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Abstract
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by item and rater parameters. First, an overview of different IRT models (many-facet rater models,

covariance structure models, and hierarchical rater models) is presented. Next, different estimation
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R is illustrated by a sample dataset.
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1 Introduction

Educational assessments often involve different approaches and procedures. Some abili-

ties can be measured with closed answering formats such as multiple-choice questions,

while other competencies, for example, expressive (productive) competencies, require

constructed-response formats. One reason for why the latter are not so commonly used in

large-scale assessments is that these kinds of tasks mostly require human judgment (rather

than computer programs) to score answers or to assess their quality. Besides educational

and language assessment, many other areas of testing require human judgment as well,

such as the scoring of students within medical education programs (Tor & Steketee, 2011),

the assessment of abilities using the approach of multiple mini-interviews (McLaughlin,

Singer, & Cox, 2017), or large-scale placement tests (S. M. Wu & Tan, 2016). Therefore,

possible rater effects must be taken into consideration.

Wind and Peterson (2018), who conducted a systematic review of the methods used in

different application areas of rater studies, found that the research focus varies greatly.

Some studies focus on the estimation of item difficulties, while others are more interested

in the rating quality or the estimation of test-takers’ ability. It is important to consider

the main purpose of each study and to take into account the fact that the research focus

may result in different study designs and that some estimation methods are superior to

others. The research design and the estimation method chosen depend on the research

question being investigated. Furthermore, the question of what kind of role the items

and persons should have in the specific research should be considered.

First, items and persons could be seen as fixed, which means that each item and each

person is associated with fixed model parameters, namely, an item difficulty and a person

ability. As a consequence, the item responses Xpi of person p to item i are modeled
as P × I independent random variables, given the fixed model parameters. Second,

if persons and/or items are treated as random, this means that either persons and/or

items are a random sample, it is necessary to make assumptions about the underlying

distributions (see De Boeck, 2008). The consequences of the persons and/or items being

treated as either fixed or random are that there is a change in the interpretation of the

parameters and the resulting probabilities in the item response models (IRT models).

Performances are often graded by multiple raters in order to increase the reliability and

objectivity of the ratings and to minimize rater errors (see Eckes, 2015 for a comprehen-

sive overview). The expected degree of agreement (or nonagreement) depends on the

attitudes and expectations of the raters, their knowledge, and the study design applied.

For example, in studies in which raters grade performance more holistically (e.g., if there

are no specific guidelines on how the raters should score the performance), a lower agree-

ment is expected. When detailed scoring rules are applied, higher rater agreement can

be expected. If detailed scoring rules are applied and broad training is provided for the

raters, the ratings can be expected to be more homogeneous in terms of higher agreement

between the performance scores. However, it could be expected that the application

of detailed scoring rules yields ratings that are no longer locally independent, which is
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a typical assumption made in IRT models (the residuals might correlate substantially;

Wang, Su, & Qiu, 2014, see also Verhelst & Verstralen, 2001). The variable behavior of

raters can be summarized under the label “rater effects”. Depending on the knowledge of

the raters, their attitudes, and their expectations of the performance, different raters may

give different grades. Well-known rater effects include the effect of severity/leniency

(Engelhard, 1992; Lunz, Wright, & Linacre, 1990), the halo effect (Bechger, Maris, &

Hsiao, 2010; Myford &Wolfe, 2003), the central tendency, and the restriction of range

of judgments (Engelhard, 1994; Saal, Downey, & Lahey, 1980).

Many different statistical approaches for analyzingmultiple ratings are discussed in the lit-

erature (Eckes, 2017). To begin with, generalizability theory (G-theory; Brennan, 2001a)

decomposes the total variance on a raw score metric (scores of raters on performance) into

the additive variance components of the person, the items, and the raters. Both double

and triple interactions (persons× items, persons× raters, and persons× items× raters)

can be considered. G-theory treats items and persons as a sample of a theoretically

infinite population of items and persons. The G-theory is useful regarding, for example,

the formulation of rater effects, but it is also limited as the relationship of the components

is treated as linear and additive in the raw score metric of items, which might not be

appropriate.

In the context of the item response theory (IRT), several other methods have been

proposed to model rater effects. These approaches are mostly based on the concept

of virtual items, which are defined as the set of all combinations of original items and

raters (see Rost & Langeheine, 1997). For example, in the case of two items and four

raters, 2 × 4 = 8 virtual items can be created. A virtual item for a particular original

item and a particular rater includes all ratings of the corresponding original item and

rater, respectively. Based on virtual items, in the many-facet Rasch model (Linacre,

1989, 2017), the ratings of raters on all items and on all persons are decomposed into

the additive effects of persons, items, and raters on the logit metric (more precisely,

item× rater, or a matrix in which student essay× rater is shown). As illustrated in Figure

1a, each of the four raters rates two items. In total, there are two items and the responses

to each of these two items are partitioned into four virtual items. The residuals among

the virtual items are treated as being locally stochastically independent given a general

person ability variable. A typical example of Figure 1a is the many-facet Rasch model,

which results from the application of a restricted partial credit model to virtual items.

Systematic differences in rater behavior are modeled by allowing item difficulties to

differ between raters. However, the ratings that correspond to generalized items are

assumed to be locally stochastically independent. This assumption is typically violated in

many applications because the ratings of one single item by two raters will appear to be

more similar than the ratings of two different items by two raters. Therefore, additional

person-item interaction effects have to be considered.
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Figure 1:

All models 1a, 1b, and 1c represent eight virtual items, where each rater rated two of the virtual

items. In both models 1a and 1b, the ratings were locally independent, whereas in model 1c, the

additional parameters u and v were introduced to account for the interaction between persons and
items as well as between persons and raters. Model 1a depicts the many-facet rater model, model

1b the hierarchical rater model, and model 1c the generalized many-facet rater model.

In Figure 1, the additional dependence caused by rating the same item is taken into

account by a hierarchical rater model (Patz, Junker, Johnson, & Mariano, 2002; DeCarlo,

2005; DeCarlo, Kim, & Johnson, 2011). Person ability causes true ratings η of the
two items, which are themselves measured by 2× 4 observed ratings (i.e., the virtual
items). Moreover, it is possible that the rating of a particular rater on the first item

influences the rating on the second item (halo effect). In this case, additional dependence

is introduced and the local independence assumption in Figure 1b is violated. In the

generalized many-facet rater model depicted in Figure 1c, person-item and person-rater

interactions are modeled by additional random effects (latent variables; Wang et al.,

2014) that capture the violation of local independence in Figures 1a und 1b. It should be

noted that local dependence can be alternatively represented as correlated residuals in

Figure 1c. In the next section, these three different modeling approaches are formally

described and are introduced as special cases of IRT models applied to the polytomous

item responses of virtual items.

2 Item Response Models for human raters

In the following section, different item response models for human ratings are introduced.

First, an overview of IRT models is presented. Then, these IRT models are extended

to include rater effects for modeling rating data for human raters. In particular, we

distinguish between the approaches of many-facet rater models, covariance structure

models, and hierarchical rater models.
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2.1 Item response models for polytomous data

Here, we provide a short review of the most frequently used IRT models for polytomous

data. WithXpi we denote the polytomous item response of person p to item i. While the

items are often treated as fixed, person parameters are often assumed to be random (see

Holland, 1990) and are modeled by a distribution (e.g., a normal distribution or located

latent classes). In the following description, we will mostly choose a unidimensional

distribution of the ability (latent trait) θp, although the extension to multidimensional
traits does not substantially change the interpretation of the models.

Partial credit model

The partial credit model (PCM; Masters, 1982) is an item response model for two or

more ordered categories. The item response probability for responding to category

k = 0, . . . ,Ki is given as

P (Xpi = k|θp) ∝ exp{kθp − bik} (1)

The symbol ∝ means that the right-hand side of Equation (1) sums to one across all

categories k. The model has the property that persons with high abilities θp tend to
respond in high categories k. The parameter bik indicates an item-category-specific

intercept. This parameter is also often reparameterized in the form bik = kβi−
∑k

h=0 τih
with a general item difficulty βi and item thresholds τih. The PCM belongs to the family

of Rasch models and shares the important properties of the Rasch model that the sum

score Sp =
∑

iXpi is a sufficient statistic for the person parameter θp and the person
and item parameters are separable (Andersen, 1980). Therefore, conditional maximum

likelihood estimation can be used as an estimation approach that provides item parameter

estimates without the need to specify the ability distribution (see Section 3). A restricted

form of the PCM is the linear logistic test model (LLTM; Fischer, 1973), which models

the item-specific intercepts as a linear function of basis parameters and is given as

bik =
∑M

m=1
qikmγm (2)

where γm are basis item parameters and qikm are known prespecified values. Specific

hypotheses can be tested by imposing restrictions on the PCM in Equation (1). For

example, a rating scale model (Andrich, 1978) can be formulated as a particular LLTM,

in which the model has item difficulty parameters and item thresholds that are assumed

to be invariant across items.

Generalized partial credit model

The generalized partial credit model (GPCM) is a generalization of the PCM and was

introduced by Muraki (1992). This model includes an additional item-specific discrimi-

nation parameter ai and allows the items to have different reliabilities. It is formulated
as

P (Xpi = k|θp) ∝ exp{kaiθp − bik} (3)
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In most applications, the GPCM provides a better model fit than the PCM. Items with

larger item discriminations are preferred because they are more informative in discrim-

inating between persons with lower and higher ability values. As in the PCM, item

discriminations ai as well as item-category intercepts bik can be modeled as linear func-
tions of the basis item parameters (Embretson, 1999); this makes the estimation of more

parsimonious models possible. It should be emphasized that the weighted sum score

Sp =
∑

i aiXpi is a sufficient statistic for the person parameter θp.

