equal to 
numbers. For example, there is reason for 
constraining the factor loadings on the la-
tent variable capturing the item-position 
effect according to Equation 4. This means 
that the factor loadings of the ith item on 
the item-position factor λIP is given by

                               

                                  	
and the vector of factor loadings by
                                            

                      	  

The constraint of factor loadings assures 
that the latent variable captures what it is 
expected to capture. In contrast, in the case 
of free factor loadings the factor accounts 
for as much variance as is possible. This 
can mean that other effects are partly or 
completely accommodated but this stays 
unknown. Furthermore, the constraint of 
the factor loadings on a factor creates a 
strong hypothesis. We refer to a hypothe-
sis as strong hypothesis if it can be easily 
rejected. A strong hypothesis depends on 
one or a few parameters only whereas weak 
hypotheses depend on a larger number of 
parameters. 
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Such a hypothesis is merged with the 
corresponding model of measurement so 
that the investigation of the model of mea-
surement implies the investigation of the 
hypothesis (Schweizer, 2008) If this hypoth-
esis does not apply, model misfit can be ex-
pected. Not all the factor loadings need to 
be constrained if a specific hypothesis is to 
be investigated. There is the possibility to 
use a hybrid model that includes constraints 
for the factor representing the hypothesis 
and free factor loadings on other factors (e.g., 
Schweizer, Reiß, Ren, Wang, & Troche, 2019).   

In models with fixed factor loadings the 
influences of the sources captured by the 
latent variables find its expression in the 
variance parameter that is estimated. The 
variance parameter is part of the model of 
the covariance matrix ( Jöreskog, 1970). This 
p×p matrix Σ is defined as 

                                            

                              	
where Λ is the p×q matrix of factor load-

ings, Φ the q×q matrix of the variances and 
covariances of the latent variables and xx 
the p×p diagonal matrix of error variances.

The estimate of the variance parame-
ter indicates the amount of variance that 
is explained by the corresponding latent 
variable (Schweizer, Troche, & DiStefano, 
2019). For achieving comparability of the 
variances of different latent variables, ap-
propriate scaling is necessary. There is one 
scaling method that is frequently consid-
ered in designing models of measurement: 
the marker-variable method. It does not 
allow the comparison of variances because 
the result depends on the selected marker 
so that different results are achieved for dif-
ferent markers. We prefer a criterion-based 
method that enables comparability of the 
estimated variances (Schweizer, 2011). The 

EV scaling method produces estimates that 
are comparable when estimated within the 
framework of the same model of measure-
ment. A characteristic of the modified ver-
sion of this scaling method (Schweizer et 
al., 2019) is that the estimated variance φEV 

corresponds to the sum of squared factor 
loadings under the condition that the fac-
tor loadings are estimated with the variance 
parameter of the model set equal to one: 

                                                                      	

where λS is the p×1 vector of factor load-
ings and the subscript S signifies the specific 
condition leading to the non-standardized 
estimates of the factor loadings. The esti-
mated variance φEV represents systematic 
variation in the sense of complete system-
atic variation as, for example,                 and 
xxxxxxx Furthermore, under this specific 
condition variance estimates correspond to 
eigen values if everything else is kept con-
stant as, for example, the estimation meth-
od (Schweizer, Troche, & Reiss, 2017).

So far the variance parameter has not 
played a major role in investigations by con-
firmatory factor analysis since the focus was 
on model fit. However, the variance param-
eter of the confirmatory factor model can 
provide additional valuable information. It 
can be considered as a statistic that can be 
used for the same purpose as the regressions 
weight in multiple regression analysis (Sch-
weizer et al., 2019). If there are several predic-
tors, i.e., latent variables, the scaled variance 
parameters signify the relative influences of 
the predictors on the criterion variable. 

