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Abstract: 
Subskills are often identi�ed to develop items on a test. Investigating the relationship between 
examinees’ overall scores and their performance on subskills are often of interest in educational 
and psychological tests. �e purpose of this study is to explore subskill information on the Mich-
igan English Test (MET) using the diagnostic classi�cation model framework. �rough subskill 
identi�cation, model �tting and selection, an appropriate diagnostic classi�cation model was 
chosen for answering three research questions regarding, namely, the subskill mastery sequence, 
the relationship between subskill mastery and overall scores, and the relationship between sub-
skill mastery and the Common European Framework of Reference (CEFR) levels. Findings from 
this study provide additional validity evidence for the interpretation and use of the MET scores. 
�ey could also be used by content experts to understand more about the subskills, and by the 
MET item/test development professionals for item revision and/or form assembly.
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Introduction

Investigating the relationship between ex-
aminees’ overall scores and their perfor-
mance on subskills are often of interest in 
educational and psychological tests (e.g., 
Liu, Qian, Luo, & Woo, 2017; Sinharay, 
Puhan, Haberman, & Hambleton, 2018). 
Usually, examinees’ overall scores can be 
obtained through modeling their item re-
sponses under the unidimensional item re-
sponse theory (IRT) framework. To obtain 
subskill performance, however, traditional 
psychometric approaches under classi-
cal test theory and multidimensional IRT 
frameworks are likely to have issues includ-
ing poor reliability for practical test length 
and insu�cient sample size (e.g., Sinharay, 
2010). More recently, diagnostic classi�ca-
tion models (DCMs; e.g., Rupp, Templin, & 
Henson, 2010), a newer class of psychomet-
ric models have shown promise to obtain 
reliable examinees’ subskill performance 
with practical test length and sample size. 
DCMs are also able to provide classi�ca-
tions for examinees regarding their mastery 
or non-mastery status on each subskill. �is 
study aims to utilize DCMs and explore the 
relationship between examinees’ overall 
scores and their subskill mastery on the 
listening and grammar/reading sections of 
the Michigan English Test (MET). 

According to the MET test plan, each 
examinee is given a scaled overall score 
for each section they have taken. Based on 
the overall score, each examinee is classi-
�ed into one corresponding language pro-
�ciency level in the Common European 
Framework of Reference (CEFR; Council 
of Europe, 2001). During the scoring pro-
cess, the ability that a section measures is 
regarded as a unidimensional latent trait. 
For example, all items in the listening sec-

tion are designed to measure examinees’ lis-
tening ability. On the other hand, when the 
items were developed, they were developed 
to measure smaller subskills underlying the 
overarching “listening ability” such as com-
prehending explicit information or making 
inferences. DCMs can be �tted to the item 
responses and inform us of the probability 
of mastering each subskill for each examin-
ee, which is not available under traditional 
psychometric approaches. �e purpose of 
this study is to �t DCMs to item responses 
and break down the general research pur-
pose into three smaller research questions 
(RQs): 

RQ1: What is the statistical relationship 
between subskills? Speci�cally, the study 
explores whether there is a particular 
mastery sequence for examinees where 
they are expected to master some sub-
skills before others.

RQ2: What is the statistical relationship 
between the overall section score and 
subskill mastery? Under this question, 
the study investigates whether mastering 
some subskills contributes more to the 
overall score than others. 

RQ3: What is the relationship between 
subskill mastery patterns and the �ve 
CEFR levels (i.e., below A2, A2, B1, B2, 
and C1)? Under this question, the study 
examines 1) the relationship between dif-
ferent mastery patterns and the �ve CEFR 
levels, and 2) the probability of mastering 
each subskill in each CEFR level.
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Research Framework – Diagnostic 
Classification Models

 
DCMs have been alternatively called cogni-
tive diagnosis models (e.g., Templin & Hen-
son, 2006) but they refer to the same class 
of multidimensional models expressing the 
relationship between item responses and 
multiple categorical latent traits. In essence, 
DCMs are a class of probabilistic, con�rma-
tory, and multidimensional latent class mod-
els. �e latent classes in DCMs are de�ned 
a priori through combinations of 0s and 1s 
representing mastery/non-mastery of mul-
tiple dichotomous subskills. One bene�t of 
treating subskills as dichotomous instead of 
continuous variables is that it allows DCMs 
to produce higher reliability than multidi-
mensional IRT models under the same test 
length (Liu, Qian, Luo, & Woo, 2017; Tem-
plin & Bradshaw, 2013). After �tting a DCM 
to an item response dataset, we can obtain 
a dichotomous mastery/non-mastery status 
and a probability of mastering each subskill 
for each examinee. Utilizing this informa-
tion, we may better understand the test con-
struct and support its validity.

Before implementing a DCM, we need 
to (1) specify subskills, and (2) specify 
which items measure which subskills. For  
k = 1,2, ... , K subskills (commonly called at-
tributes in DCMs), there are 2K possible 
attribute mastery patterns (aka attribute 
pro�les), where each attribute pro�le can be 
represented by a vector αc = (α1, α2, ... αK). For 
example, if we assume that there are �ve sub-
skills under the overarching listening ability 
(i.e., K=5), tho          se �ve attributes form 25 
= 32) attribute pro�les. Each attribute takes 
on a value of 1 or 0 representing mastery and 
non-mastery on that attribute, respectively. 
For example, an examinee will be assigned 
with αc = (1,0,0,1,1) if they have mastered 

the �rst, fourth and �fth attributes, but not 
the second and the third. �e information of 
which items measure which attributes are 
contained in an item-by-attribute incidence 
matrix called a Q-matrix (Tatsuoka, 1983). In 
a Q-matrix, an entry qi,k = 1 when item i mea-
sures attribute k, and qi,k = 0 otherwise. Table 
1 is an example Q-matrix which will be used 
in the analysis of the listening section. �e 
speci�c construct meanings of the attributes 
will be discussed in a future section.

�is Q-matrix (Table 1) shows the relation-
ships between �ve attributes and 36 items. 
For example, item 4 measures α1 and α4, 
but not α2, α3 or α5. In this Q-matrix, each 
attribute was measured 31, 20, 28, 28, and 14 
times, respectively. In addition to the num-
ber of times being measured, the number 
of attributes that each item measures also 
a�ects classi�cation accuracy. Consistent 
with multidimensional IRT models, fewer 
cross-loadings tend to produce higher ac-
curacy for attribute estimation under the 
DCM framework (e.g., Madison & Brad-
shaw, 2015). �e reason is that, for example, 
examinees’ responses to item 4 are solely 
dependent on their mastery of α1 and α4, 
comparing to item 8 where all the �ve at-
tributes are lumped together. �is issue of 
cross-loading could be better addressed if 
a test is developed under the DCM frame-
work. In this case, we are retro�tting DCMs 
to a test that is not developed under the 
DCM framework, which could produce 
suboptimal results as discussed in Liu, Hug-
gins-Manley, and Bulut (2018).