Graded response model

The graded response model (GRM) proposed by Samejima (1969) belongs to the class

of so-called cumulative IRT models. The item response probabilities are given as

P (Xpi = k|θp) = G(aiθp−bi,k+1)−G(aiθp−bik) (bi0 = 0, bi,Ki+1 = ∞) (4)

where G is a link function that is typically the logistic link function or the probit link

function. The model includes item discriminations ai and ordered item intercepts bik.
It is often found that the GRM and the GPCM provide similar fit to empirical datasets

(Forero & Maydeu-Olivares, 2009) and, hence, there are no crucial consequences of

choosing one of the two models. Again, the item parameters can be formulated as

linear functions to estimate restricted versions of the GRM. For the probit link function,

Equation (4) can be rewritten asX∗
pi = aiθp+epi whereX

∗
pi is an underlying continuous

variable for the ordinal itemXpi and epi is a standard, normally distributed residual. The
ordinal item Xpi is obtained by discretizing the continuous variable X

∗
pi with respect to

thresholds bik. Using the variable X
∗
pi has the advantage that correlated residuals can be

specified in the GRM, which can model violations of local independence. However, in

this situation, marginal maximum likelihood estimation is no longer computationally

feasible and limited information estimation procedures have to be applied (see Section

3).

Covariance structure model

The normal distribution is probably the most frequently applied distribution. Sometimes

the question arises whether the normal distribution can also be applied to ordinal items.

However, the probability density of the normal distribution is defined on the real line and

not on discrete values. Therefore, a misspecified model results if the normal distribution

is applied to ordinal items. The assumed normal density is given as

f(Xpi = k|θp) = (2πσi)
− 1

2 exp
{
− (k − aiθp − µi)

2

2σ2
i

}
, i.e. Xpi = µi + aiθp + epi

(5)

An item i is parameterized with an item mean µi, an item discrimination ai, and a
residual variance σ2

i = V ar(epi). Unfortunately, the item parameters of the GPCM

or the GRM cannot be simply converted into the parameters of the normal distribution

in Equation (5). However, in some applications, the item and distribution parameters
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from the covariance structure model (CSM; often referred to as confirmatory factor

analysis) shown in Equation (5) can be more easily interpreted than the parameters of

the GPCM or GRM. More formally, in a CSM, the mean vector µ = µ(γ) of the I
items Xp1, . . . , XpI and the covariance matrix Σ = Σ(γ) are modeled as functions
of an unknown parameter vector γ (Bollen, 1989). In a CSM, the covariance matrix

is represented as Σ = ΛΦΛT + Ψ, where Λ is the loading matrix, Φ is the factor

covariance matrix andΨ is the residual covariance matrix. Then, the vector γ contains

elements of the mean vector, loadings and elements of the factor covariance, and residual

covariance matrices. When applied to ordinal data, the CSM is a so-called pseudo-

likelihood estimation approach as the assumed likelihood function is misspecified (Yuan

& Schuster, 2013). Interestingly, Arminger and Schoenberg (1989) showed that the mean

structure and the covariance structure in Equation (5) can be consistently estimated in

a confirmatory factor analysis based on a misspecified normal distribution for ordinal

items. However, so-called maximum likelihood robust standard errors should be used, in

order to ensure that valid statistical inferences can be made in the case of a misspecified

likelihood (White, 1982). Alternatively, the bootstrap resampling method of persons can

be used to obtain valid standard errors (Berk et al., 2014).

2.2 Many-facet rater model

The IRT models presented in the following paragraphs are based on virtual items of every

combination of an item and a rater (see Figure 1). We denote the corresponding item

responses as Xpir for person p to item i rated by rater r. Unidimensional many-facet
rater models (MFRM) are obtained by applying the PCM, the GPCM, or the GRM to

these virtual items. The item response probability in the extension of the GPCM is given

as

P (Xpir = k|θp) ∝ exp{kairθp − bikr} (6)

and, for the GRM, it is written as

P (Xpir = k|θp) = G(airθp − bir,k+1)−G(airθp − birk) (7)

Typically, constrained versions of these models are applied to rating data. In the family

of Rasch models, the item discriminations air in the GPCM (Equation 6) are all set to

one (also labeled as Rasch-MFRM in the following). A Rasch-MFRM (Linacre, 1989)

imposes additional restrictions on item parameters such that

P (Xpir = k|θp) ∝ exp{kθp − kβi − kαr −
∑k

h=0
τih} (8)

In this specification, the parameter βi refers to the general item difficulty, αr is the rater

severity parameter and τih are item-step parameters. The model specified in Equation
(8) is a particular LLTM of the PCM applied to virtual items with linear constraints on

item-category intercepts birk. It should be emphasized that rater effects are assumed to
be homogeneous across all items in Equation (8). An important extension to Equation
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(8) is the introduction of further interaction effects between items and raters, which

allows for systematic item-specific rating behavior. The more restrictive model with

homogeneous rater effects can be tested against the more complex model that allows

for item-rater interactions. Rater centrality/extremity (see Wolfe, 2014) can be modeled

by including rater-step parameters αrh in Equation (8). We note that an identification

condition has to be assumed in order to estimate (8) (e.g., Σrαr = 0).

The Rasch-MFRM has the advantage that the unweighted sum score Sp = ΣirXpir

is a sufficient statistic for the person parameter θp. By using the many-facet Rasch
model as a scaling model for obtaining person parameter estimates, an implicit decision

about an equal weighting of items is made. From the perspective of item fit in real

data applications, items as well as raters will typically assess the person ability with

different precision. Therefore, an item response model that includes discrimination

parameters will almost always result in better model fit. Besides severity-leniency effects

or scale-usage effects of raters, raters can also differ in the reliability of the ratings they

provide. The item-rater discrimination parameter air is a measure of the reliability of
the ratings of item i and rater r (M. Wu, 2017). A more parsimonious model, which

can also often be useful, linearly decomposes the item-rater discrimination, such that

air = ai + ar. Submodels that include only item discriminations (air = ai) or only
rater discriminations (air = ar) provide further interesting diagnostic tools for studying
the behavior of items and raters.

We emphasize that the GPCM (6) and the GRM (7) are often specified in a restricted

form in which item-rater parameters follow a linear function, such as in the LLTM. These

models are implemented in the R packages discussed in Section 3 of this paper.

2.3 Generalized many-facet rater model

As argued in the introduction, ratings are not locally independent across items and raters.

First, different raters evaluate the performance of a student on an item, which typically

introduces some dependency because additional item-specific factors besides general

ability are at play. Hence, an additional student-item interaction effect has to be modeled.

Second, the rating of one item by a rater can also influence the rating of another item by

the same rater (the halo effect). Therefore, an additional student-rater interaction needs

to be modeled. The MFRM can be extended to include these two additional random

effect parameters upi and vpr to model local dependence. The resulting generalized
many-facet rater model (GMFRM; Wang et al., 2014; Verhelst & Verstralen, 2001, for a

version for dichotomous ratings) can be written as

P (Xpir = k|θp, upi, vpr) ∝ exp{kαiθp+kupi+kvpr−kβi−kαr−
∑k

h=0
τih} (9)

Several submodels of (9) can be estimated. A version of (9) that sets all item dis-

criminations ai to one is a multidimensional Rasch model (Wang et al., 2014) with

random person-item and person-rater effects. The size of the variance components

σ2
i = V ar(upi) and σ

2
r = V ar(vpr) quantifies the degree of the dependency of the
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ratings. In some applications, it seems useful to include only the item or rater random

effect for local dependence. The GMFRM models the additional dependence caused by

ratings of the same items and by the same raters as additional random effects that prevent

the assumption of local independence. Alternatively, the GPCM (9) can be substituted by

a GRM using a latent variable representation. Using this approach, the random effects

can be integrated out so that only person ability appears as a person variable in the model

(Tuerlinckx & De Boeck, 2004; see also Ip, 2010). However, this equivalent model

introduces correlated residuals, as rating variables Xpir for the same item i and for the
same rater r are typically positively correlated. It must be emphasized that moving
from the model with random effects to the equivalent model with correlated residuals

implies a change in the metric of item parameters because the ability metric has changed.

More formally, integrating out the random effects upi and vpr from (9) results in the

conditional response probability

P (Xpir = k|θp) ∝ exp{kλirαiθp − kλirβi − kλirαr −
∑k

h=0
λirτih (10)

with λir = (δ2σ2
i + δ2α2

r + 1)
1
2 }

where δ = 0.583 is a positive constant (see Ip, 2010). As the multiplication factor
λir is always smaller than one, all item parameters are shrunken to the extent of local

dependence caused by person-item and person-rater interactions. Hence, comparisons of

the item parameters of the GMFRM and the MFRM should consider the transformation

formula in Equation (10) for item parameters. The size of the residual correlations in

(10) can also be computed based on the variance components of the random effects in

model (9).

2.4 Covariance structure model and generalizability theory

Instead of modeling the ordinal virtual items of the rating data with an item response

model for polytomous item responses, a CSM can alternatively be applied using normal

distributions for modeling the virtual itemsXpir. The mean structure can be represented

by general item effects and general rater effects for modeling severity. The covariance

structure can be modeled as a confirmatory factor modelΣ = ΛΦΛT +Ψ in which the

distribution parameters of person ability are represented in the covariance matrix Φ of

latent factors. Violations of local independence caused by ratings of the same items and

the same raters can be specified either as additional factors appearing in the covariance

matrix Φ or as a patterned residual covariance matrix Ψ. As argued above, the CSM

provides consistent estimates of the mean and covariance structure for ordinal items with

misspecified normal distribution likelihood (Arminger & Schoenberg, 1989). This also

holds true if the statistical models of G-theory (Brennan, 2001a) are applied to ordinal

items because these models are particular cases of CSMs.
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2.5 Hierarchical rater model

The GFRM and the CSM model the dependency caused by rating the same items by

including an additional random effect or correlated residuals. Hierarchical rater models

(HRM; Patz et al., 2002; DeCarlo et al., 2011) assume the existence of a discrete true

rating ηpi of a person p on an item i. However, the true rating is not observed; rather, it
is only indirectly measured by the ratings of several raters. The true rating categories

of all items serve as indicators of the person ability θp. As a consequence, the item
response ratings Xpir are hierarchically modeled, given true items ηpi, which are also
hierarchically modeled, given the person ability θp. At the first level, a probability
distribution P (Xpir = k|ηpi) specifies a rater model, while at the second level, the
distribution P (ηpi = η|θp) is specified. At the second level, the GPCM can be chosen

for modeling true ratings and can be written as

P (ηpi = η|θp) ∝ exp{ηαiθp − bik} (11)

For the rater model at the first level, two different model specifications have been

proposed in the literature. Patz et al. (2002) used a discretized normal distribution

as the rater model in the originally proposed hierarchical rater model (HRM; see also

Casabianca &Wolfe, 2017):

P (Xpir = k|ηpi) ∝ exp
(
− 1

2ψ2
ir

[k − (ηpi + φir)]
2
)

(12)

The parameter φir represents a rater severity parameter that models the systematic

displacement of the ratings of rater r from the true rating ηpi. The variance parameter
ψir is a measure of the reliability of the rater. Large values for the variance represent

a high precision of the rater. The parameters φir and ψir can also be assumed to be

invariant across items if a more parsimonious model should be estimated. We want to

emphasize that (11) only parameterizes rater severity and rater imprecision. As noted by

Patz et al. (2002), the estimation of severities φir poses computational challenges for
small rater-variances ψir.

