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Abstract 
Automated scoring has been developed and has the potential to provide solutions to some of the 
obvious shortcomings in human scoring. In this study, we investigated whether SpeechRaterSM and 
a series of combined SpeechRaterSM and human scores were comparable to human scores for an 
English language assessment speaking test. We found that there were some systematic patterns in the 
five tested scenarios based on item response theory. 
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Language testing organizations in the United States routinely deal with large test taker 
samples, especially for certain Asian, European, and mid–eastern countries. For example, 
it is not unusual to have more than a million test takers worldwide taking a certain test in 
a given year, with each test taker responding to six items producing a total of more than 
six million responses. While having large samples is certainly not exclusive to language 
testing, constructed response item scoring, including essay scoring and spoken response 
scoring, is definitely an added complication for scoring. 
Human scoring must be closely monitored within each administration and across admin-
istrations to ensure the quality and consistency of the human ratings. The effects of differ-
ences between human raters may substantially increase the bias in test takers’ final scores 
without careful monitoring (Wang & Yao, 2013). This makes human scoring very labor 
intensive, time consuming and expensive (Zhang, 2013). The importance of these language 
tests for relatively high stake decisions places a lot of pressure on the entire system to 
ensure accurate scoring and consistent ratings on demand.   
Automated scoring has been developed and has the potential to provide solutions to some 
of the obvious shortcomings in human scoring (e.g., rater inconsistency; rater drift; ineffi-
ciency). Bennett and Bejar (1998) indicated that automated scoring procedures allow for 
the scoring rules to be applied consistently. Automated scoring has some advantages in-
cluding “fast scoring, constant availability of scoring, lower per unit costs, greater score 
consistency, reduced coordination efforts for human raters, and potential for a degree of 
performance specific feedback” (Ramineni, Trapani, Williamson, Davey, & Bridgeman, 
2012). Recently, more and more operational scoring programs have started using auto-
mated scoring to augment human scorers. In the literature, we found some studies on the 
comparison of human and automated scoring conducted in recent years (Attali, Bridgeman 
& Trapani, 2010; Attali & Burstein, 2006; Chodorow & Burstein, 2004; Laundauer, 
Laham, & Foltz, 2003; Nichols, 2005; Ramineni et al., 2012; Streeter, Bernstein, Foltz, & 
Deland, 2011; Wang & von Davier, 2014; Wang, Zechner & Sun, 2016; Williamson, Xi, 
& Breyer, 2012). Wang et al. (2016) conducted a comprehensive analysis of 
SpeechRaterSM and human scoring at item, rater and form levels based on the speaking 
data from 10 administrations. For automated scoring, there is no need to examine changes 
in rater severity. Automated scoring is not prone to these types of changes. However, if an 
engine update occurs, the scores need to be investigated for comparability against human 
rater scores. As Attali (2013) pointed out, the relation of automated scores to human scores 
provides important information about the validity of automated scores.   
In terms of operational scoring, several researchers have called for the need to study how 
to combine human and machine scores (Attali, 2013; Zhang, Breyer, & Lorenz, 2013), 
which is lacking in the current research literature. Due to the shortcomings of human rater 
and automated scoring, the argument of combining the two is appealing. The shift to the 
combination of the two allows us to move beyond using human scoring as the default “gold 
standard” and become less concerned about the construct underrepresentation of the auto-
mated scoring. 
The primary purpose of the present research is to investigate whether human raters and 
SpeechRaterSM scores and different combinations of the two are comparable for test takers’ 
final scoring, ability estimation, and classification. 
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Research questions 

The major research question in this study is whether SpeechRaterSM and a series of com-
bined SpeechRaterSM and human scores are comparable to human scores for an English 
language assessment speaking test. The current study targeted the following specific re-
search questions:   
Do the scores from SpeechRaterSM only, Human Raters only, or different combinations of 
the two result in parallel1, tau–equivalent2, or congeneric3 test scores for the final scoring 
of the speaking test? 
Do the scores from SpeechRaterSM only, Human Raters only, or the different combinations 
of the two result in similar IRT parameter estimates (item difficulty and discrimination) 
and test takers’ ability estimates of the population values and classifications? 