The research work presented in this pa-
per focuses on the position effect in a fluid 
intelligence measure (i.e., Raven’s Standard 
Progressive Matrices) among children. Spe-
cifically, we aim to investigate: (1) whether 
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there is the item-position effect in a fluid in-
telligence measure for children when their 
cognitive abilities are still under develop-
ment, (2) whether the variance explained by 
the item-position effect changes as children 
grow up, and (3) whether the item-position 
effects observed at different time points are 
related to each other in longitudinal data. 
In order to answer these questions, fixed-
links models, in which factor loadings are 
fixed according to the characteristics of 
the hypothesized construct, are employed. 
In these models, two sources of fluid intel-
ligence, including the ability-specific and 
item-position effects, are represented by 
two latent variables. The statistical investi-
gation of the variance parameter associat-
ed with the item-position effect can signify 
whether the data show this effect or not. 
The scaling of the estimates of variance pa-
rameters (Schweizer et al., 2019) establishes 
the precondition for investigating the rela-
tive importance of the item-position effect 
compared to ability. Higher percentages of 
the scaled variance for the item-position ef-
fect can signify a larger role played by the 
item-position effect. Furthermore, the sub-
stantial or negligible relationship between 
the item-position effects estimated at the 
two time points signifies either the stabili-
ty or variability of the item-position effect, 
respectively.

Method

Participants

Participants were 189 primary school 
students in 5th grade, who were followed 
through 6th grade. There were 118 males and 
71 females with a mean age of 10.71 years 
(SD = .29) at time point one and a means age 

of 12.21 years (SD = .29) at time point two. 
Participants received a gift for their partic-
ipation. 

Measures and procedure

Raven’s Standard Progressive Matrices 
(SPM, Raven, Raven, & Court, 1998). 
SPM was composed of five sets (A to E), 
each including 12 items. The items within 
a set were arranged in an ascending order 
of difficulty. Each item consisted of a matrix 
in which one part was missing. Participants 
were asked to complete a matrix by select-
ing the most appropriate geometric figure 
from 6 (sets A and B) or 8 (sets C, D, and E) 
alternatives. Responses to each item were 
recorded as binary data. A correct response 
was coded as 1 whereas an incorrect re-
sponse as 0. Participants were given 15 min 
to complete all items. 

Participants were tested in classroom 
groups which ranged in number from 30 to 
40. The instruction was given by a trained 
master student in psychology. During test-
ing the participants were supervised by 
the class teacher and two other master 
students. Initially (Time 1), they complet-
ed the 30 even-numbered items of SPM in 
the first week of November 2017. One and a 
half years later (Time 2), the children were 
retested on the 30 odd-numbered items of 
SPM in the last week of May 2019. 

Statistical analysis

Following previous studies that have cap-
tured the item-position effect underlying 
Raven’s Matrices (e.g., Lozano, 2015; Ren et 
al., 2012, 2014), 10 composites were calcu-
lated by adding the scores of three neigh-
boring items of SPM. These composites were 
used as manifest variables in the models.
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Several CFA models were constructed for 
investigating the underlying structure of 
SPM. First, there were a couple of two-factor 
models including two latent variables that 
were not allowed to correlate with each oth-
er. These models included a latent variable 
representing the core of fluid intelligence. It 
was denoted the ability-specific latent vari-
able and showed factor loadings of equal 
size. The other latent variable represented 
the item-position effect identified by either 
linearly or quadratically increasing factor 
loadings giving rise to two different mod-
els (Ren et al., 2014). It was referred to as 
the item-position latent variable. Second, 
two types of one-factor models comprising 
a single latent variable denoted fluid rea-
soning ability (with either freely estimated 
or fixed factor loadings) were specified for 
model comparisons. Eliminating the po-
sition-specific factor from the two-factor 
model leaves the one-factor model with 
constrained factor loadings. We consider 
a better model fit for the two-factor model 
than for the one-factor model as indication 
of the existence of the item-position effect. 

Next, the scaled variance parameters of 
the latent variables were computed (Sch-
weizer et al., 2019). This enabled compar-
isons among the estimates of the variance 
parameters, and therefore, interpretations 
regarding the relative importance of latent 
variables. Fourth, multiple group analy-
sis was conducted to investigate whether 
there were substantial differences between 
the variances of the ability-specific and 
item-position factors of SPM across two 
time points.