After the Q-matrix is speci�ed, DCMs can 
be �t to the dataset. DCMs are con�rmatory 
latent class models with di�erent parame-
terizations of the measurement compo-
nent. �e general form of a con�rmatory 
latent class model can be written as:
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Table 1  The Q-matrix Used in the Listening Section

Item α1 α2 α3 α4 α5

1 0 1 1 1 1
2 1 1 1 1 0
3 1 1 1 1 1
4 1 0 0 1 0
5 1 0 1 0 0
6 1 0 0 1 1
7 1 1 1 1 0
8 1 1 1 1 1
9 1 1 0 1 1
10 1 1 1 1 0
11 1 0 1 1 0
12 1 1 1 1 1
13 1 1 1 0 1
14 1 0 1 1 0
15 1 1 1 1 0
16 1 0 1 0 0
17 1 1 1 1 1
18 1 0 1 0 0
19 0 0 0 1 1
20 0 1 1 1 0
21 1 1 0 1 1
22 1 0 1 1 0
23 1 0 1 1 0
24 1 1 0 1 1
25 1 0 1 1 0
26 1 1 1 1 0
27 1 1 1 1 1
28 1 0 1 0 0
29 1 0 0 1 0
30 0 0 0 0 1
31 1 0 1 1 0
32 1 1 1 1 0
33 1 0 1 1 0
34 0 1 1 1 1
35 1 1 1 0 0
36 1 1 1 0 0
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where e denotes examinees, and πci rep-
resents the probability of correctly answer-
ing item i for examinees in latent class c, 
which can be expressed as . 
Up to now, more than 30 DCMs have been 
developed based on di�erent theories and 
for a variety of purposes. �e earliest devel-
opment of DCM can be traced back to the 
1980s when Haertel introduced a restricted 
latent class model to classify individuals 
with respect to their possession of a set of 
skills or attributes (Haertel, 1989). Later, 
Haertel’s model was named the “determinis-
tic inputs, noisy, and gate” (DINA) model in 
Junker and Sijtsma (2001) and remained one 
of the most widely discussed models in the 
family of DCMs. �e item response function 
(IRF) of the DINA model can be written as

    
where the probability of correctly an-

swering item i for examinees that are in 
attribute pro�le αc is a function of an inter-
cept of item i: λi0, and λi1, representing the 
increase in the success probability when all 
attributes that are measured by item i are 
mastered. �e DINA model is considered 
a conjunctive model where not mastering 
an attribute cannot be compensated for by 
mastering another attribute regarding the 
probability of correctly answering an item. 
In contrast to the conjunctive model, Tem-
plin and Henson (2006) proposed a disjunc-
tive model called the deterministic input, 
noisy ‘or’ gate (DINO; Templin & Henson, 
2006) model. �e IRF of the DINO model 
can be written as

where λi0 still represents the intercept but 
λi1 represents the increase in the success 
probability when any of the attributes that are 
measured by item i are mastered. Besides the 
DINA and the DINO, the generalized DINA 
(G-DINA; de la Torre, 2011) model has become 
the �agship model over the years because it is 
the most general form of DCMs, accommo-
dating many earlier DCMs. �e G-DINA de-
�nes the probability of examinees in attribute 
pro�le c correctly answering item i as

    
 

where λi0 is the intercept associated with 
item i, and  index all the main ef-
fects and higher-order interaction e�ects 
of the k = 1, ... K attributes associated with 
item i, which can be expressed as 

For example, for item 3 measuring α2 and α5 
as shown in Table 1, the G-DINA expresses 
the probability of examinees in attribute pro-
�le c correctly answering item i as

 
where λi0 is the intercept, λi1(α2) is the main 

e�ect for α2, λi,1(α5) is the main e�ect for α5, 
and λi,2(α2,

 α5)  is the interaction e�ect for α2 and  
α5. As one can imagine, when an item mea-
sures more attributes, there are more two-
way interactions, three-way interactions 
or higher-order interactions, resulting in a 
large number of parameters for that item. 
To reduce the estimation burdens induced 
by the higher-order interactions, the addi-
tive CDM (A-CDM; de la Torre, 2011) was 
proposed as a special case of the G-DINA. In 
the A-CDM, all the interaction parameters 
are �xed to zero and only the intercept and 
main e�ects are freely estimated. �e IRF of 
the A-CDM can be expressed as

࢟)ܲ = (࢟ = � 𝑐𝑐𝑐𝑐ݒ


𝑐𝑐𝑐𝑐=1
ෑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖ߨ

௬(1 െ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)1−௬ߨ
ூ

𝑖𝑖𝑖𝑖=1
 

 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1ෑ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘
ೖ

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1[1െෑ (1 െ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)ೖ
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
] 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐ࢻ)ܐ𝑖𝑖𝑖𝑖்ࣅ  (𝑖𝑖𝑖𝑖ܙ,

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈమ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖,2,(ఈమ,ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + � 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1,𝑘𝑘𝑘𝑘�𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘�
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

 

� 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1,𝑘𝑘𝑘𝑘(𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘)
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
+ � � 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖2,𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘′�𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘′𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘′� + ⋯

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘′=𝑘𝑘𝑘𝑘+1

𝐾𝐾𝐾𝐾−1

𝑘𝑘𝑘𝑘=1
 

1

2

3

4

5

࢟)ܲ = (࢟ = � 𝑐𝑐𝑐𝑐ݒ


𝑐𝑐𝑐𝑐=1
ෑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖ߨ

௬(1 െ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)1−௬ߨ
ூ

𝑖𝑖𝑖𝑖=1
 

 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1ෑ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘
ೖ

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1[1െෑ (1 െ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)ೖ
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
] 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐ࢻ)ܐ𝑖𝑖𝑖𝑖்ࣅ  (𝑖𝑖𝑖𝑖ܙ,

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈమ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖,2,(ఈమ,ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + � 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1,𝑘𝑘𝑘𝑘�𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘�
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

 

࢟)ܲ = (࢟ = � 𝑐𝑐𝑐𝑐ݒ


𝑐𝑐𝑐𝑐=1
ෑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖ߨ

௬(1 െ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)1−௬ߨ
ூ

𝑖𝑖𝑖𝑖=1
 

 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1ෑ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘
ೖ

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1[1െෑ (1 െ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)ೖ
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
] 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐ࢻ)ܐ𝑖𝑖𝑖𝑖்ࣅ  (𝑖𝑖𝑖𝑖ܙ,

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈమ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖,2,(ఈమ,ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + � 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1,𝑘𝑘𝑘𝑘�𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘�
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

 

࢟)ܲ = (࢟ = � 𝑐𝑐𝑐𝑐ݒ


𝑐𝑐𝑐𝑐=1
ෑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖ߨ

௬(1 െ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)1−௬ߨ
ூ

𝑖𝑖𝑖𝑖=1
 

 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1ෑ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘
ೖ