DeCarlo et al. (2011) proposed a hierarchical rater model based on a latent class signal

detection model (HRM-SDT) in which the different scale usage of the raters can also be

modeled. The item response probabilities in the rater model are specified as a GRM:

P (Xpir = k|ηpi) = G(dirηpi − cir,k+1)−G(dirηpi − cirk) (13)

where dir are item-rater discriminations and cirk are item-rater-category thresholds.

Large values for dir represent highly discriminating raters. Rater severity/leniency or
rater centrality/extremity is represented by different values of the thresholds cirk. Ideal
raters, who always agree with the true rating category η, have very large discriminations
dir (e.g., larger than 100) and item thresholds are given as cirk = dir × (k − 0.5). It
is evident that both hierarchical rater models take the dependence caused by rating the

same items into account. The HRM-SDT of DeCarlo et al. (2011) appears to be more
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flexible in modeling different rater behavior than the HRM of Patz et al. (2002), although

it is possibly more difficult to estimate when only a small amount of data is available.

However, neither model takes into account the additional dependence structure that

occurs when multiple items are rated by one rater. If halo effects exist in applications,

the GMFRM or a model with correlated residuals could be used. Alternatively, the

hierarchical rater model can be extended to include an additional dependence structure

(see also Wang et al., 2014) or random person-rater effects.

3 Estimation methods and their implementation in R packages

In this section, we present a brief overview of estimation methods that can be used for the

rater models introduced in Section 2. We focus on the implementation of these methods

in a number of recently released R packages (R Core Team, 2018) written by the authors

(immer, Robitzsch & Steinfeld, 2018; TAM, Robitzsch, Kiefer, & Wu, 2018; sirt,
Robitzsch, 2018b; LAM, Robitzsch, 2018a). This focus is intended to provide a basis

for the illustrative examples discussed later; it does not imply general recommendations

for real data analyses (see Rusch, Mair, & Hatzinger, 2013, for a more comprehensive

overview of R packages for IRT). In general, two broad classes can be distinguished:

maximum likelihood (ML) and Bayesian estimation. Several variants of ML estimation

are discussed (see also Holland, 1990).

Marginal maximum likelihood (MML) estimation (also labeled as full information maxi-

mum likelihood estimation, FIML) estimates model parameters under a distributional

assumption about person ability (and further random effects). In most cases, the normal

distribution is chosen for person ability. As person ability is a latent variable, it is inte-

grated out in the likelihood that the estimation problem can essentially be reduced to

estimating item parameters (and rater parameters) and person distribution parameters

(means, variances, and covariances). Essentially, MML operates under the assumption

of random persons. Therefore, a person distribution is described by a statistical model

and each person is not treated as a fixed entity for which the item response model holds.

The expectation maximization (EM) algorithm is often employed for MML estimation

(Aitkin, 2016). MML estimation for the Rasch-MFRM is available in the function

TAM::tam.mml.mfr() of the TAM package. Several submodels of the MFRM that

allow for different item discriminations can be estimated with TAM::tam.mml.2pl() or
sirt::rm.facets(). An MML implementation of the HRM-SDT model of DeCarlo et

al. (2011) can be found in sirt::rm.sdt(). In principle, the HRM of Patz et al. (2002)

can also be estimated with the MML method, although an implementation is available in

any of the R packages discussed in this section. MML estimation for CSMs based on a

multivariate normal distribution can be found in the lavaan package (Rosseel, 2012) or

in the LAM::mlnormal() function. G-theory models have equal linear discrimination
parameters and fall into the class of linear mixed effects models that can be estimated

with the lme4 package (Bates, Mächler, Bolker, & Walker, 2015).
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In joint maximum likelihood (JML) estimation (Lord, 1980; also labeled as fixed ef-

fects estimation), person parameters and item parameters are estimated simultaneously.

Essentially, persons are treated as fixed and a single parameter is estimated for each

person. Hence, no distributional assumption of person ability is needed. The JML

estimation is only computationally stable for Rasch-MFRMs and is implemented in the

Facets software (Linacre, 1989, 2017). JML has the disadvantage that the number of

estimated parameters increases with the number of persons in the sample, which induces

the well-known bias in JML estimation (Andersen, 1980). For the PCM, a simple bias-

correction formula has been proposed (Andersen, 1980). However, this formula cannot

be easily generalized to rating data with complex rating designs in which the number of

ratings per person and per item differs. Considering the critique of JML in most of the

psychometric literature, resampling methods and analytical methods (Hahn & Newey,

2004) have been proposed, which practically remove the bias caused by JML estimation.

Bertoli-Barsotti, Lando, and Punzo (2014) proposed a modification to the likelihood

function of the Rasch model for JML estimation that removes most of the bias in item

parameters. The reason for the JML bias is that there is no simple way to handle persons

with extreme scores (persons score in the lowest category or in the largest category for

all items). The so-called ϵ-adjustment method of Bertoli-Barsotti et al. (2014) essentially
applies a linear function to the sum score Sp = ΣiXpi in order to map the interval [0,Mp]
(Mp is the maximum score for person p) onto [ϵ,Mp − ϵ]. It should be emphasized that
all scores are linearly transformed. The ϵ-adjustment approach is implemented in the
immer::immer_jml() function of the immer package (Robitzsch & Steinfeld, 2018)

and extends the method of Bertoli-Barsotti et al. (2014) to polytomous item responses and

multiple-matrix designs with arbitrary missing patterns. Therefore, this JML estimation

method with bias-correction enables the estimation of the Rasch-MFRM. The statistical

properties of the parameter estimates can be seen as being superior to alternative JML

implementations of the Rasch-MFRM (for example, in the Facets software; Linacre,

2017). Depending on the application, JML can be substantially faster than MML estima-

tion and, hence, JML could be seen as a viable estimation alternative even if persons are

treated as random.

Conditional maximum likelihood (CML; Andersen, 1980) estimation also avoids a

specification of the distribution of person ability as person parameters are completely

removed in the estimation approach. Hence, CML can be used under the perspective of

random persons as well as fixed persons. CML can only be applied for Rasch-MFRMs.

The basic idea of CML is that the likelihood of a particular item response pattern with

sum score v is conditioned on the sum of the likelihoods of all response patterns with

sum score v. It can be shown that the corresponding ratio is independent of person
ability and that CML provides consistent item parameter estimates (like MML estimates;

van der Linden, 1994). It should be emphasized that CML becomes cumbersome in

rating designs in which not all persons are rated by the same items and the same raters

because the CML computations must be separately evaluated for every missing data

pattern. CML for Rasch-MFRMs is available in the eRm package (Mair & Hatzinger,
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2007) and the immer::immer_cml() function.

MML and CML estimation can be computationally demanding with complex rating data

designs because there can be a large number of virtual items with many missing values.

To reduce the computational burden, so-called limited information estimation approaches

have been proposed, which do not rely on modeling the full item response patterns but,

rather, operate on the aggregated information of the data.

The diagonally weighted least squares estimation method (DWLSMV; Muthén, 1984)

can be applied to estimate confirmatory factor models for ordinal item responses (e.g.,

the GRM or GMFRM with a latent variable representation and a probit link function). In

this three-stage approach, only the univariate or bivariate frequencies of items (or virtual

items, respectively) are used to estimate item thresholds and the polychoric correlations of

all items in the first two stages. In the third stage, the item thresholds and the polychoric

correlation matrix are estimated as a function of an unknown parameter describing the

threshold and covariance structure. DWLSMV estimation can be implemented in the

lavaan package. In complex rating designs with many raters, not many data are available

on virtual items (the response of a particular rater to a particular item) and the estimation

of thresholds and polychoric correlations becomes unstable. Therefore, the DWLSMV

cannot be reliably applied in these situations.

Composite maximum likelihood estimation (see Varin, Reid, & Firth, 2011, for a review)

uses amodified optimization function in such a way that only parts of the data aremodeled.