Furthermore, the ability-specific and 
item-position components of SPM at two 
time points were linked to each other so 
that the stability of the two components 
over time could be examined. We also ex-

amined whether the correlation between 
the ability-specific components across time 
was statistically different from that between 
the item-position components. 

Maximum likelihood method was used 
to estimate the parameters by means of 
LISREL 8.8 ( Jöreskog & Sörbom, 2006). The 
fit statistics were evaluated using the crite-
ria recommended by DiStefano (2016) and 
Kline (2005). The model fit was considered 
good (or acceptable) if normed χ2 (= χ2/df) 
≤ 2 (3), RMSEA ≤ .05 (.08), SRMR ≤ .05 (.10), 
and CFI ≥ .95 (.90). In addition, comparisons 
between the non-nested models were per-
formed by means of the Akaike’s informa-
tion criterion (AIC). A model with a smaller 
AIC indicated a better fit.	  

Results

Descriptive statistics

The mean sum scores of correct responses 
in SPM were 20.43 (SD = 3.09) at Time 1, and 
25.64 (SD = 2.42) at Time 2. Paired sample 
t-test was conducted to examine the differ-
ence in SPM scores between Times 1 and 
2. The results revealed that children per-
formed significantly better at Time 2 than 
Time 1 (t = 22.65, p < .001), suggesting a sub-
stantial development of fluid intelligence as 
children grew up. There was only a medium 
correlation between the sum scores of SPM 
at Times 1 and 2 (r = .36, p < .001). Further-
more, accuracy on individual items of SPM 
showed different patterns at Times 1 and 
2. As Figure 1 illustrates, while the accura-
cy of items within each set (every six items) 
showed a decreasing trend at both time 
points, the participants performed much 
better on the first three sets at Time 2 than 
Time 1.    
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The item-position effect in SPM across 
two time points
To examine whether there was the suspect-
ed item-position effect underlying SPM, a 
series of two-factor models including both 
the ability-specific and item-position com-
ponents were constructed. Table 1 presents 
the fit results for the first wave of data. When 
all 10 composites were included in the CFA 
model as manifest variables, the ability-po-
sition models showed acceptable fit results 
according to the normed χ2, RMSEA, and 
SRMR, but no acceptable results for CFI. 
The bad model fit might be due to the ceiling 
effect underlying first several composites. 
That is, the items included in those com-
posites were solved correctly by most par-
ticipants, and thus showed extremely small 
variances. Therefore, we retested the abili-
ty-position models by eliminating either the 
first composite or the first two composites. 
After doing so, the ability-position models 
still described the data poorly according 
to CFI. Since the first as well as the third 
composites showed the smallest variances, 
these two composites were eliminated. Pro-
ceeding with the reduced set of composites, 
the model with quadratically increasing 
factor loadings showed acceptable fit on all 

fit statistics, while the model with linearly 
increasing loadings was not. Based on the 
same eight composites, the one-factor mod-
els with either freely estimated or constant 
factor loadings were constructed. The mod-
el fit for these two models was not accept-
able and substantially worse than the corre-
sponding two-factor model. Taken together, 
the ability-position model with quadrati-
cally increasing loadings provided the best 
description of the underlying structure of 
SPM. Furthermore, the variances of the la-
tent variables in this model reached statis-
tical significance (ability-specific: Z = 3.68, 
p < .001; item-position: Z = 3.52, p < .001), 
suggesting that both the ability-specific and 
item-position components represented im-
portant sources of variance.