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1[1െෑ (1 െ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)ೖ
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
] 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐ࢻ)ܐ𝑖𝑖𝑖𝑖்ࣅ  (𝑖𝑖𝑖𝑖ܙ,

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈమ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖,2,(ఈమ,ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + � 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1,𝑘𝑘𝑘𝑘�𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘�
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

 

࢟)ܲ = (࢟ = � 𝑐𝑐𝑐𝑐ݒ


𝑐𝑐𝑐𝑐=1
ෑ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖ߨ

௬(1 െ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖)1−௬ߨ
ூ

𝑖𝑖𝑖𝑖=1
 

 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1ෑ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘
ೖ

𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1[1െෑ (1 െ 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘)ೖ
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
] 

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐ࢻ)ܐ𝑖𝑖𝑖𝑖்ࣅ  (𝑖𝑖𝑖𝑖ܙ,

 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈమ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2 + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1(ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ + 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖,2,(ఈమ,ఈఱ)𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,2𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,ହ 

 

𝑖𝑖𝑖𝑖ݕ)ܲ = (𝑐𝑐𝑐𝑐ࢻ|1 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖 + � 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖1,𝑘𝑘𝑘𝑘�𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑘𝑘𝑘𝑘𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘�
𝐾𝐾𝐾𝐾

𝑘𝑘𝑘𝑘=1
 

 

 

 



492 SUBSKILLS IN DCM

    

In practice, one could �t a general DCM 
(e.g., the G-DINA model) to the data if no 
prior hypothesis is made and sample sizes 
allow. �is modeling approach would al-
low for free estimations of all parameters 
associated with any possible relationships 
between attributes and item responses. If 
there are prior hypotheses about the e�ects 
of attribute relationship on items, one could 
�t both the selected model that re�ects 
those hypotheses and a general DCM to the 
data. A comparison of �t indices between 
the selected and general models would help 
determine if those hypotheses are support-
ed in item responses.

Data

To answer the three research questions, 
816 examinees’ responses to 66 operation-
al items on the MET Form A were obtained 
from Michigan Language Assessment, 
which funded this study through its Spaan 
Research Grant Program in 2019. Among 
the 66 items, 36 items are in the listening 
section and 30 items are in the grammar/
reading section. Within each section, the 
item subskill tags were obtained to con-
struct the Q-matrix. 

The	Q-matrices	for	Listening	and	
Grammar/Reading Sections

In the listening section, 28 subskills were 
listed initially. For example, there were 
“main idea”, “synthesis”, and many more. 
�eoretically, we could construct a 36 
(items) by 28 (subskills) Q-matrix to rep-
resent the item-attribute relationship. 
However, we would not be able to proceed 
with further statistical analysis with such 
Q-matrix for at least three reasons. First,
the number of attributes is too large for the
given number of items. It would not be pos-
sible to use 816 examinees’ responses on 36
items to estimate 228 = 268,435,456 attribute 
pro�les. For 36 items, it is more common to
have no more than six attributes. Second,
some attributes are hardly distinguishable
from each other. For example, all the items
that measure “main idea”, except for item
“TLD15_0136”, all also measure “synthesis”.
�is means that the two attributes are hard-
ly distinguishable. �ird, some attributes
are not measured enough number of times.
A rule of thumb is that each attribute needs 
to be measured at least four or �ve times to
achieve satisfactory classi�cation accuracy.
However, there was only one item measur-
ing “Purpose”, two items measuring “Pros-
ody” and “Identify Speaker’s Attitude”, etc. 

To solve this problem, a common ap-
proach is to combine some subskills into 
a larger subskill. As a result, �ve �nal at-
tributes were formed for the purpose of 
the DCM analysis on the listening section. 
Table 2 lists the �nal attributes and their 
relationship with the original 28 subskills. 
�e Q-matrix for the listening section has 
already been introduced earlier in Table 1.
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For the grammar/reading section, �ve sub-
skills were identi�ed in a way that is similar 
to the listening section. Table 3 lists the �ve 
attributes for this section. Table 4 shows its 
associated Q-matrix. 

It is worth pointing out that the current 
two Q-matrices for both sections are not 
ideal from a statistical perspective because 
they are unbalanced. In addition to the 
cross-loading issue that was mentioned 
above, the number of times each attribute 

is measured is di�erent. For Table 4, each 
attribute is measured 12, 23, 13, 12, and 
8 times, respectively. In an ideal world, a 
more balanced Q-matrix could be identi-
�ed by content experts when the item was 
developed under a DCM framework. In this 
paper, I will continue the analysis with the 
current Q-matrices and discuss more about 
the Q-matrix re�nement in the future re-
search section.

Table 2 Attributes in the Listening Section

Final Attributes Original Subskills

α1: Vocabulary Vocabulary A1, A2, B1, B2, C1, C2

α2: Syntax Basic, intermediate and advanced syntax

α3: Comprehending Explicit Information
Explicit info (matching and paraphrase), understand 
idiomatic meaning

α4: Global/Connecting/Synthesizing
Main idea, synthesis, identify referent, speaker’s 
attitude, opinion, and purpose

α5: Making Inferences
Pragmatic implication, rhetorical function, draw 
inference/conclusion, make prediction, prosody

Table 3 Attributes in the Grammar/Reading Section

Final Attributes Original Subskills

α1: Vocabulary Vocabulary A1, A2, B1, B2, C1, C2

α2: Syntax Basic, intermediate and advanced syntax

α3: Comprehending Explicit Information
Explicit info (matching and paraphrase), understand 
idiomatic meaning

α4: Global/Connecting/Synthesizing
Main idea, synthesis, identify referent, author’s 
opinion, purpose, cross-text

α5: Making Inferences
Pragmatic implication, rhetorical function, draw 
inference/conclusion, make prediction
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Table 4  The Q-matrix Used in the Grammar/Reading Section
 

Item α1 α2 α3 α4 α5

1 0 1 0 0 0
2 0 1 0 0 0
3 0 1 0 0 0
4 0 1 0 0 0
5 0 1 0 0 0
6 0 1 0 0 0
7 0 1 0 0 0
8 0 1 0 0 0
9 0 1 0 0 0
10 0 1 0 0 0
11 0 1 0 0 0
12 0 1 0 0 0
13 0 1 0 0 0
14 0 1 0 0 0
15 0 1 0 0 0
16 1 1 1 1 1
17 1 1 1 1 1
18 0 1 0 0 1
19 0 1 1 1 1
20 1 0 1 1 0
21 1 0 1 1 0
22 1 1 1 0 0
23 1 0 1 1 0
24 1 1 1 1 1
25 1 0 1 0 1
26 1 0 1 1 0
27 1 1 1 1 0
28 0 1 0 1 0
29 1 0 1 1 1
30 1 0 1 1 1
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Modeling Fitting and Selection

For each section, four aforementioned 
models were �tted to the dataset: the DINA 
model, the DINO model, the A-CDM, and 
the G-DINA, each representing a theory 
about the e�ect of the attributes on items. 
A monotonicity constraint was added to 
each model to avoid that mastering more 
attribute decreases the probability of cor-
rectly answering an item. Under the G-DI-
NA framework, this was achieved through 
constraining all the main e�ects and inter-
action e�ects to be non-negative. �e other 
three models were similarly constrained be-
cause they are special cases of the G-DINA.