Method 

Data 

The speaking section of the English language assessment used in this study elicits a total 
of 5.5 minutes of speech for a candidate: two independent items that ask test takers to talk 
for 45 seconds on a familiar topic (e.g., “Describe a person that you admire.”), and four 
integrated items in which reading and/or listening stimuli are presented first, and then the 
test taker has one minute to respond to each prompt based on these stimuli. 
Each response to a speaking item is scored holistically by a single trained human rater on 
a 4-point discrete scale of 1–4, with “4” indicating the highest proficiency level and “1” 
the lowest. The scores are assigned based on rubrics, one each for independent and inte-
grated items. The rubrics describe the aspects of the speaking construct that are deemed 
most relevant for determining the speaking proficiency of test takers and thus guide human 
raters in their scoring decisions. Each score level has a description of prototypical observed 
speaking behavior in three main areas of spoken language: delivery (fluency and pronun-
ciation), language use (vocabulary and grammar aspects), and topic development (progres-
sion of ideas and content relevance). Human raters usually get “batches” of responses for 
a particular prompt (rather than scoring, e.g., all the responses of one candidate). In addi-
tion, a random sample of about 10% of responses in each administration is scored by a 
second human rater for reliability control purposes. If the two scores disagree by more 
than one point, a third rater is asked to adjudicate the score. Finally, the six-item scores 
are aggregated and scaled for score reporting purposes.  
Data were drawn from 10 administrations involving 110 countries in 2012–2013. Among 
the 10 administrations, half of them were mainly from the western hemisphere and the 
other half were mainly from the eastern hemisphere. We randomly sampled 1100 test tak-
ers per administration. The speaking section of the English language assessment consists 
of six items. This yields a total of 10 × 1100 × 6 = 66,000 responses that were scored by 
the SpeechRaterSM engine. We pulled the first human rater scores (H1-rater), including 
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second human rater scores (H2-rater, if available), from a data repository (note that “H1” 
and “H2” are logical labels for human raters; in actuality, each of “H1” scores and “H2” 
scores comprise scores from a large number of human raters.) As stated above, H2-rater 
scores were only available for 10% of the data, which is a random sample from the admin-
istrations selected for reliability purposes.  
During the operational cycle, all human raters (both H1-rater and H2-rater) participated in 
a standardized training process before they were allowed to rate the speaking items. In this 
study, we focused on the comparison of the item scores between the H1-rater and 
SpeechRaterSM. The H2-rater was from the same rater pool as the H1-rater, so there should 
not be any systematic differences between the results from the H1-rater and the H2-rater. 
We also made comparisons between the scores assigned by the H1-rater and the H2-rater 
for the 10% reliability sample.  
In addition to the main data set used for this study (66,000 spoken responses), we used 
10,000 spoken responses to items in other forms of the same assessment to estimate the 
parameters of the linear regression model used by SpeechRaterSM (discussed in next sec-
tion). A separate data set of 52,200 responses from the same assessment was used for 
training the parameters of the ASR system. 

SpeechRaterSM 

SpeechRaterSM is an automated scoring engine developed at ETS that has been used in the 
TOEFL Practice Online program since 2006. It consists of an automatic speech recognizer 
(ASR system), feature computation modules, filtering model, a multiple regression scoring 
model to predict scores produced by human scorers for each spoken response (Zechner, 
Higgins, Xi, & Williamson, 2009). The filtering model, used to filter out non-scorable 
responses, is an important component of SpeechRaterSM (Higgins, Xi, Zechner, & Wil-
liamson, 2011). In recent years, the coverage of the speaking construct has been substan-
tially extended from its original focus on fluency, pronunciation, and prosody by adding 
features related to vocabulary, grammar, and content, among others (Chen & Zechner, 
2011; Xie, Evanini, & Zechner, 2012; Yoon & Bhat, 2012; Yoon, Bhat, & Zechner, 2012).   