The same models were constructed for 
the second wave of data. Table 2 shows the 
fit statistics for these models. Results indi-
cated that the ability-position models with 
10, 9, or 8 (3-10) composites showed no 
acceptable CFI results. Again, after elimi-
nating the first and third composites, both 
models with linearly and quadratically in-
creasing factor loadings turned out to be 
acceptable. Further evidence was provided 
by comparing the one-factor and two-fac-

 
 

 
 
 

 

 
Figure 1. Means and standard errors for each item of SPM at times 1 (left) and 2 (right)

Figure 1	 Means and standard errors for each item of SPM at times 1 (left) and 2 (right)
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tor models. The corresponding one-factor 
model with constant factor loadings was not 
acceptable. Although the one-factor model 
with freely estimated factor loadings showed 
good fit, its AIC was slightly larger than the 
ability-position model with linearly increas-
ing loadings. Taken together, this ability-po-
sition model provided the best account of the 
SPM data collected at Time 2. Furthermore, 
the variances of the latent variables in this 
model were also significant (ability-specific: 
Z = 3.68, p < .001; item-position: Z = 3.52, p < 
.001), suggesting that both the ability-specif-
ic and item-position components were cru-

cial in accounting for the variances of SPM. 
Overall, the item-position component was 
identified in both SPM datasets. 

A further question was whether the vari-
ances of the ability-specific and item-po-
sition components changed as children 
grew up. Two approaches were used to an-
swer this question. First, we computed the 
scaled variances of the latent variables in 
the two-factor model with best model fit 
(cf. Schweizer et al., 2019). As for the first 
wave of data, it revealed values of 0.436 
for the ability-specific factor and 0.404 for 
the item-position factor. The ability-spe-

Model χ2 df χ2/df RMSEA SRMR CFI AIC

Ability-position (composites 1-10)

Linear increase 73.44 43 1.71 .061 .079 .821 97.44

Quadratic increase 70.72 43 1.64 .059 .080 .837 94.72

Ability-position (composites 2-10)

Linear increase 61.27 34 1.80 .065 .079 .840 83.27

Quadratic increase 57.25 34 1.68 .060 .078 .865 79.25

Ability-position (composites 3-10)

Linear increase 49.79 26 1.92 .070 .079 .853 69.79

Quadratic increase 47.06 26 1.81 .066 .078 .871 67.06

Ability-position (composites 2, 4-10)

Linear increase 38.57 26 1.48 .051 .070 .895 58.57

Quadratic increase 37.68 26 1.45 .049 .070 .904 57.68

One-factor (composites 2, 4-10)

Freely estimated loadings 37.55 20 1.88 .068 .064 .855 69.55

Constant loadings 50.45 27 1.87 .068 .085 .799 68.45

Table 1	 Fit Statistics of the Measurement Models of SPM for the First Wave of Data (N = 189).
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cific and the item-position latent variables 
accounted for 51.90% and 48.10% of latent 
variance, respectively. Regarding the second 
wave of data, the scaled variances of the two 
latent variables were .208 and .537, indicat-
ing that the ability-specific and item-posi-
tion latent variables accounted for 27.92% 
and 72.08% of latent variance, respectively. 
This result revealed that the item-position 
effect accounted for more variances of SPM 
as children grew up.

Second, multiple-group analysis was con-
ducted to examine whether the variances of 
the two latent variables were invariant or 
not. In a first step, we constructed a model 
with no restrictions placed on parameters 
among the two waves of data. This model 
served as a baseline against which the fit 
of a more restricted model was compared. 
The fit statistics of this model showed an 
acceptable fit to the observed data, χ2 (52) 
= 71.32, RMSEA = .044, SRMR = .071, CFI 
= .931, AIC = 111.32. Then, this model was 

Model χ2 df χ2/df RMSEA SRMR CFI AIC

Ability-position (composites 1-10)

Linear increase 62.46 43 1.45 .049 .075 .870 86.46

Quadratic increase 70.21 43 1.63 .058 .082 .832 94.22

Ability-position (composites 2-10)

Linear increase 55.18 34 1.62 .058 .079 .871 77.18

Quadratic increase 60.42 34 1.78 .064 .084 .846 82.42

Ability-position (composites 3-10)

Linear increase 47.91 26 1.84 .067 .082 .860 67.91

Quadratic increase 53.99 26 2.08 .076 .091 .822 73.99

Ability-position (composites 2, 4-10)