We will focus only on the case that specifies a likelihood function for all pairs of items

(or virtual items). In contrast to DWLSMV estimation, composite methods are one-stage

methods and are applicable to complex rating designs. Composite marginal maximum

likelihood estimation (CMML; also labeled as pairwise likelihood estimation) is an

estimation method of the confirmatory factor model for ordinal data with a latent variable

representation under the probit link function (Katsikatsou, Moustaki, Yang-Wallentin, &

Jöreskog, 2012). The estimation is based on the frequencies of the bivariate cross tables of

all item pairs. These frequencies aremodeled as functions of themodel-implied likelihood

function, which can be simply evaluated as a function of the unknown model parameters

because it can be computed based on the bivariate normal distribution function. Therefore,

the estimation method is computationally efficient and arbitrary missing patterns in rating

designs can be easily handled. Many variants of the GMFRM in the GRM formulation can

be efficiently estimated. Item discriminations, factor covariances, or residual correlations

can be estimated as functions of the basis parameters, like in the LLTM, which makes it

possible to test the specific hypotheses of rater effects. The CMML estimation approach

is implemented in the lavaan package and in the immer::immer_cmml() function, with
a particular emphasis on LLTM representations of the model parameters. The related

approach of Garner and Engelhard (2009) is also based on eliminating person parameters

by considering pairwise conditional probabilities. However, they propose that model

parameters should be estimated by a noniterative algorithm based on eigenvalues on the

incidence matrix of pairwise frequencies (the so-called eigenvector method).
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As an alternative to CMML, a composite estimation method based on the CML principle

can be employed. Composite conditional maximum likelihood estimation (CCML)

evaluates the conditional likelihood for pairs of items. Hence, it is also based on only

the bivariate information of the dataset. The CCML approach has been proposed for the

LLTM for dichotomous data (Zwinderman, 1995) but it can be generalized to polytomous

items; our implementation can be found in the immer::immer_ccml() function. To
this end, Rasch-MFRMs can be estimated more efficiently with CCML than with CML

in complex rating designs.

In recent years, Bayesian estimation approaches such as Markov chain Monte Carlo

(MCMC) have become very popular due to the availability of very flexible general

purpose Bayesian software programs such as BUGS, JAGS, or Stan. In a nutshell, the

MCMC approach is a simulation-based stochastic estimation algorithm, which uses

random draws of latent variables (person ability, random effects) and model parameters

conditional on the information contained in the dataset. The MCMC approach is often

seen as being computationally superior to ML estimation for IRT models with many

latent variables (Patz & Junker, 1999). In the GMFRM, the random effect person

ability as well as the person-item and person-rater effects are estimated. It is relatively

easy to estimate this model in a Gibbs sampling approach (Wang et al., 2014). The

immer package provides a wrapper function for the JAGS software (Plummer, 2003)
in the immer::immer_gmfrm() function. The HRM of Patz et al. (2002) is mostly

estimated with MCMC methods although ML estimation is also possible (DeCarlo et

al., 2011). A Metropolis-Hastings within Gibbs sampling algorithm is employed in the

immer::immer_hrm() function.

It should be emphasized that MCMC estimates are asymptotically equivalent to ML

estimates. Hence, MCMC can also be used in applications without a primary focus on

Bayesian statistical inference. In IRT models for raters, informative prior distributions

decode prior knowledge about parameters in the Bayesian approach. Rater models are

often highly parameterized and researchers aim to avoid statistical overfitting. For exam-

ple, many item-specific rater effects are estimated in a rater model but only practically

relevant effects should be signaled by the model. An informative prior normal distribu-

tion with a mean of zero and a variance of 0.01 assumes that most rater effects are small.

Only those rater effects with large values are estimated as being significantly different

from zero (see Muthén &Asparouhov, 2012, for the application of prior distributions in

differential item functioning). In an alternative interpretation, model parameters are reg-

ularized in such a way that all nonsignificant effects are reduced to zero, which provides

a more focused view on the most relevant effects. Similarly, so-called penalized ML

estimation has been proposed as a regularization procedure under the ML paradigm for

assessing differential item functioning (Tutz & Schauberger, 2015). In the same manner,

rater effects can be regularized in a penalized ML approach of a Rasch-MFRM, which

will probably be implemented in the TAM package in the near future.
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4 Choosing an appropriate rater model

The question of how to choose a suitable model involves an examination of the assump-

tions, expectations, and properties of the statistical models. In the following, we try to

provide a balanced view of advantages and disadvantages of the rater models presented

in Section 2.

It has been argued in Section 2 that typical rating designs imply the existence of local

dependence caused by person-item and person-rater interactions. While the GMFRM

deals with both sources of dependence, the HRM (either in the Patz et al., 2002 or the

HRM-SDT specification) only considers additional dependence caused by person-item

interactions. It can be argued that, for analytic ratings, halo effects (person-rater interac-

tions) play only a minor role and that therefore, the HRM often fits empirical datasets

sufficiently well. The GMFRM and HRM have the advantage that they typically provide

a good model (or are at least superior to the MFRM) and provide adequate reliability

estimates of person parameters, as sources of local dependence are explicitly modeled.

By applying one of the two model classes, a researcher puts substantial emphasis on

local dependence because the meaning of all of the model parameters (item parameters,

rater effects, and distribution parameters) is coupled with the modeled dependence. In

particular, the item and rater parameters in the GMFRM must be interpreted as being

conditional on person ability and random person-item and person-rater effects. If the

variances of the random item effects substantially differ from each other, item difficulties

can no longer be directly compared to each other because they operate on different

metrics. A comparison can be made if the random effects are integrated out to form

the conditional item response probabilities (see Section 2.3). In addition, the parallel

appearance of person ability and random item and rater effects in the GMFRM implies

that there is no unique (weighted) maximum likelihood estimator (WLE, Warm, 1989)

for the person parameter. Only the mean of the marginal posterior distribution (i.e.,

the expected value of the posterior distribution, EAP) can be used as a person ability

estimate. It should be noted that even in the case of equal discrimination parameters

in the GMFRM with random effects, the sum score is no longer a sufficient statistic of

the EAP because the ratings are weighted in such a way that ratings corresponding to

random effects with smaller variances receive larger weights, while random effects with

larger variances receive lower weights. Such a weighting scheme is not always favored,

especially in applications in which the person ability estimate is of vital importance for

the person itself (e.g., in feedback or in an examination). The HRM and GMFRM are

more computationally demanding than unidimensional rater models and this could be

seen as a disadvantage for practitioners. We think that this problem can be solved with

sufficient computational resources and is not a real limitation in the application of more

complex models.

Admittedly, the HRM and GMFRM can probably also not model aspects of the data

in order to describe the complex rating behavior. For example, raters can function

differently between persons (e.g., Eckes, 2005) or there could be rater drift during a
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rating administration (e.g., Leckie & Baird, 2011). Persons are also often clustered within

organizational units (e.g., in universities, classes, courses, groups of peers, etc.). This

clustering induces additional dependence, which remains nonmodeled in the HRM or

GMFRM. However, these aspects are mostly not of major interest in statistical analysis

and will be considered as a nuisance (and therefore ignored in the statistical model).

Hence, a misspecified likelihood will almost always be the consequence, and pseudo-

likelihood estimation is essentially employed, which requires robust ML standard errors

(White, 1982). Model parameters resulting from pseudo-likelihood estimation can be

interpreted as estimates of some of the population parameters of an assumed statistical

model obtained by repeated sampling processes (of persons, raters, clusters, etc.) with

comparable assumptions.

In the Rasch-MFRM, the model parameters can be interpreted as being conditional on

person ability. The Rasch-MFRM models rater behavior by using a restricted PCM. It

has the advantage of computational simplicity as (bias-corrected) JML estimation is

computationally fast. Moreover, the sum score of the item responses of a person is a

sufficient statistic for the person parameter (WLE, MLE), which facilitates interpretation

because of the equal weighting of all the ratings. Rasch-MFRMs assume local stochastic

independence and therefore ignore possible dependencies caused by rating the same

items or ratings by the same raters. Interestingly, the assumption of local independence

in the application of a unidimensional item response model can essentially be reduced

to the assumption that residuals cancel out on average. This means that it is assumed

that positive and negative local dependence cancel each other out. This assumption is

defensible if person ability is interpreted as amajor dimension that is statistically extracted

from the dataset. Possible violations caused by local independence are regarded as a

nuisance factor in statistical modeling. If the sole argument for applying the HRM or the

GMFRM is to obtain correct standard errors or adequate reliability estimates for person

parameters, we think that this choice is unfounded and that the Rasch-MFRM should be

considered instead. The application of the Rasch-MFRM under the local independence

assumption should be contrasted with the GMFRM, in which the appearance of random

effects only allows for positive local dependence. The nonmodeled positive dependence

in the Rasch-MFRM implies that the reliability of the person parameters is underestimated

and, therefore, procedures correcting for local dependence have been proposed (Bock,

Brennan, & Muraki, 2002). With respect to model parameters such as item difficulties

or rater severity effects, robust ML standard errors should be used because the Rasch-

MFRM will typically employ a misspecified likelihood function. Notably, this pseudo-

likelihood estimation nevertheless provides consistent parameter estimates under repeated

sampling assumptions because, asymptotically, the (Kullback-Leibler) distance between

a true complex (and unknown) distribution and an assumed parameterized distribution

is minimized (White, 1982). As a consequence, the parameter estimates of the Rasch-

MFRM for different samples are only comparable (or can only be linked to each other)

if similar rating designs are employed that ensure that the extent of (ignored) local

dependence remains similar in different samples. When this condition is fulfilled, the use
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of the Rasch-MFRM can be justified in applications if the calculation of standard errors

for model parameters and person parameters is modified appropriately. This is the case

for numerous simulation studies that have aimed to show that applying the Rasch-MFRM

to data generated by a GMFRM provides biased parameter estimates (e.g., Wang et al.,

2014) because the two models parameterize item response functions in different ways

and therefore preclude any legitimate comparison (see Luecht & Ackerman, 2018, for a

general discussion about the generalizability of findings from simulation studies in IRT).