Data analyses 

Classical analyses 

Score comparisons using classical analysis were made based on different scoring scenar-
ios. Analyses were conducted to answer the question of whether scoring based on the 
SpeechRaterSM only, human raters only, or combinations of the two would result in paral-
lel, tau-equivalent, or congeneric test scores for the final scoring of the speaking test. 
Different scoring scenarios tested include the following five scores: 

S1. Human rater (H1-rater) only; 
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S2. SpeechRaterSM only; 
S3. Total of SpeechRaterSM and human rater; 
S4. Lower weighting (1/3) on human and higher weighting (2/3) on 

SpeechRaterSM; 
S5. Higher weighting (2/3) on human and lower weighting (1/3) on SpeechRaterSM. 

The above scenarios can also be expressed as different weights in the weighted sum of the 
two ratings (human rater and SpeechRaterSM, respectively): 

S1. (1, 0); 
S2. (0, 1); 
S3. (1/2, 1/2); 
S4. (1/3, 2/3); 
S5. (2/3, 1/3). 

The one-factor measurement model was initially tested within the linear structural equa-
tion framework of Jöreskog and Sörbom (1984). A single-factor measurement model was 
fit to the data, in which all the five speaking scores were set to load on the same common 
latent variable representing the English speaking ability construct.   
The five different scoring scenarios (S1 – S5 above) for the final speaking scores, which 
are the aggregated score across all six speaking items, were considered as five measures 
(S1 – S5), each measure was based on the same speaking items in the test. Reliability was 
calculated for each of the scoring scenarios. Correlations were also calculated among the 
five measures based on the different scoring scenarios. Parallel measures are the most re-
strictive model, assuming equal true score variances and equal error variances. Tau-equiv-
alent measures have equal true score variances, but possibly different error variances 
whereas congeneric models allow true score variances as well as error variances to differ.  
Covariance matrices were analyzed and weighted least squares estimates of the parameters 
were obtained. If the fit of the model to the data becomes worse as the model is made more 
restrictive, then the constraints are not plausible for the data (Maruyama, 1998).   
Three fit indices were used to evaluate the model-data fit, root mean squared error approx-
imation (RMSEA), comparative fit index (CFI), and the normed fit index (NFI). Some 
empirical guidelines were followed when evaluating these fit indices: a model with an 
RMSEA value below .08, a CFI value above .90, a NFI value above .90, were considered 
to be an acceptable fit; a model with an RMSEA value below .05 and a CFI (and NFI) 
value above .95 were considered a good fit (Browne & Cudeck, 1993; Hooper, Coughlan, 
& Mullen, 2008; & Hu & Bentler, 1999). 
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IRT analyses 

Generalized partial credit model. 
PARSCALE (Muraki & Bock, 1997) was used to analyze the speaking tests based on the 
Generalized Partial Credit Model (GPCM, Muraki, 1992). The normal distribution was 
used as the prior distribution of ability. The method employed in the calibration phase of 
PARSCALE is that of random-effects estimation through marginal maximum likelihood.  
The random-effects solution employs the EM method (estimation and maximization) of 
solving the marginal likelihood equations. We set the number of EM cycles to be 50, and 
the number of quadrature points as 41 in the EM and Newton estimation. The scale param-
eter was set at 1.7 in the PARSCALE run. 
Each speaking item was analyzed with IRT models with the following scoring designs: a) 
with human rater only; b) with SpeechRaterSM only; c) with the sum of human and 
SpeechRaterSM; d) with different weighting: 1/3 of human and 2/3 of SpeechRaterSM; and 
e) with different weighting: 2/3 of human and 1/3 of SpeechRaterSM. A key goal of this 
study was to compare test takers’ ability estimates, and IRT parameters from different 
scoring designs. To compare test takers’ ability estimates and IRT parameters, we used 
squared bias and the mean squared error.  
Root mean squared error (RMSE), absolute mean bias (ABSBIAS), and bias were com-
puted for all parameters and were used to examine the IRT parameter estimate differences, 
such as ability, difficulty, and discrimination. For example, let fref be the ability parameter 
based on the scoring with human rater 1 only (reference) and let  be the SpeechRaterSM 

only or the combination of the two (see S1 to S5 above), then 
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Bias and absolute mean bias were used to assess the parameter estimate differences. The 
squared differences and squared bias were also calculated and plotted to show results of 
parameter estimate differences and comparison among different scoring scenarios. 