Linear increase 33.64 26 1.41 .040 .071 .948 53.64

Quadratic increase 39.24 26 1.51 .052 .078 .945 59.24

One-factor (composites 2, 4-10)

Freely estimated loadings 21.79 20 1.09 .022 .047 .987 53.79

Constant loadings 53.51 27 1.98 .072 .099 .846 71.51

Table 2	 Fit Statistics of the Measurement Models of SPM for the Second Wave of Data 
	 (N = 189).
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modified by constraining the variances of 
the ability-specific latent variable to be 
equal across two time points. The fit of this 
restricted model turned out to be good, χ2 
(53) = 71.52, RMSEA = .043, SRMR = .071, 
CFI = .933, AIC = 109.52. The restriction did 
not worsen the model fit, as indicated by a 
non-significant model difference, Δ χ2 (1) = 
.20, p > .05. However, after the variance of 
the item-position latent variable was con-
strained to be equal, the model became un-
acceptable, χ2 (53) = 90.56, RMSEA = .061, 
SRMR = .098, CFI = .871, AIC = 128.56, and 
the restriction deteriorated the model fit, as 
indicated by a significant model difference, 
Δ χ2 (1) = 19.24, p < .001. This result suggest-
ed that the item-position effect substantial-
ly changed as fluid intelligence developed.   

   
Relationship between the ability-specific 
and position-effect components across time
Based on the measurement models used for 
investigating SPM at Times 1 and 2, we com-
bined them into a comprehensive model, in 
which the two ability-specific latent vari-

ables and the two item-position latent vari-
ables were linked to each other (see Figure 
2). This model showed an acceptable model 
fit, χ2 (114) = 132.96, RMSEA = .030, SRMR 
= .072, CFI = .941, AIC = 176.96. There was 
a significant correlation between the abil-
ity-specific components across two time 
points (r = .88, t = 3.46, p < .001) whereas 
the correlation between the item-position 
components was not significant (r = .34, t = 
1.68, p > .05). Assuming that the correlations 
might be affected by the change in the vari-
ances of the latent variables over time, the 
correlations were estimated individually 
but not simultaneously. The correlation be-
tween the ability-specific components was 
.99 (t = 4.56, p < .001), while the correlation 
between the item-position components was 
.61 (t = 3.53, p < .001). Furthermore, con-
straining the two correlations to be equal 
worsened the model fit, Δ χ2 (1) = 19.56, p < 
.001. Taken together, these results suggested 
that as age increased, the ability component 
remained relatively stable but the item-po-
sition component altered substantially. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The relationship between the ability and the item-position components of 

SPM across two time points (Comi1 = the i-th composite score of SPM at time point 1, 

Comi2 = the i-th composite score of SPM at time point 2, T1 = Time 1, T2 = Time 2, 
*p < .05). 
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Figure 2	 The relationship between the ability and the item-position components of SPM across 	
	 two time points (Comi1 = the i-th composite score of SPM at time point 1, Comi2 = the 	
	 i-th composite score of SPM at time point 2, T1 = Time 1, T2 = Time 2, *p < .05).
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Discussion

Starting from the question whether the 
item-position effect can be observed in the 
fluid intelligence measure for children and 
how this effect develops as children grow 
up, longitudinal data collected at two time 
pointes were investigated by means of fixed-
links modeling. The impact of the item-po-
sition latent variable on the fit statistics 
suggests that modeling the item-position 
effect is essential for achieving good model 
fit. The comparison of the scaled variances 
of latent variables showed that the item-po-
sition effect accounted for larger propor-
tions of variance in SPM scores at Time 2 
than Time 1. Furthermore, while the abili-
ty-specific latent variables across two time 
points were substantially related, the cor-
relation between the item-position effect la-
tent variables was insignificant, suggesting 
a remarkable change of the item-position 
effect in contrast to the stability of ability 
over time.