When �tting the model, R (R Core Team, 
2018) and the “GDINA” R package (Ma & de 
la Torre, 2019) were used. First, the mar-
ginal maximum likelihood method with 
the Expectation-Maximization algorithm 
was used to estimate the item parameters. 
�en, the estimated item parameters were 
used with the Maximum a Posteriori (MAP) 
method to obtain examinee parameters 
(i.e., examinees’ attribute pro�les).

After the parameter estimates were ob-
tained, the performance of the four models 
were compared according to both absolute 
and relative �t indices. �e following ab-
solute �t indices were computed: the M2 
statistic (Hansen, Cai, Monroe, & Li, 2016), 
the standardized root mean square root of 
squared residuals (SRMSR; Maydeu-Oliva-
res & Joe, 2014), and the root mean square 
error of approximation (RMSEA; von Davi-
er, 2005). �e following relative �t indices 
were computed: the Akaike Information 
Criterion (AIC; Akaike, 1987), Bayesian In-
formation Criterion (BIC; Schwarz, 1978), 
and the Consistent AIC (CAIC; Bozdogan, 
1987). Smaller values on those indices indi-
cate better �t.

Listening Section

Table 5 lists the results for aforemen-
tioned model �t indices when each mod-
el was �tted to the item responses in the 
listening section. �e absolute �t indices 
showed good �t for all four models where 
the SRMSR were all smaller than .06, and 
RMSEA smaller than .05. Based on relative 
�t indices, the A-CDM showed the best �t 
among all four models. 

Table 5  Model Fit Results for the Listening Section

Model M2 SRMSR RMSEA AIC BIC CAIC

DINA 843.43, 
df=563, p<.01 .06 .02 31228.49 31713.05 31816.05

DINO 831.06, 
df=563, p<.01 .06 .02 31259.53 31744.09 31847.09

A-CDM 574.17,  
df=478, p<.01 .04 .02 30546.10 31430.53 31618.53

G-DINA 200.90, 
df=165, p<.01 .03 .02 30823.29 33180.20 33681.20
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Recall that the G-DINA is the most satu-
rated model where all other three models 
are special cases of the G-DINA. Likelihood 
ratio tests were conducted to investigate 
whether each of the simpler models �t 
signi�cantly di�erently from the saturat-
ed model. Results of those tests are shown 
in Table 6. Table 6 also lists the number of 
total parameters (i.e., both structural pa-
rameters and item parameters) and the 
number of item parameters. Results show 
that the G-DINA �t signi�cantly better than 
the DINA and the DINO model, but not sig-
ni�cantly better than the A-CDM. Recall 
that the G-DINA di�ers from the A-CDM 

because the former includes both the main 
e�ects and interaction e�ects, but the latter 
only includes the main e�ects and �xes in-
teraction e�ects to be zero. �e classi�ca-
tion agreement between the A-CDM and the 
G-DINA showed that only 15 of 816 examin-
ees (1.8%) were classi�ed with di�erent at-
tribute pro�les. Given that the A-CDM was
50% smaller than the G-DINA and did not
show signi�cant di�erence from the G-DI-
NA, the A-CDM was selected for further
analysis. Table 7 lists the parameter esti-
mates for the items in the listening section
under the A-CDM.

Table 6  Likelihood Ratio Test Results for Model Comparison in the Listening Section

Model #1 #2 G2 df p-value

DINA 103 72 1201.21 398 <.01
DINO 103 72 1232.25 398 <.01

A-CDM 188 157 348.82 313 .08
G-DINA 501 470

Note  “#1” indicates the total number of estimated parameters, 
“#2” indicates the number of estimated item parameters.
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Table 7  Parameter Estimates Under the A-CDM in the Listening Section

Item λ i0 λ i1,1 λ i1,2 λ i1,3 λ i1,4 λ i1,5

1 .674 .046 .008 .247
2 .550 .241 .047 .030 .121
3 .359 .264 .119 .203 .033
4 .322 .436 .241
5 .233 .572 .155
6 .410 .345 .166 .059
7 .229 .124 .214 .137 .224
8 .123 .331 .217 .238 .082
9 .158 .075 .139 .475
10 .200 .220 .196 .132 .143
11 .315 .054 .263 .056
12 .115 .070 .137 .140 .512
13 .062 .301 .183 .356
14 .120 .126 .485 .140
15 .299 .446 .237 .014
16 .469 .406 .100
17 .338 .344 .169 .104
18 .284 .340 .301
19 .275 .344 .147
20 .258 .085 .241 .333
21 .377 .298 .223 .006 .069
22 .296 .302 .314 .063
23 .302 .295 .299
24 .253 .081 .060 .231
25 .330 .003 .112 .159
26 .425 .235 .094 .066 .140
27 .651 .117 .035 .152 .022
28 .354 .334 .262
29 .438 .110 .291
30 .407 .411
31 .243 .104 .453
32 .207 .048 .058 .477 .070
33 .322 .213 .154 .217
34 .020 .239 .367 .189
35 .201 .059 .244 .240
36 .176 .276 .311 .168
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Grammar/Reading Section

Similar to the listening section, four DCMs 
were �t to the dataset. Table 8 lists the mod-
el �t results. Based on absolute �t indices, all 
four models �t well to the dataset. Based on 
relative �t indices, the A-CDM �t the best. 
Table 9 displays the likelihood ratio test re-

sults, which show that the A-CDM did not 
�t signi�cantly di�erently from the G-DINA 
with only 50% of the number of parameters. 
�erefore, the A-CDM was selected for fur-
ther analysis. �e item parameter estimates 
under the A-CDM for the grammar/reading 
section are listed in Table 10.