Results 

Research question 1 

Do the scores obtained from SpeechRaterSM only, Human Raters only, or the different 
combinations of the two result in parallel, tau-equivalent, or congeneric test scores for the 
final scoring of the speaking test? 

Correlations. 

Correlations were calculated (see Table 1) among the five scores (S1 – S5) based on dif-
ferent scoring scenarios (H1-rater only; SpeechRaterSM only; sum of SpeechRaterSM and 
H1-rater; lower weighting on human and higher weighting on SpeechRaterSM; higher 
weighting on human and lower weighting on SpeechRaterSM). The lowest correlation 
(.759) was found between the scores from H1-rater only and SpeechRaterSM only, and the 
other correlations range from .866 to .994. 

Table 1: 
Correlations among Five Scoring Scenarios (S1 – S5) 

  H1 
only 

SR 
only 

H1+SR 1/3H1+2/3SR 2/3H1+1/3SR Mean SD 

S1: H1 only  1         16.11 3.40 
S2: SR only  0.759 1       16.01 2.52 
S3:1/2H1+1/2SR  0.956 0.917 1     32.12 5.56 
S4:1/3H1+2/3SR  0.911 0.960 0.992 1   16.04 2.64 
S5:2/3H1+1/3SR  0.983 0.866 0.994 0.971 1 16.07 2.96 

Reliability 

Reliability was calculated for the five different scoring scenarios for each form. The reli-
ability for H1 was the lowest, ranging from .85–.89 across all the speaking items, the reli-
ability for SR only was the highest, ranging from .94–.96; the other combinations had 
reliabilities above .89 for all the speaking items, see Table 2 below.   
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Table 2: 
Reliability Range of Different Scoring Scenarios across Ten Forms 

Scenario Mean SD Reliability 

H1 only 2.47-2.90 0.64-0.72 0.85-0.89 
SR only 2.45-2.76 0.41-0.52 0.94-0.96 
H1+SR 4.92-5.64 0.90-1.17 0.93-0.94 
1/3H1+2/3SR 2.46-2.80 0.42-0.55 0.93-0.96 
2/3H1+1/3SR 2.46-2.85 0.50-0.63 0.89-0.93 

Reliability was calculated for the five different scoring scenarios for the combined 10 
forms (see Table 3). The reliability for H1 was the lowest, .87, the reliability for SR only 
was the highest, .95; the reliability for other combinations were above .91 for all the speak-
ing items. All of the reliabilities are within an acceptable range. It should be noted that 
combining a higher reliability score with one of lower reliability will typically result in a 
combined score having reliability somewhere between the higher and lower ones. 

Table 3: 
Reliability of Different Scoring Scenarios for Ten Forms 

Scores No. Items Mean SD Cronbach's Alpha 

H1 only 6 2.72 0.71 0.87 
SR only 6 2.63 0.48 0.95 
H1+SR 6 5.35 1.06 0.93 
1/3H1+2/3SR 6 2.66 0.49 0.95 
2/3H1+1/3SR 6 2.69 0.58 0.91 

One-factor measurement model testing. 