The superior model fit of the ability-po-
sition model indicates the presence of the 
item-position effect in intelligence testing 
on children. This result replicates the out-
come of the first attempt to examine the 
item-position effect in children (Sun, Sch-
weizer, & Ren, 2019) and confirms that SPM 
scores are influenced by the position effect 
besides ability. Sun et al. (2019) firstly inves-
tigated whether there was an age difference 
in the emergence of the item-position ef-
fect in fluid intelligence testing. They com-
pared the ability-position models among 
primary school age children (7-8 years old) 
and secondary school age adolescents (12-
13 years old). While the ability-position 
model showed good fit, the variance of the 
item-position factor was only significant 
in the older group but not in the younger 

group. Since the ability to learn and deliber-
ately use complex rules has been proposed 
as main source of the item-position effect 
(Ren et al., 2014; Carlstedt, Gustafsson, & 
Ullstadius, 2000), they ascribe the deficien-
cy of the item-position effect in younger 
children to the insufficient development of 
their learning abilities. When their learning 
ability increases, the item-position effect 
emerges as a source of systematic varia-
tion captured in fluid intelligence testing. 
Our study lowers the emergence age of the 
item-position effect from 12-13 years old 
to 10-11 years old and firstly confirmed the 
presence of the item-position effect in intel-
ligence testing by the longitudinal data.

The relationship between the item-po-
sition effect and learning suggests that 
working memory may play a major role in 
the developmental changes regarding the 
item-position effect. Learning has been 
found to be closely related to working mem-
ory (e.g., Ren, Schweizer, Wang, & Gong, 
2017; Wang, Ren, Altmeyer, & Schweizer, 
2013; Wang, Ren, & Schweizer, 2015; Wang, 
Ren, & Schweizer, 2017; Wang, Ren, & Sch-
weizer, 2019; Zeller, Wang, Reiss, & Schweiz-
er, 2017). For instance, Wang et al. (2015) 
revealed that the ability to hold information 
temporarily and the shifting process play 
essential roles in acquiring new rules for 
categorization. According to developmen-
tal research, working memory undergoes 
rapid development during primary school 
years (Gathercole, Pickering, Ambridge, & 
Wearing, 2004; Xu et al., 2014). Therefore, 
the increase of working memory may un-
derlie the emergency of the item-position 
effect in intelligence testing, which should 
be investigated in future research.

The scaling of the estimates of the vari-
ance parameters provides further infor-
mation regarding the relative importance 
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of the item-position effect compared with 
ability. Without scaling, the variances are 
not comparable. Scaled variance results 
indicate that nearly half of the variances in 
SPM scores are explained by the item-posi-
tion effect. This result suggests that the abil-
ity to learn and spontaneously use abstract 
rules in the following items of SPM is as 
equally important as the ability in complet-
ing intelligence measures. Furthermore, the 
increasing importance of the item-position 
effect together with the weak correlation 
between the item-position factors at Times 
1 and 2 suggest that the development of flu-
id intelligence might be driven mainly by 
the development of learning ability. In con-
trast, ability remains relatively stable over a 
relatively short period (i.e., one and a half 
years).

Our results have implications for the 
measurement of fluid intelligence. The 
current study together with previous stud-
ies focusing on adults suggests that fluid 
intelligence measures stimulate heteroge-
neous processes that cannot be explained 
by a single latent variable in the CFA model. 
It is consistent with the observation that 
there is a high degree of complexity with 
the underlying processes which are neces-
sary for completing the items of intelligence 
measures (Schweizer, 1998; Stankov, 2000). 
Thus, more complex models that consider 
the item-position effect seem to be essential 
for investigating fluid intelligence and its 
relationship with the other cognitive abili-
ties appropriately. 

Methodologically, the current study 
demonstrates the values of using variance 
parameters to test a series of substantive 
research questions. The fixed-links models 
enable the isolation of method effects, e.g., 
the item-position effect and speed effect 
(Schweizer, Reiß, et al., 2019), from genuine 

construct. With statistical tests of the vari-
ance parameters of the latent variables, the 
significance of the item-position factor can 
be verified. With the scaled estimates of the 
variance parameters, the relative importance 
of the ability-specific and item-position com-
ponents can be compared either within a sin-
gle age group or across different age groups. 
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