Table 8  Model Fit Results for the Grammar/Reading Section

Model M2 SRMSR RMSEA AIC BIC CAIC

DINA 598.56, 
df=374, p<.01 .06 .03 26735.82 27163.92 27254.92

DINO 617.98,  
df=374, p<.01 .06 .03 26858.97 27287.07 27378.07

A-CDM 474.22, 
df=336, p<.01 .05 .02 26599.07 27205.94 27334.94

G-DINA 281.77, 
df=188, p<.01 .05 .02 26755.90 28059.02 28336.02

Table 9  Likelihood Ratio Test Results for Model Comparison in the  
 Grammar/Reading Section

Model #1 #2 G2 df p-value

DINA 91 60 351.93 186 <.01
DINO 91 60 475.07 186 <.01

A-CDM 129 98 139.18 148 .69
G-DINA 277 246

Note  “#1” indicates the total number of estimated parameters,   
 “#2” indicates the number of estim
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Table 10  Parameter Estimates Under the A-CDM in the Grammar/Reading Section

Item λ i0 λ i1,1 λ i1,2 λ i1,3 λ i1,4 λ i1,5

1 .727 .229
2 .669 .313
3 .525 .431
4 .190 .588
5 .463 .480
6 .525 .443
7 .462 .518
8 .346 .572
9 .445 .426
10 .385 .368
11 .298 .516
12 .229 .333
13 .199 .352
14 .178 .558
15 .452 .294
16 .107 .170 .000 .000 .283 .201
17 .162 .205 .049 .261 .120 .048
18 .105 .000 .419
19 .278 .224 .182 .000 .201
20 .158 .061 .000 .289
21 .280 .054 .445 .177
22 .647 .000 .037 .301
23 .501 .000 .045 .240
24 .086 .000 .142 .023 .290 .002
25 .431 .000 .210 .213
26 .144 .384 .378 .093
27 .035 .340 .000 .292 .137
28 .254 .154 .504
29 .006 .368 .293 .248 .000
30 .307 .004 .306 .239 .000
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RQ1: Examining the Relationship 
Between Subskills

 
�e iterative cycle between item/test devel-
opment and scoring makes it possible for us 
to obtain meaningful information from ex-
aminees’ item responses and use that infor-
mation to support item/test development. 
�e purpose of this section is to use the pa-
rameter estimates from the previous model 
�tting and explore whether they could show 
some mastery sequence of attributes. �is 
does not suggest that the sequence uncov-
ered in the dataset may be universally true 
outside of this dataset. �e purpose of this 
section is simply to provide the information 
that was found in the dataset for further re-
search in the speci�c test constructs. 

Based on Leighton et al. (2004) and Tem-
plin and Bradshaw (2014), four steps are 
involved in order to examine whether there 
is a particular sequence of subskill mastery. 
First, we use the parameter estimates to 
compute the number of examinees in each 
attribute pro�le. Next, we can hypothesize 
that the pro�les with few examinees may be 
less possible mastery patterns. �en, we can 
develop the attribute structure/hierarchy 
that re�ects the possible and impossible 
attribute patterns. Finally, we conduct like-
lihood ratio test between the model without 
the attribute structure and the model with 
the attribute structure. If the two models do 
not �t signi�cantly di�erently, we can use it 
as evidence to support the hypothesized at-
tribute structure.

Before moving on, let us use a simple ex-
ample to illustrate the four-step analysis. 
Suppose we have 1,000 examinees’ respons-
es to items measuring two attributes: α1 
and α2, there will be four possible attribute 
pro�les: (0,0), (1,0), (0,1), and (1,1). After ex-
aminees’ responses are scored, we �nd that 

there are 300, 300, 10, and 390 examinees in 
(0,0), (1,0), (0,1), and (1,1), respectively. In 
this example, there are few examinees that 
are assigned with (0,1) comparing to other 
pro�les. �is means that it is very unlike-
ly for examinees to master α2 without α1. 
�erefore, we could hypothesize that there 
may be a mastering sequence of mastering 
α1 �rst before mastering α2. In the example, 
we could �t a model constraining the prob-
ability of (0,1) to be zero and compare the 
model �t with a model without such con-
straint. If the unconstrained model does not 
�t signi�cantly better than the constrained 
model, we may have evidence to support 
the mastering sequence. Such information 
could feed back to help us learn more about 
the theory of the constructs and/or item/
test development.

Listening Section

As discussed previously, the A-CDM was �t 
to the dataset and the attribute pro�le for 
each person was obtained. �e count of the 
number of examinees in each attribute pro-
�le is listed in Table 11. Overall, 74%, 72%, 
32%, 65%, and 38% of examinees mastered 
each of the �ve attributes, respectively.

From Table 11, we can see that some attri-
bute pro�les have much more examinees 
than others. For example, the attribute pro-
�le: “10110” is a less likely pattern because 
there was only 2 out of all 816 examinees 
that were classi�ed with this pattern. Based 
on the pattern of number of examinees in 
each pro�le, the hypothesized learning se-
quence is shown in Figure 1. �e attributes 
at the beginning of each arrow are prereq-
uisite attributes for the ones at the end. �e 
hypothesized attribute hierarchy re�ects 
of the permissible and impermissible at-
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tribute pro�les in Table 12. �is hypothesis 
says: an examinee needs to master α1 before
they can master α4; and an examinee needs to
master α4 and α5 before they can master α5. 
�ere was no clear hierarchy between α2 and
other attributes. 

To investigate whether the hypothesized at-
tribute hierarchy can be supported by the 
dataset, a model with the attribute hierarchy 
constraint and a model without the hierarchy 
were both �t to the dataset. Results of the 
model comparison are shown in Table 13. We 
can see that the model with the hierarchical 
constraint had smaller AIC, BIC and CAIC 
values, and it did not �t signi�cantly di�er-
ently from the model without the constraint 

Table 11 Number of Examinees in Each Attribute Profile in the Listening Section

Profile # of Examinees

11111 240

11010 185

01000 104

00000 90

10000 55

10010 51

11011 26

11000 21

10111 13

11001 10

01010 8

00001 5

01111 4

01011 2

10110 2

Note  There are 25 =32 possible attribute profiles. Profiles not listed are associated with zero
examinees.

Figure 1 Hypothesized attribute hierarchy  
in the listening section.
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Table 12 14 Permissible and 18 Impermissible Attribute Profiles under the Hypothesized 
Hierarchy in the Listening Section

Attribute Profile Permissible

00000 ✔

10000 ✔

01000 ✔

00001 ✔

11000 ✔

10010 ✔

10001 ✔

01001 ✔

11010 ✔

11001 ✔

10011 ✔

11011 ✔

10111 ✔

11111 ✔

00100 ✘

00010 ✘

10100 ✘

01100 ✘

01010 ✘

00110 ✘

00101 ✘

00011 ✘

11100 ✘

10110 ✘

10101 ✘

01110 ✘

01101 ✘

01011 ✘

00111 ✘

11110 ✘

11101 ✘

01111 ✘

based on the p-value of the likelihood ratio 
test. �erefore, the hypothesized attribute 
hierarchy may present in the dataset. 

To summarize, the following hypothesis was 
uncovered and validated in the listening 
section through examinees’ item responses: 
examinees were expected to master vocab-
ulary before they could master global/con-
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necting/synthesizing skills, and they were 
expected to master global/connecting/syn-
thesizing skills and the skill of making infer-
ences before they could master the skill of 
comprehending explicit information. 

Grammar/Reading Section

Similar to the listening section, the A-CDM 
was �t to the dataset and the attribute pro-
�le for each person was obtained. �e num-
ber of examinees in each attribute pro�le is 

listed in Table 14. Overall, 69%, 56%, 77%, 
37%, and 32% of examinees mastered each 
of the �ve attributes, respectively.