As was mentioned earlier, a single factor measurement model was fit to the data of each 
of the six scenarios. None of the three measurement models (congeneric, tau–equivalent, 
& parallel, see definition in Appendix B) fit the data well (see Table 4). The root mean 
square error approximation (RMSEA) was found to be in the range of .67 to .82, and the 
NFI and CFI were in the range of .53 to .67, all of which failed to meet the good model fit 
criteria. A single-factor measurement model that was proposed cannot be confirmed, 
which indicated that the different scenarios such as SpeechRaterSM only, Human Raters 
only, or the different combinations of the two cannot be considered as measuring the same 
ability dimension. This might be due to the relatively low correlation between 
SpeechRaterSM and human raters (.759) because this correlation is related to the regression 
used to derive the SpeechRaterSM model. The overall correlations between human rater 1 
and 2 were .706. The case count of human rater 2 results was only 10% of the human rater 
1 case count. The overall human rater 1, human rater 2 and SpeechRaterSM score compar-
ison box plot can be found in Appendix A. 
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Table 4: 
Results of Congeneric, Tau-equivalent and Parallel Hypothesis Testing 

Factor Model N NFI CFI RMSEA 

Congeneric 10,246 0.67 0.67 0.82 
Tau-equivalent 10,246 0.65 0.65 0.67 
Parallel 10,246 0.53 0.53 0.68 

Research question 2 

Do the scores obtained from SpeechRaterSM only, Human Raters only, or the different 
combinations of the two result in similar IRT parameter estimates (item difficulty and dis-
crimination) and test takers’ ability estimates of the population values and classifications? 

Parameter analyses 

Item difficulty. 
In terms of item difficulty parameter differences for the six items (1-6), we found similar 
pattern among the six speaking items for the five scoring scenarios (S1 – S5) except for 
S2 (see Figure 1). S5 had the lowest estimated item difficulty parameters across the six 
items, followed by S1. There were not many differences when comparing S3 and S4. Item 
2 had the lowest estimated item difficulty parameter values while item 6 had the highest 
item difficulty parameter estimates, but the differences between them were relatively 
small. S2 was close to S1 for items 1 and 4 and was very different for the other 4 items. 

Item discrimination. 

In terms of estimated item discrimination parameter differences for the six items (1-6), we 
found similar patterns across the five scenarios (see Figure 2). S1 and S5 had the lowest 
discrimination values, followed by S3, S4, and S2. Item 1 and 2 had the lowest discrimi-
nation values and other items had slightly higher values. 
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Figure 1: 
Comparison of estimated difficulty parameters across five different scoring scenarios for 

the six speaking items. 

 
Figure 2: 

Comparison of estimated discrimination parameters across five different scoring scenar-
ios for the six speaking items. 
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Bias analyses 

Ability estimates 
In terms of test takers’ estimated ability differences (see Figure 3), S1 and S2 had the 
largest absolute bias, RMSE and bias when combining all six items, followed by S1 and 
S4, S1 and S3, and S1 and S5.  

 
Figure 3: 

Comparison of test takers’ estimated ability values: comparison of four scoring scenarios 
against human rater (S1):1=S2- S1; 2=S3-S1; 3=S4-S1; 4=S5-S1. 

Location estimates. 

In terms of test takers’ estimated location differences, S1 and S5 had the smallest absolute 
bias, RMSE and bias when combining all six items, followed by S1 and S2, S1 and S3, 
and S1 and S4 (Figure 4).  

 
Figure 4: 

Comparison of estimated location values: comparison of four scoring scenarios against human 
rater (S1):1=S2-S1; 2=S3-S1; 3=S4-S1; 4=S5-S1. 
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Slope estimates. 

In terms of test takers’ estimated slope differences, S1 and S2 had the largest absolute bias, 
RMSE and bias when combining all six items, followed by S1 and S4, S1 and S3, and S1 
and S5 (Figure 5). 

 
Figure 5: 

Comparison of estimated slope values: comparison of four scoring scenarios against hu-
man rater (S1): 1=S2-S1; 2=S3-S1; 3=S4-S1; 4=S5-S1. 

Classification  

We used 3 hypothetical estimated ability values (theta) cut scores (0.0, 0.6 and 1.6) to 
classify test takers. We found that S5 was close to S1 at all the cut scores, followed by S3, 
S4 and S2 (Table 5). 