It can be expected that a GMFRM including item or rater discrimination parameters will

almost always provide a better fit than the Rasch-MFRM. However, we believe that items

and raters should be equally weighted as in the Rasch-MFRM because, in applications,

the latent construct of interest is defined by having equal contributions of items and

persons (see Reckase, 2017 for such a domain sampling perspective). Otherwise, the

psychometric model would reweigh the contributions of items and persons in a completely

data-driven way, which could be regarded as a threat to validity (Brennan, 2001b). It is

sometimes argued in the literature (e.g., Bond & Fox, 2001) that Rasch models have many

desirable statistical properties that are not fulfilled in a GMFRM with discrimination

parameters (2PL). Maybe a reason for the existence of several myths about the Rasch

model could be the property of so-called specific objectivity (Fischer, 1995), which

is only guaranteed by the Rasch model and enables the separation of person and item

properties in an additive way. Some researchers incorrectly interpret this property as a

sample independence of person and item parameters. However, if a statistical model

(Rasch or 2PL) holds under the assumption of invariant item parameters (e.g., the same

parameters can be applied for specified subpopulations of persons), unbiased comparisons

for arbitrary selections of items are possible for both Rasch and 2PL models. The Rasch

model has the distinctive advantage that, due to the existence of the sufficient statistic of

the sum score, CML estimation can be conducted. However, CML estimation and MML

estimation, usually performed for 2PL models, will both provide consistent parameter

estimates. Therefore, some researchers’ preference for the Rasch model instead of

the 2PL model can statistically only be justified by the feasibility of CML estimation

(see van der Linden, 1994, for more detailed arguments), but CML is inferior to MML

estimation in finite samples. In summary, we believe that the advantage of using the

Rasch-MFRM can only be argued by using validity reasons related to the equal weighting

property and to the ease of parameter interpretation; we do not believe that it can be

argued that the Rasch-MFRM has superior statistical and measurement-related properties.

The rater models discussed above place person ability and model parameters onto a

metric of a latent variable, namely, the logit metric or a probit metric. Sometimes, it is

preferable to use the original metric of raw scores for interpretational purposes. This

seems to be particularly true for research settings in which people with less training in

psychometrics are involved. As it has been argued in Section 2.4, the application of

CSMs or G-theory models to ordinal data structurally represents the mean and covariance

structure of the data and provides consistent parameter estimates, although the assumed

normal distribution is misspecified. An important application is the computation of fair
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scores (see Eckes, 2015), which adjust person parameter estimates for systematic rater

effects. While the use of fair scores in the logit metric of the Rasch-MFRM entails a

bias at the boundary of ratings scales (especially for datasets with only few ratings per

person), employing the original metric by using a normal distribution model avoids this

bias.

Finally, the role of the fit of particular entities (items, raters, persons) or of the whole

model has to be considered. From a strictly psychometric perspective, the application

of the model fit of an IRT model from a random persons perspective treats model

fit as the discrepancy between an observed and a model-implied covariance structure

with respect to the items (or virtual items). Therefore, items are considered as being

fixed and nonexchangeable, and a possible replication of the experiment must involve

the same items and same raters (Brennan, 2011). The application of the G-theory (or

classical test theory, CTT) only makes assumptions about random sampling with respect

to persons, items, and raters. As the samples are thought to be representative with

respect to corresponding populations, all observations have to be equally weighted in

the statistical model. It seems that the adequacy of applying G-theory models with

equal discrimination parameters can be tested against the application of models in which

different discrimination parameters are allowed. However, the perspective of fit does not

play a role in the G-theory as the model is only intended to represent the sampling process.

Hence, G-theory models or CTT models essentially require fewer assumptions than

IRT models (see Brennan, 2011) and, therefore, they allow for broader generalizations.

Unfortunately, this fact is often overlooked in applied research and even in parts of the

psychometric literature.

To sum up, we have discussed the possible arguments for choosing one of the classes of

models for human ratings. These models have different assumptions, which can often

be simultaneously defended for a single dataset under different research perspectives or

with different uses of model parameters. Applied researchers should be cautious of the

psychometric literature that promotes the superiority of one model class over another

and justifies its recommendations mainly based on the results of simulation studies.

5 Empirical application in R

In this section, we illustrate the application of several IRT models on a sample dataset

and show how they can be estimated within R. The sample dataset is contained in the

immer package and has the name data.ptam4. It comprises 592 ratings for a single
essay written by 209 students and rated by ten raters on three items. 39 students were

rated by all ten raters, one student by nine raters, 17 students received ratings from two,

three or four raters, and 152 students had only ratings from a single rater. Each row in

the sample dataset data.ptam4 includes all ratings of a rater on all items corresponding
to an essay of a student. The structure of the dataset can be inspected in R by using the

head() function.
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It can be seen that the student with identifier (variable idstud) 10010 has two rows
in the dataset which means that she or he received ratings from two raters (variable

rater) 844 and 802. Ratings were provided on three items crit2, crit3 and crit4
on a four-point scale (with integer values 0, 1, 2, and 3).

Complete syntax for the specification of all models in this section is provided by a

vignette which is included in the immer package.
R> data(data.ptam4, package="immer")
R> dat <- data.ptam4
R> head(dat)

idstud rater crit2 crit3 crit4
1 10005 802 3 3 2
2 10009 802 2 2 1
3 10010 844 0 1 2
4 10010 802 2 2 1
5 10014 837 1 2 2
6 10014 824 0 2 2

Item response models for a single item

Before analyzing the complete rating dataset with three items, we investigate rater effects

based on only a single item “crit2”. We use a dataset in a so called wide format in which

columns refer to ratings of a single rater. In our analysis, we use ratings of 40 students

who received multiple ratings from ten raters. Only one student was unintentionally

rated by only nine raters. The dataset can be attached as data.ptam4wide from the

immer package.
Table 1:

Descriptive Statistics for Item “crit2”

Rater Cat0 Cat1 Cat2 Cat3 M SD Cor

R802 .10 .38 .38 .15 1.58 0.87 .76

R803 .33 .38 .18 .13 1.10 1.01 .79

R810 .20 .38 .33 .10 1.33 0.92 .86

R816 .25 .25 .35 .15 1.40 1.03 .80

R820 .03 .46 .38 .13 1.62 0.75 .69

R824 .23 .40 .25 .13 1.28 0.96 .78

R831 .18 .33 .35 .15 1.48 0.96 .87

R835 .38 .28 .23 .13 1.10 1.06 .76

R837 .08 .30 .35 .28 1.83 0.93 .79

R844 .30 .25 .25 .20 1.35 1.12 .78

Note: Cat0, Cat1, Cat2, Cat3 = relative frequencies for categories 0, 1, 2, 3; Cor = correlation of rating of a

single rater with average score across all raters

Table 1 displays descriptive statistics for the rating dataset for item “crit2”. Category

frequencies, the mean, the standard deviation and the correlation of a rating with the aver-
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age score across all ratings are shown in the table. By comparing the means, it is evident

that Raters 803 and 835 are severe while Rater 837 is lenient. Moreover, by inspecting

relative frequencies and the standard deviations, Rater 820 shows a centrality tendency

while Rater 844 can be characterized by an extremity tendency. Finally, by considering

the correlation with the average score, Rater 820 exhibits the lowest agreement, while

Raters 810 and 831 show the largest extent of agreement.

In the next step, we apply several item response models to the rating dataset involving

the single item “crit2” (see Wolfe, 2014, M. Wu, 2017 for applications of this approach).

In this approach, an item refers to a single rater and each rater is parameterized by its own

set of parameters. First, it is assumed that a continuous variable is used for modelling the

ratings of the four-point scale item. We fit the PCM with an assumption of homogeneous

rater effects (i.e., all raters possess the same set of parameters), the PCM, and the GPCM

(Models M01, M02, and M03). Second, we follow the principle of the HRM in which

true ratings of an item are modelled. Therefore, we specify located latent class Rasch

models (LOCLCA; Formann, 1985) which parameterize the response functions of the

raters by the PCM but assume a discrete ability variable. The locations of these latent

classes on the θ metric and the class probabilities are estimated. In our analysis, we fit
LOCLCA with three, four and five latent classes (Models M13, M14, and M15). For

the four-point scale item, a LOCLCA with four latent classes would be expected if true

ratings can be empirically identified.

Table 2:

Model Comparisons for Item Response Models for Item “crit2”

Label Model Deviance #par AIC BIC

M01 PCM equal 861.03 4 869 876

M02 PCM 785.58 31 848 900

M03 GPCM 774.45 40 854 922

M13 LOCLCA(3) 808.14 34 876 934

M14 LOCLCA(4) 775.52 36 848 908

M15 LOCLCA(5) 769.24 38 845 909

Note: #par = number of estimated parameters; PCM equal = partial credit model in which parameters for all

raters were constrained to be equal; LOCLCA(k) = Located class analysis with k located latent classes and the

PCM is used as the item response function.

Table 2 contains deviances and information criteria for the fitted models. Model selection

can be conducted by using differences of deviance values of nestedmodels and performing

a likelihood ratio test (LRT) or by considering models with smallest information criteria

AIC and BIC. When comparing models M01, M02 and M03, it turned out that the model

with equal parameters for raters must be rejected which means that raters differ with

respect to their rating behavior. The GPCM did not fit the data significantly better than

the PCM although the small sample size (N = 40) has to be considered. As an example,
we show how to fit the PCM using the TAM package and discuss parts of the summary
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output (dat2 is the dataset data.ptam4wide).
R> items <- c("crit2","crit3","crit4")
R> mod02 <- TAM::tam.mml( resp=dat2[,items] , irtmodel="PCM2")
R> summary(mod)

Item Parameters -A*Xsi
item N M xsi.item AXsi_.Cat1 AXsi_.Cat2 AXsi_.Cat3 B.Cat1.Dim1

1 R802 40 1.425 0.274 -2.923 -2.414 0.823 1
2 R803 40 1.300 0.714 -1.033 -0.730 2.142 1
3 R810 40 1.500 -0.086 -2.960 -2.047 -0.257 1
4 R816 40 1.600 -0.401 -3.892 -3.814 -1.203 1
5 R820 39 1.513 -0.011 -4.095 -3.747 -0.033 1
6 R824 40 1.450 0.333 -2.867 -2.745 0.998 1
7 R831 40 1.425 0.180 -2.263 -1.177 0.540 1
8 R835 40 1.450 0.228 -3.922 -3.602 0.683 1
9 R837 40 2.075 -2.073 -5.491 -7.872 -6.219 1
10 R844 40 1.600 -0.199 -2.812 -2.944 -0.597 1

The argument irtmodel="PCM2" requests the Andrich (1978) parameterization of the
PCM. The column xsi.item contains the item difficulty of the PCM which can be

interpreted as rater severity/leniency. The most lenient Rater 837 has the smallest item

difficulty (i.e., rater difficulty) while for the most severe Rater 803 the largest parameter

was obtained. The columns AXsi_.Cat1, AXsi_.Cat2 and AXsi_.Cat3 include rater-
category parameters which assess aspects of severity/leniency or centrality/extremity

behavior of the raters. The rater parameters can most easily be interpreted by computing

Thurstonian thresholds from the PCM using the TAM::tam.threshold() function.
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Figure 2:

Rater thresholds from the PCM (Model M02)

In Figure 2, the thresholds for all raters and all categories are depicted. It is evident that
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Raters 802 and 837 are lenient with respect to using the zero category while the opposite

is true for Rater 835. Summing up, it can be seen that the variability of the thresholds

among raters between 0 and 1 is much larger than for the thresholds between 1 and 2

and 2 and 3. This means that the raters show less agreement for rating students in lower

categories, but more agreement in rating higher categories.