Based on the pattern, the hypothesized 
attribute hierarchy is shown in Figure 2. 
Figure 2 suggests that examinees need to 
master α1, α2 and α3 before mastering either 
α4 or α5. Table 15 lists the permissible and 
impermissible attribute pro�les under this 
hypothesis. 

Table 13  Model Comparison for Attribute Hierarchy in the Listening Section
  

Model # of Parameters AIC BIC CAIC G2 p-value

1 188 30546.10 31430.53 31618.53
2 170 30512.80 31312.55 31482.55 2.7 1.00

Note Model 1 is the model without the attribute hierarchy.   
 Model 2 is the model with the attribute hierarchy constraint.

Table 14  Number of Examinees in Each Attribute Profile in the Grammar/Reading Section

Profile # of Examinees

11111 235
11100 177

10000 139
00100 117
10100 44
01110 39

00000 31
01000 9
00111 7
01111 6

00101 5
11000 3
00001 2
10001 1
10110 1

Note  There are 25 = 32 possible attribute profiles. Profiles not listed are associated with zero examinees.
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Figure 2 Hypothesized attribute hierarchy in the grammar/reading section.

Table 15 11 Permissible and 21 Impermissible Attribute Profiles under the Hypothesized 
Hierarchy in the Grammar/Reading Section 

Attribute Profile Permissible

00000 ✔

10000 ✔

01000 ✔

00100 ✔

11000 ✔

10100 ✔

01100 ✔

11100 ✔

11110 ✔

11101 ✔

11111 ✔

00010 ✘

00001 ✘

10010 ✘

10001 ✘

01010 ✘

01001 ✘

00110 ✘

00101 ✘

00011 ✘

11010 ✘

11001 ✘

10110 ✘

10101 ✘

10011 ✘

01110 ✘

01101 ✘

01011 ✘

00111 ✘

11011 ✘

10111 ✘

01111 ✘
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A model with the hypothesized hierarchy 
was �t to the dataset and compared with 
the model without the hierarchy. Results 
are shown in Table 16. We can see that the 
constrained model �t better according to 
all relative �t indices and it did not �t sig-
ni�cantly di�erent from the unconstrained 
model. �erefore, the proposed attribute hi-
erarchy was supported by the dataset.

To summarize, the following hypothesis 
was uncovered and validated in the gram-
mar/reading section through examinees’ 
item responses: examinees were expected 
to master vocabulary, syntax, and the skill 
of comprehending explicit information be-
fore they could master the skill of either 
global/connecting/synthesizing or making 
inferences.

RQ2: Examining the Relationship 
Between the Overall Section Score 
and Subskill Mastery

Di�erent attribute mastery patterns are ex-
pected to associate with di�erent average 
overall scores. �e purpose of this section 
is to investigate the relationship between 
examinees’ overall section score and at-
tribute mastery. Speci�cally, the following 
three-part analysis were performed: 1) ex-

amining the bivariate correlation between 
the marginal probability of mastery on each 
subskill and the overall score; 2) using a 
multiple regression model to examine the 
association between subskill mastery and 
overall scores; and 3) examining the aver-
age overall scores for each attribute pro�le 
to see whether some attribute pro�les were 
associated with higher overall scores than 
others. 

Listening Section

As mentioned previously, in addition to 
the categorical attribute pro�les that each 
examinee was assigned to, they also got a 
probability of mastery on each attribute. 
Statistically speaking, those who have a 
probability of 0.5 and above are classi�ed as 
a master, and below 0.5 a non-master. �e 
distribution of the mastery probability on 
each attribute and their bivariate correla-
tions with the overall scores are shown in 
Figure 3.

�e diagonal boxes of Figure 3 contain the 
distributions of each of the six variables of 
interest: the mastery probabilities on each 
of the �ve attributes and the overall score. 
�e overall score was normally distributed. 
�e mastery probabilities of each attribute 

Table 16  Model Comparison for Attribute Hierarchy in the Grammar/Reading Section 

Model # of Parameters AIC BIC CAIC G2 p-value

1 129 26599.07 27205.94 27334.94
2 108 26367.22 26583.22 27091.30 26.15 .20

Note  Model 1 is the model without the attribute hierarchy. Model 2 is the model with the attribute hierarchy  
 constraint.
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had a bi-polar shape. �is suggests high cer-
tainty of classi�cation because if there were 
more examinees in the middle (i.e., close 
to 0.5), the binary classi�cations may not 
be accurate. In the �gure, we can see that 
each pair of the variables had high correla-
tions, suggesting that a higher probability of 
mastery one attribute was associated with 
a higher probability of mastering other at-
tributes, as well as a higher overall score. 

�e overall score had a correlation between 
0.66 and 0.81 with each attribute, while α2: 
“Syntax” had the lowest correlation and α4 : 
“Global/ Connecting/ Synthesizing” had the 
highest correlation. 

To further examine the �ve attributes 
together, a multiple regression was per-
formed, and results are shown in Table 17. 
�e unstandardized coe�cients are listed 
here because the probabilities of mastery 

Figure 3 Distribution of attribute mastery probabilities and their relationship with overall   
 scores in the listening section
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of all �ve attributes are already on the same 
scale (i.e., [0,1]). �erefore, the coe�cients 
are directly comparable, and their interpre-
tations are meaningful with respect to the 
overall scores.

Overall, the �ve attributes explained 87.4% 
of the variance in the overall scores, and 
each coe�cient was statistically signi�-
cant. �e interpretation of the coe�cient is 
straightforward. For example, an examinee 
without mastering any of the �ve attributes 
is expected to get an overall score of 33.93. 
Mastering α1 is expected to increase an ex-
aminee’s overall score by 10.49, mastering 
α2 is expected to increase an examinee’s
overall score by 8.17, etc. Or we can say: 
a master of only α1 is expected to have an
overall score of 44.42 (i.e., 33.93+10.49). 

Comparing between the coe�cients, ex-
aminees’ overall scores were more a�ected 
by whether they had mastered α1, α2 , and α3

, and less a�ected by their mastery status on 
α4 and α5. Putting this back to the context,
this means that examinees’ overall scores 
were more of a re�ection of whether an ex-
aminee mastered vocabulary, syntax, and 
the skill of comprehending explicit informa-

tion, and less about whether they mastered 
the skills of global/connecting/synthesizing 
and making inferences.

Grammar/Reading Section

Similar to the listening section, the margin-
al probability of mastery for each examinee 
was obtained on each attribute. �e distri-
bution of the mastery probability on each at-
tribute and their bivariate correlations with 
the overall scores are shown in Figure 4.