We also compute infit statistics for raters (Eckes, 2015) based on the PCM (Model

M02) using the TAM::msq.itemfit() function. Raters 810 and 831 which showed the
highest agreement with the average rating (see Table 1) have the lowest infit statistics

(.77 and .75, respectively) which can be interpreted as overfit. The largest infit statistics

were observed for Raters 835 and 844 (1.14 and 1.19, respectively) which indicates

underfit of these two raters. The GPCM can be fitted using the TAM::tam.mml.2pl()
function using the argument irtmodel="GPCM". It turned out that Raters 810 and 831
have the largest rater discriminations (4.25 and 4.39, respectively).

The model fit for different LOCLCAs are shown in Table 2. It should be emphasized

that the LOCLCA with four or five latent classes has a slightly superior fit to the PCM

which assumes a continuous ability. Although the LOCLCA with four classes could be

preferred because it can be more easily interpreted, we present the results of the LOCLCA

with five classes. The LOCLCA can be fitted using the TAM::tamaan() function which
allows the specification of IRT models similarly to the lavaan package.

R> tammodel <- "
R+ ANALYSIS:
R+ TYPE=LOCLCA; # type of the model
R+ NCLASSES(5); # 5 classes
R+ NSTARTS(10,30); # 10 random starts with 30 iterations
R+ LAVAAN MODEL:
R+ F =~ R802__R844
R+ "
R> mod15 <- TAM::tamaan( tammodel , resp=dat2 )
R> summary(mod)

Cluster locations
V1 prob

Cl1 -9.990 0.048
Cl2 -2.814 0.108
Cl3 -0.124 0.334
Cl4 1.463 0.335
Cl5 3.415 0.175
------------------------------------------------------------
Item Response Probabilities

item itemno Cat Class1 Class2 Class3 Class4 Class5
1 R802 1 0 0.9988 0.3835 0.0284 0.0024 0.0000
2 R802 1 1 0.0012 0.5975 0.6526 0.2641 0.0242
3 R802 1 2 0.0000 0.0190 0.3056 0.6048 0.3903
4 R802 1 3 0.0000 0.0001 0.0133 0.1288 0.5855
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[...]
------------------------------------------------------------
Class-Specific Item Means

item itemno Class1 Class2 Class3 Class4 Class5
1 R802 1 0.0012 0.6357 1.3038 1.8600 2.5612
2 R803 2 0.0001 0.0747 0.6278 1.3383 2.4807
3 R810 3 0.0002 0.2063 1.0124 1.6340 2.3854
4 R816 4 0.0001 0.1067 0.9765 1.8310 2.5666
5 R820 5 0.0553 1.0133 1.2978 1.7869 2.4802
6 R824 6 0.0001 0.1668 0.9042 1.5541 2.4835
7 R831 7 0.0002 0.2583 1.1573 1.8270 2.5646
8 R835 8 0.0000 0.0455 0.5335 1.4349 2.4938
9 R837 9 0.0027 0.8269 1.5150 2.2048 2.8086
10 R844 10 0.0001 0.0719 0.7754 1.8169 2.7131

The latent classes from themodel output can be interpreted as latent ratings. By inspecting

item response probabilities and class-specific item averages, latent classes 1 and 2 can

be associated with “true” category 0, and latent classes 3, 4 and 5 can be associated

with “true” categories 1, 2 and 3. Note that Class 1 includes students which were (very

probably) rated as 0 by all raters while raters differed in their ratings for students in

Class 2. Raters 802, 820 and 837 rated a substantial portion of students in Class 2 into

categories 1, 2 or 3 while all other raters mostly rated students into category 0. Moreover,

from the output it can be also concluded that Rater 837 is the most lenient one.

G-theory models

In the following analyses, we use the full datasets including three items, ten raters and

209 students. As a preliminary analysis to more complex item response models, we fit

G-theory models (specified as linear mixed effects models) for assessing the amount

of variance which can be attributed to different sources. We estimate G-theory models

using the lme4 package. In order to achieve this, the dataset has to be converted into a

long format in which one row refers to the combination of a student, a rater and an item.

The needed structure has already been prepared as the dataset data.ptam4long in the
immer package. Four different G-theory models are fitted (Models M21, M22, M23 and

M24). The first three models assume homogeneous variance components (for random

effects of items or raters) while the last model allows for item-specific or rater-specific

variances of random effects. The G-theory Model M23 including person, person-item

and person-rater random effects can be estimated using the following syntax (value
denotes the variables which include all ratings for students, items and raters)

R> mod23 <- lme4::lmer( value ~ rater*item + ( 1 | idstud ) +
R+ ( 1 | idstud:item ) + ( 1 | idstud:rater), data = data.ptam4long )
R> summary(mod23)
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Random effects:
Groups Name Variance Std.Dev.
idstud:item (Intercept) 0.06497 0.2549
idstud:rater (Intercept) 0.09344 0.3057
idstud (Intercept) 0.28119 0.5303
Residual 0.21512 0.4638

Number of obs: 1776, groups: idstud:item, 627; idstud:rater, 592; idstud, 209

In this model, rater-specific item means are allowed (fixed effects item*rater). It can
be seen from the output that a large part of the variance corresponds to student ability.

Interestingly, the variance component due to person-rater interactions (i.e., halo effects)

is slightly larger than the amount of dependence due to person-item interactions. This

finding sheds some light on the application of HRM which only handles dependency

due to random item effects but not to random rater effects.

Table 3:

Variance Component Estimates from G-theory Models

Variance Model M21 Model M22 Model M23

p .331 .323 .281

p× i — .044 .065

p× r — — .093

Residual .334 .299 .215

Note: p = persons; i = items; r = raters

In Table 3, the variance component estimates for the first three models are shown. When

comparing Model M21 and M22, it can be seen that most part of the variance of the item

effect (p× i) is confounded with the residual variance in Model M21. When including

the random rater effect (p× r) in Model 23, a substantial part of the true score variance

is captured which shows that neglecting dependency due to halo effects results in overly

optimistic reliability estimates because the true score variance is overestimated.

Finally, we show how to estimate a G-theory model with heterogeneous variance compo-

nents (Model M24). The specification is a bit cumbersome when done manually because

dummy variables for all items (e.g., I_crit2) and all raters (e.g., R_802) are involved
in the model specification.

R> mod24 <- lme4::lmer( value ~ rater * item + (1 | idstud) +
R+ (0 + I_crit4 | idstud:item) + (0 + I_crit3 | idstud:item) +
R+ (0 + I_crit2 | idstud:item) + (0 + R_844 | idstud:rater) +
R+ (0 + R_837 | idstud:rater) + (0 + R_835 | idstud:rater) +
R+ (0 + R_831 | idstud:rater) + (0 + R_824 | idstud:rater) +
R+ (0 + R_820 | idstud:rater) + (0 + R_816 | idstud:rater) +
R+ (0 + R_810 | idstud:rater) + (0 + R_803 | idstud:rater) +
R+ (0 + R_802 | idstud:rater), data= data.ptam4long)

The variance component estimates of person-item interactions (idstud:item) were
estimated as .094 (Item “crit2”), .000 (Item “crit3”) and .092 (Item “crit4”) showing that
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no local dependency was introduced for “crit3”. The variance component estimates of

person-rater interactions (idstud:rater) showed a considerable amount of variation
(M= .096, SD=.059, Min=.027, Max=.204).

Many-facet rater models

In this subsection, we illustrate the application of several MFRMs. In a first series

of models, we fit Rasch-MFRMs which assume equal item and rater discrimination

parameters (Models M31, ..., M36). In a second series of models, we fit MFRMs which

allow the inclusion of item and rater discrimination parameters (Models M41, ..., M46).

In a Rasch-MFRM, the item response function for person p, item i, rater r and category
k is given as P (Xpir = k|θp) ∝ exp(kθp − birk). Different constrained versions for
parameters birk can be estimated. These versions can be defined using design matrices or
– more conveniently – using the formula language in R when fitting Rasch-MFRMs with

the TAM::tam.mml.mfr() function in the TAM package. For example, the formula ~
item*step + rater for facets items, raters and steps (i.e., categories) corresponds to
the constraint birk = bik + br. In principle, formulas of arbitrary complexity and an
arbitrary number of facets can be specified in the TAM package using the argument

formulaA. The Rasch-MFRM ~ item*step + rater (Model M32) can be estimated

using the following syntax (dat is the dataset data.ptam4)
R> facets <- dat[, "rater", drop=FALSE ]
R> mod32 <- TAM::tam.mml.mfr( dat[,items], facets=facets,
R+ formulaA = ~ item*step + rater, pid=dat$pid )
R> summary(mod32)

Item Facet Parameters Xsi
[...]
7 rater802 rater -0.118 0.101
8 rater803 rater 1.247 0.101
9 rater810 rater -0.052 0.099
10 rater816 rater -0.017 0.101
11 rater820 rater -0.412 0.099
12 rater824 rater 0.024 0.099
13 rater831 rater 0.169 0.100
14 rater835 rater 0.666 0.100
15 rater837 rater -1.483 0.099
16 rater844 rater -0.023 0.300
[...]