Table 17 Unstandardized Coe·cient Estimates for the Multiple Regression in the 
Listening Section

Estimate Standard Error t-value p-value

Intercept 33.93 0.40 84.63 <.001

α1
10.49 0.58 17.89 <.001

α2
8.17 0.57 14.26 <.001

α3
9.69 0.97 9.91 <.001

α4
3.49 0.63 5.53 <.001

α5
2.10 1.06 1.98 <.05

Note r2 = 0.874
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Figure 4 shows statistically signi�cant cor-
relations between each attribute and the 
overall score. α2: “Syntax” and α4: “Global/ 
Connecting/ Synthesizing” correlated most 
strongly with the overall score while α1: 
“Vocabulary” correlated most weakly with 
the overall score. A multiple regression was 
performed to investigate which attribute 
contributes more to the overall scores. Re-
sults are shown in Table 18. Overall, the �ve 

attributes explained 85.1% of the variance 
in the overall scores. We can see that the 
overall scores were more a�ected by α3 and 
α5 and less a�ected by α1, α2 and α4. Specif-
ically, we would expect that an examinee’s 
overall score would increase by 12.40 when 
mastering α3, and this increase is only 3.60 
when mastering α1. Putting this back to the 
context, this means that examinees’ overall 
scores were more of a re�ection of whether 

Figure 4 Distribution of attribute mastery probabilities and their relationship with overall   
 scores in the grammar/reading section.
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an examinee mastered the skill of compre-
hending explicit information and making 
inferences and less about whether they mas-
tered vocabulary, syntax, or the skill of glob-
al/connecting/synthesizing.

RQ3: Examining the Relationship 
Between Subskill Mastery Pattern 
and the Five CEFR Levels

�e MET was designed to test examinees 
that are between A2 and C1 in the CEFR. 
�e purpose of this section is to examine 
the relationship between di�erent mastery 
patterns and the CEFR levels. A two-part 
analysis was conducted here. First, a box-
plot of the overall score for each attribute 
pattern was ordered from lowest to highest. 
�rough the boxplots, we can visually exam-
ine which mastery patterns were associated 
with lower or higher overall scores. Second, 
the probability of mastering each attribute 
in each CEFR level was computed.

For the �rst part, examinees were grouped 
according to their attribute pro�les and 
their overall scores were displayed in Figure 
5 and Figure 6 for the listening section and 
the grammar/reading section, respectively. 

�e general trend in both sections is that 
examinees had higher overall scores when 
they mastered more attributes (i.e., more 
“1”s in their attribute pro�les). Examin-
ees that did not master any attribute were 
mostly classi�ed into the A2 level. Exam-
inees that mastered one or two attributes 
were mostly classi�ed into the B1 level. Ex-
aminees that mastered three or four attri-
butes were mostly classi�ed into the B2 lev-
el. Examinees that mastered all attributes 
were mostly classi�ed into the C1 level. �is 
distribution strongly supports the targeted 
level of the MET: between A2 and C1. 

One could also look into speci�c attribute 
patterns. For example, in both the listening 
and the grammar/reading sections, only 
mastering α5: the skill of making inferences 
was associated with the lowest overall scores 
compared with mastering other attributes. 

Table 18  Unstandardized Coe·cient Estimates for the Multiple Regression in the 
 Grammar/Reading Section

Estimate Standard Error t-value p-value

Intercept 33.89 0.57 59.08 <.001

α1
3.60 0.69 5.16 <.001

α2
6.92 0.62 10.99 <.001

α3
12.40 0.69 17.91 <.001

α4
4.54 1.19 3.81 <.001

α5
8.54 1.13 7.49 <.001

Note  r2 = 0.851
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Figure 5 The relationship between mastery patterns and five CEFR levels in the listening  
section.

Figure 6 The relationship between mastery patterns and five CEFR levels in the 
grammar/reading section.
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�e second part of the analysis is to inves-
tigate the corresponding mastery probabili-
ty for each CEFR level. Results are shown in 
Table 19 and Table 20 for the two sections. 
�e values in both tables represent the pro-
portion of examinees that are masters of the 
attribute in that column and the CEFR lev-
el in that row. For example, in the listening 
section, all examinees in both A2 and below 
A2 did not master α1, 49% of the examinees 
in B1 mastered α1, 98% of the examinees 
in B2 mastered α1, and all examinees in C1 
mastered α1. Comparing between the �ve 
attributes in the listening section, α5 may be 
a more di�cult attribute to master because 
even for examinees in C1, only 80.9% of 
them mastered α3. Comparing between the 
�ve attributes in the grammar/reading sec-
tion, α1 maybe an easier attribute to master 

because even for examinees in the “Below 
A2”, 30% of them mastered α1. One may 
also see that the probability of mastering α1

in the A2 level (0.686) was higher than that 
in the B1 level (0.537), meaning that more 
examinees in the A2 level mastered α1. �e 
reason behind this could not be answered 
through statistical analysis. It is possible 
the combination of di�erent vocabulary lev-
els in the Q-matrix had an e�ect. However, 
it is also likely the easiness of α1 made the 
di�erence between each category relatively 
subtle and even reversed in this scenario. 
Overall, higher categories are associated 
with higher probability of mastery on sub-
skills. Results are consistent with what we 
see in Figures 5 and 6, which is that exam-
inees’ subskill mastery distributions match 
the target level of the MET.

Table 19  Probability of Subskill Mastery for Each CEFR Level in the Listening Section

Category α1 α2 α3 α4 α5

C1 1.000 0.993 0.809 1.000 1.000

B2 0.988 0.925 0.367 0.963 0.449

B1 0.490 0.503 0.042 0.271 0.045

A2 0.000 0.382 0.000 0.000 0.000

Below A2 0.000 0.038 0.000 0.000 0.000

Table 20  Probability of Subskill Mastery for Each CEFR Level in the Grammar/Reading Section

Category α1 α2 α3 α4 α5

C1 0.968 1.000 1.000 0.947 0.926

B2 0.832 0.934 0.992 0.406 0.285

B1 0.537 0.135 0.598 0.019 0.026

A2 0.686 0.000 0.059 0.000 0.019
Below A2 0.300 0.000 0.000 0.000 0.000
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Discussion

Summary	of	the	Major	Findings

�is study investigated three research ques-
tions regarding subskill mastery on the lis-
tening and grammar/reading sections on 
the MET using the DCM framework. 

�e �rst research question is to investi-
gate whether there may exist a mastery se-
quence between subskills. Results show that 
in the listening section, vocabulary may be 
a prerequisite for global/connecting/syn-
thesizing skills, and global/connecting/
synthesizing skills and the skill of making 
inferences may be prerequisites for the skill 
of comprehending explicit information. In 
the grammar/reading section, vocabulary, 
syntax, and the skill of comprehending ex-
plicit may be prerequisites for the skills of 
global/connecting/synthesizing or making 
inferences. 

�e second research question is to inves-
tigate the contribution of mastering each 
attribute to the overall scores. Results show 
that examinees’ overall scores in the listen-
ing section were more in�uenced by wheth-
er they mastered vocabulary, syntax, and 
the skill of comprehending explicit infor-
mation, and less in�uenced by the skills of 
global/connecting/synthesizing and mak-
ing inferences. �eir overall scores in the 
grammar/reading section were more in�u-
enced by whether they mastered the skills 
of comprehending explicit information and 
making inferences and less in�uenced by 
vocabulary, syntax, or the skill of global/ 
connecting/ synthesizing.

�e third question is to investigate the 
relationship between the subskill mastery 
patterns and the CEFR levels. Results show 
that examinees’ attribute mastery distribu-
tions almost perfectly matched the target-

ed level of the MET (i.e., between A2 and 
C1), providing additional validity evidence 
for the interpretation and use of the MET 
scores. When addressing each research 
question, examples of interpreting the val-
ues in the �ndings were given, but research-
ers and test developers could further inter-
pret and use the results for learning more 
about the construct and/or item/test devel-
opment.

Future	Research

�is study has at least two limitations that 
could be addressed in future research. 
First, as mentioned previously, the Q-ma-
trices are not ideal because they are not 
balanced. Some attributes are measured 
much more times than others. In an ideal 
world, we would want to �t DCMs to item 
responses from tests that are developed un-
der a DCM framework. On the other hand, 
item responses could be used to suggest a 
Q-matrix that best describes the data. As a 
foundation for future research in this line, 
data-suggested Q-matrices for the listening 
section and the grammar/reading sections 
are listed in the Appendices A and B, using 
the approach developed in de la Torre and 
Chiu (2016). In the appendices, one could 
see that the majority of the revisions that 
the data suggested were from “1” to “0”. In 
other words, the data suggested that some 
items do not measure some attributes as 
originally designed. However, it is critical 
to point out that the data-suggested Q-ma-
trix is not the “true” Q-matrix or the “best” 
Q-matrix. Often times entries in the da-
ta-suggested Q-matrix do not make sense 
from a content perspective. One should al-
ways design a Q-matrix based on construct 
theory and only use the data-suggested 
Q-matrix as a reference.
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Second, the attribute hierarchies formed 
in the analysis of RQ1 could gain additional 
support through further discussions with 
content experts. Di�erent attribute hier-
archies could be formed, and the general 
rule is that when the attributes are more 
structured, we gain a more linear sequence 
between the skills, but the model may be 
more likely to �t worse. When the attributes 
are less structured, for example, with no 
structure, there will be no sequence, but the 
model would �t to the best it can be. �e at-
tribute hierarchy formed in this study was 
a result of a balance between the model �t 
and useful sequence, but it would not be 
helpful if the hierarchy does not make sense 
content-wise. In the future, it would be 
more helpful to involve content experts in 
the process of forming attribute hierarchies. 

DCMs classify examinees according to 
their mastery/non-mastery status on the 
subskills. �is study uses DCMs to provide 
information on the subskills, which o�ers 
additional validity evidence, supplies in-
formation for item/test development, and 
hopefully promotes future research involv-
ing subskills on the MET.
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Appendix A

The Q-matrix Suggested by the Data for the Listening Section

Original Q-matrix Data Suggested Q-matrix

Item α1 α2 α3 α4 α5 α1 α2 α3 α4 α5

1 0 1 1 1 1 1 1 0 1 0
2 1 1 1 1 0 1 0 0 1 0
3 1 1 1 1 1 1 1 0 1 0
4 1 0 0 1 0 1 0 0 1 0
5 1 0 1 0 0 1 0 1 0 0
6 1 0 0 1 1 1 0 0 1 0
7 1 1 1 1 0 0 1 1 1 0
8 1 1 1 1 1 1 1 0 1 0
9 1 1 0 1 1 0 0 0 1 1
10 1 1 1 1 0 1 1 1 0 0
11 1 0 1 1 0 1 0 1 1 0
12 1 1 1 1 1 0 0 1 1 0
13 1 1 1 0 1 1 1 1 0 0
14 1 0 1 1 0 0 0 1 1 0
15 1 1 1 1 0 1 1 0 0 0
16 1 0 1 0 0 1 0 1 0 0
17 1 1 1 1 1 1 1 0 0 1
18 1 0 1 0 0 1 0 1 0 0
19 0 0 0 1 1 0 0 0 1 1
20 0 1 1 1 0 1 0 1 1 0
21 1 1 0 1 1 1 1 0 0 0
22 1 0 1 1 0 1 0 1 0 0
23 1 0 1 1 0 0 0 1 1 0
24 1 1 0 1 1 1 0 0 1 1
25 1 0 1 1 0 1 0 1 1 1
26 1 1 1 1 0 1 1 0 1 0
27 1 1 1 1 1 1 0 0 1 0
28 1 0 1 0 0 1 0 1 0 0
29 1 0 0 1 0 0 0 0 1 1
30 0 0 0 0 1 1 0 0 0 1
31 1 0 1 1 0 1 0 1 0 0
32 1 1 1 1 0 0 0 1 1 0
33 1 0 1 1 0 1 0 1 1 0
34 0 1 1 1 1 0 1 1 1 0
35 1 1 1 0 0 0 1 1 0 0
36 1 1 1 0 0 1 1 1 0 0
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Appendix B

The Q-matrix Suggested by the Data for the Grammar/Reading Section

Original Q-matrix Data Suggested Q-matrix

Item α1 α2 α3 α4 α5 α1 α2 α3 α4 α5

1 0 1 0 0 0 0 1 1 1 0
2 0 1 0 0 0 0 1 1 0 0
3 0 1 0 0 0 0 1 0 0 0
4 0 1 0 0 0 0 1 0 1 0
5 0 1 0 0 0 0 1 0 0 0
6 0 1 0 0 0 0 1 0 0 0
7 0 1 0 0 0 0 1 0 0 0
8 0 1 0 0 0 0 1 0 0 0
9 0 1 0 0 0 0 1 1 0 0
10 0 1 0 0 0 0 1 0 0 1
11 0 1 0 0 0 0 1 0 0 0
12 0 1 0 0 0 0 1 0 0 1
13 0 1 0 0 0 0 1 0 0 1
14 0 1 0 0 0 0 1 0 0 1
15 0 1 0 0 0 0 1 0 0 0
16 1 1 1 1 1 1 0 0 1 0
17 1 1 1 1 1 1 0 1 1 0
18 0 1 0 0 1 0 0 0 0 1
19 0 1 1 1 1 0 1 1 0 1
20 1 0 1 1 0 1 1 0 1 0
21 1 0 1 1 0 0 0 1 1 0
22 1 1 1 0 0 0 1 1 0 0
23 1 0 1 1 0 1 0 0 1 0
24 1 1 1 1 1 0 1 0 1 0
25 1 0 1 0 1 0 0 1 0 1
26 1 0 1 1 0 1 0 1 0 0
27 1 1 1 1 0 1 0 1 1 0
28 0 1 0 1 0 0 1 0 1 0
29 1 0 1 1 1 1 0 1 1 0
30 1 0 1 1 1 0 0 1 1 0