The function automatically creates virtual items for estimating the constrained PCM.

The estimated item and rater parameters can be found in output section Item Facet
Parameters Xsi (only rater parameters are displayed). The main rater effects in this
section indicate the extent of leniency/severity tendencies. These rater effects are almost

perfectly correlated with the means for each rater (across all items) which can be expected

because these means are sufficient statistics for the rater effects.
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Table 4:

Model Comparisons of Different Rasch-MFRMs

Label formulaA Deviance #par AIC BIC

M31 ~ item*step 3802.42 10 3822 3866

M32 ~ item*step+rater 3763.23 19 3801 3885

M33 ~ item*step+rater*step 3693.46 37 3767 3930

M34 ~ item*step+rater*item 3699.89 37 3774 3936

M35 ~ item*step+rater*item+rater*step 3632.30 55 3742 3983

M36 ~ item*rater*step 3562.38 91 3744 4143

Note: formulaA = formula specification of Rasch-MFRM; #par = number of estimated parameters.

In Table 4, model comparisons of different Rasch-MFRMs are shown. It can be seen that

model fit improves when interaction effects of raters and items or raters and categories

are included. The most complex model which assumes a PCM for all virtual items based

on combinations of items and raters would be favored based on a LRT but not based on

information criteria. It should be noted that information criteria are not to be expected to

provide valid statistical inference in case of incomplete designs1. This finding highlights

that the specification of rater models should not stop with modelling severity/leniency

tendencies as other rater effects can be of similar or larger importance.

In a second series of models, we investigate whether differences in discriminations

of items or raters can be found. Based on the item response function P (Xpir =
k|θp) ∝ exp(kairθp − birk), different specifications for the discrimination parame-
ter air are employed. These models can be estimated using the sirt::rm.facets()
function. Different specifications for the discrimination parameters can be requested

by using the arguments est.a.item and est.a.rater. The following syntax shows
how to estimate Model M44 (see also Table 5) which includes item and rater discrim-

inations in a multiplicative way (i.e., air = aiar). A model based on virtual items in

which all PCM (or GPCM) parameters are estimated can be requested by the argument

rater_item_int=TRUE.
R> mod44 <- sirt::rm.facets( dat[ , items], rater=dat$rater, pid=dat$pid,
R+ est.a.item=TRUE, est.a.rater=TRUE, reference_rater="831",
R+ rater_item_int=FALSE)
R> summary(mod44)

Item Parameters
item N M tau.Cat1 tau.Cat2 tau.Cat3 a delta delta_cent

1 crit2 592 1.409 -2.244 -2.053 0.542 0.889 0.181 0.368

1A large fraction of students in the dataset only received a single rating. With three items on a four-point scale,

10 parameters can be estimated for these students (9 item parameters and 1 variance parameter). However,

in the Rasch-MFRM specification all students are penalized in the AIC formula by the total number of

parameters which refers to a response pattern for students which have received multiple markings from all

raters (90 item parameters, 1 variance parameter). Therefore, the number of estimated parameters in the

AIC formula must be an overestimate of penalization in incomplete designs.
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2 crit3 592 1.586 -5.166 -5.702 -1.675 1.475 -0.558 -0.371
3 crit4 592 1.508 -3.342 -3.299 -0.555 0.762 -0.185 0.003
-----------------------------------------------------------------
Rater Parameters

rater N M b a thresh b.cent a.cent
1 802 174 1.540 0.147 0.989 0.146 0.095 1.053
2 803 183 1.158 0.959 1.263 1.211 0.906 1.327
3 810 183 1.508 -0.306 0.972 -0.298 -0.358 1.036
4 816 171 1.503 0.264 0.972 0.257 0.212 1.035
5 820 180 1.606 -0.544 0.862 -0.469 -0.597 0.926
6 824 189 1.492 0.129 1.093 0.141 0.077 1.157
7 831 177 1.446 0.000 1.000 0.000 -0.052 1.064
8 835 171 1.298 0.782 0.605 0.473 0.730 0.669
9 837 180 1.944 -1.049 0.626 -0.656 -1.101 0.690
10 844 168 1.512 0.140 0.980 0.137 0.088 1.044

From the output, we see that item “crit3” is more discriminative than the other two items

(see column a). Further, Raters 803 and 824 are most discriminative (i.e., accurate) while
Raters 835 and 837 are least discriminative (i.e., inaccurate) (see column a.cent). We

also calculated rater infit statistics from the Rasch-MFRMModel M32 (~ item*step +
rater) and compared these with rater discriminations fromModel M42 (birk = bik+br,
air = ar). Lower rater discriminations tended to result in higher rater infit values
(r = −.33). It turned out that the relationship of both statistics was stronger (r = −.59)
when an outlying observation (Rater 803) was removed from the calculation.

Table 5:

Model Comparisons of Different MFRMs

Label birk air Deviance #par AIC BIC

M41 bik + br 1 3763.23 18 3799 3878

M42 bik + br ar 3738.55 26 3791 3905

M43 bik + br ai 3750.96 20 3791 3879

M44 bik + br aiar 3724.43 29 3782 3910

M45 birk 1 3699.89 37 3774 3936

M46 birk air 3609.85 64 3738 4018

Note: bir = specification of item-specific rater intercept; air = specification of item-specific rater

discrimination #par = number of estimated parameters.

Finally, the model comparison from Table 5 indicated that the most flexible model

parameterizing all virtual items by the GPCM would be preferred based on the LRT

and AIC. In summary, it can be concluded that Rasch-MFRMs allowing for interaction

effects of raters with item or categories or MFRMs with rater discriminations should be

preferred from the perspective of model fit to a Rasch-MFRM in which only a main rater

severity effect is modelled. We expect that this conclusion will not change if measures

of approximate model fit would be employed. This modelling exercise illustrates our

argument that a preference of a simpler Rasch-MFRM can (in most applications) only be
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justified for validity reasons, that is, when the differential weighting of items and raters

by a psychometric model is not warranted.

Generalized many-facet rater models

By employing G-theory models it was observed that there is a substantial amount of

variance attributed to person-item and person-rater interactions. Now, a series of GFRMs

is fitted in which we allowed item discriminations and we included particular variance

components. Four models were specified. Model M51 only contains the random person

effect. Model M52 additionally includes the random item effect while in Model M53

the random rater effect is included. Finally, we include all three variance components in

ModelM54. The immer package provides a wrapper function immer::immer_gmfrm()
to the JAGS software (Plummer, 2003). Model M54 can be estimated using the following

syntax.

R> mod54 <- immer::immer_gmrfm(dat[,items], rater=dat$rater, pid=dat$idstud,
R+ fe_r="r", re_pi=TRUE, re_pr=TRUE, iter=iter, burnin=burnin)

The argument fe_r specifies the fixed effects structure of intercepts birk of the IRT
model with respect to raters. Options are "n" (birk = bik), "r" (birk = bik + br), "ir"
(birk = bik + bir), "rk" (birk = bik + brk) or "a" (all effects are specified, i.e. all birk
are estimated without constraints). The arguments re_pi and re_pr indicate whether
random effects should be included in the GMFRM. For example, Model M52 can be esti-

mated using re_pi=TRUE and re_pr=FALSE. We use 50,000 iterations (argument iter)
and 10,000 burn-in iterations (argument burnin) which provided a good convergence
behavior of the MCMC estimation approach in our example.

We only briefly discuss the results of Model M54. The variance component estimates

varied considerably among items (“crit2”: .12, “crit3”: .05; “crit4”: .66). The rater

severities correlated highly with the average rater scores (r = −.99) and did also show
some variation among raters (SD=.48, Min=−1.06 [Rater 837], Max=0.84 [Rater 803]).
The variance estimates for person-rater interactions also exhibited some variability

among raters (M=.27, SD=.32). Two Raters 844 (.53) and 803 (1.09) had remarkably
high variance estimates indicating that halo effects were strongly present for these raters.

Finally, the correlation of the rater variances from the GMFRM (Model M54) and from

the G-theory model (Model M24) was .84 indicating that findings remain relatively
stable irrespectively of whether the logit or the original metric is chosen.

Hierarchical rater model based on signal detection theory

In the GMFRM, local dependence is taken into account by including additional random

effects. In the HRM, ratings are modelled by a hierarchical approach which first assumes

that manifest ratings are modelled conditionally on true discrete ratings (signal detection

model, SDM). Second, true ratings are modelled by item response functions (item

response model, IRM). For both models different specifications can be chosen.
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Table 6:

Model Comparisons of Different HRM-SDT Models

Label IRM SDM Deviance #par AIC BIC

M61 PCM n 3540.53 10 3561 3594

M62 PCM e 3530.70 14 3559 3605

M63 PCM r 3314.19 50 3414 3581

M64 PCM a 3135.89 130 3396 3830

M71 GPCM n 3525.08 12 3549 3589

M72 GPCM e 3512.23 16 3544 3598

M73 GPCM r 3298.47 52 3402 3576

M74 GPCM a 3135.18 132 3399 3840

Note: IRM = specified item response model; SDM = specified signal detection model (n = no effects; e =

exchangeable effects for items and raters; r = rater effects; a = all effects); #par = number of estimated

parameters.

In Table 6, different specifications of our fittedmodels are shown. The IRMuses either the

PCM or the GPCM. In the SDM, discrimination parameters dir and intercept parameters
cirk are estimated with several constraints. Regarding our sample dataset it turned out
the PCM with a SDM, in which all rater parameters were allowed to be item-specific,

showed the best fit (Model M64) in terms of the LRT and AIC.

For facilitating the interpretation, we focus on the discussion of results of Model M63 in

which rater effects in the SDM are assumed to be independent of items. The HRM-SDT

can be estimated using the sirt::rm.sdt() function. To choose the GPCM instead of

the PCM one has to use the argument est.a.item=TRUE. Different specifications of
the SDM can be chosen by using the arguments est.c.rater and est.d.rater. The
estimation of Model M63 can be conducted using the following syntax.

R> mod63 <- sirt::rm.sdt( dat[,items], rater=dat$rater, pid=dat$idstud,
R+ est.c.rater="r" , est.d.rater="r")
R> summary(mod63)

Rater Parameters
item.rater N M d c_1 c_2 c_3 c_1.trans c_2.trans c_3.trans

1 crit2-802 58 1.655 4.939 2.590 7.356 13.000 0.524 1.489 2.632
2 crit2-803 61 1.000 3.564 3.264 6.525 9.801 0.916 1.831 2.750
3 crit2-810 61 1.344 4.529 1.213 6.819 11.463 0.268 1.506 2.531
4 crit2-816 57 1.526 5.553 3.336 7.897 14.463 0.601 1.422 2.605
5 crit2-820 60 1.650 7.967 -1.182 11.471 21.195 -0.148 1.440 2.661
6 crit2-824 63 1.365 7.279 4.593 10.668 19.034 0.631 1.466 2.615
7 crit2-831 59 1.373 4.509 1.449 7.464 11.728 0.321 1.655 2.601
8 crit2-835 57 1.035 2.858 1.526 4.762 8.564 0.534 1.666 2.996
9 crit2-837 60 1.833 2.857 -1.314 2.454 6.524 -0.460 0.859 2.283
10 crit2-844 56 1.304 3.679 2.004 4.851 9.323 0.545 1.319 2.534

We focus on the interpretation of rater parameters. Raters 820 and 824 are most reliable
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because high discrimination parameters dr were estimated for them. Further, Raters 835
and 837 are least reliable. Severity/leniency and centrality/extremity tendencies can be

identified by the intercept parameters crk. The relative criteria locations c
∗
rk = crk/dr

(displayed as c_1.trans, c_2.trans, c_3.trans in the output) indicate the relative
“difficulty” for every category of a rater. For raters which do not produce systematic

biases, relative criteria locations of .5, 1.5, and 2.5 would be expected for four-point

scale items. In Figure 3, these locations are displayed for all raters and all criteria. It

can be seen that Raters 820 and 837 are lenient with respect to rating students into the

zero category. Rater 803 is more severe because she or he more frequently rates students

into the zero category. The standard deviation among raters of relative criteria locations

can be computed to assess the uncertainty of rating particular categories. Differentiating

students between 0 and 1 showed most variability (SD=.40), while the SD for categories

1 and 2 (SD=.26) and 2 and 3 (SD=.18) was lower. It should be emphasized that a
measure of rater severity can be calculated from HRM-SDT output by averaging criteria

locations, i.e. computing c∗r =
∑

k c
∗
rk/K.

Rater

c r
k

d r

802 803 810 816 820 824 831 835 837 844

0
1

2
3
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4.9 3.6 4.5 5.6 8.0 7.3 4.5 2.9 2.9 3.7dr =

Figure 3: Plots of the relative criteria locations c∗rk = crk/dr for the HRM-SDT (Model M63).

The solid horizontal lines show intersection points for the underlying distributions.

Hierarchical rater model of Patz et al. (2002)

Finally, we want to fit the alternative HRM of Patz et al. (2002). This model includes rater

severity (rater bias) φir and rater variance ψir as rater parameters. Two models are fitted.

First, Model M81 assumes that the rater parameters are item independent while in Model
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M82 these parameters are specified to vary across items. Different specifications can

be chosen by using the arguments est.phi and est.psi in the immer::immer_hrm
function. Both models employ the PCM as the IRM. Model M81 can be estimated using

the following syntax based on 500,000 iterations and 200,000 burn-in iterations2.

R> mod81 <- immer::immer_hrm( dat[,items], pid=dat$idstud, rater=dat$rater,
R+ est.phi="r", est.psi="r", iter=iter, burnin=burnin)
R> summary(mod81)

Rater Parameters
item rater rid N_Rat M phi psi

1 crit2 802 1 58 1.655 0.107 0.383
2 crit2 803 2 61 1.000 -0.303 0.644
3 crit2 810 3 61 1.344 0.156 0.334
4 crit2 816 4 57 1.526 0.078 0.451
5 crit2 820 5 60 1.650 0.208 0.212
6 crit2 824 6 63 1.365 0.035 0.321
7 crit2 831 7 59 1.373 0.057 0.387
8 crit2 835 8 57 1.035 -0.130 0.725
9 crit2 837 9 60 1.833 0.629 0.522
10 crit2 844 10 56 1.304 0.135 0.635

The SD of student ability was estimated as 9.42 and was surprisingly high. In the HRM-

SDT, a much lower SD of 3.05 was obtained in Model M63. It can be seen in the output

of Model M81 that Rater 837 is most lenient because she or he has the highest φ value
while Rater 803 is most severe. Rater 820 gives the most accurate ratings because she or

he has the lowest rater variability ψ while Rater 835 is the least accurate.

The results of the HRM of Patz et al. (2002) (Model M81) should now be compared

with the HRM-SDT (Model M63). The correlation of rater precision (i.e., 1/ψr) and

rater discrimination (dr) was relatively high (r = .88) indicating that both models reach
similar conclusions. Moreover, we correlated the rater severity φr with the average
relative criteria location c∗r of the HRM-SDT. We obtained an almost perfect correlation

of r = −.99. Therefore, the HRM-SDT also proves useful in assessing rater severity.

Finally, we briefly discuss interesting findings of Model M82. In this HRM, rater

severity and rater variances are item-specific. One could question whether all item-

rater interaction effects need to be specified. To this end, a F-test based on the MCMC

output can be conducted for testing the hypothesis of equal rater severity among items

(φ1r = φ2r = φ3r) and of equal rater variance (ψ1r = ψ2r = ψ3r). This F-test can be

computed using the sirt::mcmc_WaldTest() function. Seven out of ten raters showed
significant differences in item-specific rater severities while for no rater the F-test of the

equality of rater variances was significant.

2Although much more iterations than in the estimation of the GMFRM were chosen, computation time did

not substantially increase because the MCMC algorithm in immer is implemented in R using the Rcpp
package for some parts of the computation.
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6 Discussion

In the past sections, we gave an overview of opportunities in psychometric modeling in

the field of rater studies and we provided some insight into popular estimation methods.

We have introduced models ranging from G-theory, Rasch-MFRM to more recent devel-

opments such as hierarchical modeling approaches (GMFRM or HRM). Several basic

considerations of assumptions, expectations and properties of the models which are all

associated with model choice have been elaborated in Section 4. To take dependencies

into account, either between persons and items or persons and raters, the HRM (in the

first case) or the GMFRM (for both cases) might be considered. As stated, a drawback

might be that the person ability has to be interpreted as conditioned to the modeled

dependence. Sometimes it might be more appropriate to treat those dependencies as

nuisance factors, in particular, when using the sum scores and the equal weighting of

items and raters is favored. In this case, the Rasch-MFRM or G-theory models might be

appropriate choices.

To gain an impression which psychometric models are applied in the field of language

testing, we conducted a rough literature study. For this study we have used two journals

“Language Testing” and “Language Assessment Quarterly”. All contributions available

online between 2007 and 2017, which have dealt with rater studies, were taken into

account. The applied methods were classified into three groups, the Rasch-MFRM,

G-theory and a remaining third category “other”. The latter category includes both

qualitative and quantitative analysis like descriptive statistics, as well as more complex

models, such as structural equation models, generalized linear models, etc. It appeared

that the Rasch-MFRM is currently the favored model for rater studies within these

two selected journals. Over the last 10 years, the Rasch-MFRM has gained popularity.

Between 2007 and 2017 the Rasch-MFRM was used in 51.5%, the G-theory in 19.1%,

and the ”other” methods in 29.4% of the cases. Although this study is not representative

for applied methods within the field of language testing, it becomes apparent that there

is a considerable preference for the Rasch-MFRM. Similarly, McNamara and Knoch

(2012) reviewed the usage of IRT model in the field of language testing between 1984

and 2002 and found that the Rasch model was dominantly used. The authors concluded

that development in psychometric methods creates many opportunities, but is also related

to challenges of its application by language testers because the interpretation of more

complex models is involved.

We think that in the near future more advanced methodological developments will be

applied because of a wider availability of software and an increasing familiarity of

researchers with recent software. We hope that this paper as well as the fast growing

community of package development in R will contribute to reduce the still existing gap

between the methodological developments on the one hand and the variety of methods

in the field of language testing on the other hand.

Some aspects have yet not been addressed in this paper, but may be also influencing

factors for model selection in the broadest sense. First of all, the choice of a rating design
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should be emphasized. When choosing a rating design, there are a few possibilities which

reach from complete designs in which every rater judges every item to more sophisticated

incomplete designs which usually requires a kind of linking. Complete rating designs

are often not applicable for economic reasons that is why incomplete designs are chosen.

Several types of incomplete rating designs are possible; one of the more established ones

might be the practice of using common ratings. Here, a representative selection of persons

is rated by all raters, while the remaining ones are rated by one or more, but not by all

raters. Another possibility of rating designs which might reduce the venture of choosing

not representative common persons are overlap (or incomplete) designs (e.g. DeCarlo,

2010). Different types of overlap designs are feasible. All of them have in common that

decisions are required, which persons are allocated to rater, how many persons are rated

per rater, and how raters are linked among each other. These considerations or decisions

can themselves lead to additional effects (Casabianca &Wolfe, 2017).

Another yet not mentioned aspect of rater models is the development of automated

scoring systems, especially in the area of large-scale assessments. From an economical

point of view, this approach might be more efficient than human ratings although the

validity of automated scoring approaches can be questioned. It should be noted that the

discussion about choosing appropriate rater models for human raters is also important for

calibrating automated scoring systems because the calibration relies on human ratings

(Wind, Wolfe, Engelhard, Foltz, & Rosenstein, 2018).
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