Table 5: 
Comparison of Test Takers’ Passing Rate across Different Scoring Scenarios 

 Theta=0.0  Diff vs 
S1 

Theta=0.6  Diff vs 
S1 

Theta=1.6  Diff vs S1 

S1 46.06 – 32.19 – 5.43 – 
S2 53.56  7.5 40.61 8.42 4.64 -0.79 
S3 47.79  1.73 33.79 1.60 4.40 -1.03 
S4 52.84  6.78 37.94 5.75 3.87 -1.56 
S5 45.76 -0.3 32.19 0.00 6.19  0.76 
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Summary  

In this paper, we summarized some findings regarding whether the scores obtained from 
SpeechRaterSM only, Human Raters only, or the different combinations of the two result 
in similar IRT parameters (item difficulty and discrimination) and test takers’ ability esti-
mate and classifications. Below, we summarize the findings from our research and suggest 
recommendations for operational practice. 
For Research Question 1, we found that although the overall correlations between H1-rater 
scores and SpeechRaterSM scores were the lowest among all the different scoring designs, 
H1-rater had very high correlations with S5 and S3. The reliability for H1 was the lowest 
while the reliability for SR only was the highest (as would be expected because SR uses 
exactly the same criteria for scoring each time). A single-factor measurement model in the 
structural equation framework results indicated that all the different scoring scenarios such 
as SpeechRaterSM only, Human Raters only, or the different combinations of the two can-
not be considered as measuring the same ability dimension. 
For Research Question 2, in terms of test takers’ estimated ability differences, S1 and S5 
had the smallest absolute bias, RMSE and bias when combining all six items. For the clas-
sification passing rate based on IRT ability estimates, the closest to H1-rater were S5 and 
S3. SpeechraterSM yielded different results when compared with H1-rater at 2 out of 3 cuts. 
We also investigated the raw score distribution of both H1-rater and SpeechraterSM scores 
and found that their distributions were different to some extent (see Figure 6 in the Ap-
pendix). The fact that the score distributions differ would mean that different cut scores 
might result in different findings with respect to the classifications. The test information 
curves and standard error curves of the SpeechraterSM (S2) did not look similar to that of 
human rater (S1) (see Figures in Appendix C). Both test information curves and standard 
error curves indicated that S5 and S3 are closer to S1 than other scoring scenarios. 
Generally speaking, some of the main findings indicate that the SR-only approach is most 
different from the H1-only approach in comparison to the other approaches (for example, 
it has the lowest correlation of 0.759 and a completely different pattern of difficulty pa-
rameter estimates across the six items, as shown in Figure 1). The explanation for these 
results would seem to be the fact that S3 - S6 all contain H1 in them (in combination with 
the SpeechRaterSM score), so it is a given that they will be more similar to S1 than S2. 

Discussion  

In this study, we used different approaches, such as classical and IRT modeling techniques 
to compare human rater and SpeechraterSM scores. We created different scoring scenarios 
based on arbitrary weights and investigated their differences. It seems that these ap-
proaches are effective in detecting the differences between human and automated scoring; 
the research results can help practitioners make decisions in terms of how to combine hu-
man and machine scores in the field. Identifying issues and differences between 
SpeechraterSM and human rater can help improve SpeechraterSM. However, the real data 
used for the human rater might not be perfect (Wang & Yao, 2013), which may have 
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prevented us from finding the real issue. Simulation studies are needed to compare 
SpeechraterSM and human rater in a controlled manner. 
In this study we used real data and investigated the differences between different scoring 
methods. We found that there are some systematic patterns in the combined scenarios 
based on both classical and IRT approaches, such as their raw score distributions, test 
information curves (see Appendix C), standard error curves (see Appendix C), and per-
centage of passing rate. As pointed out above the percentage of passing rate results may 
well differ for different cut scores. The fact that S5 and S3 are closer to S1 than other 
scoring scenarios is within our expectation because they account for 1/2 and 2/3 of the 
human score.   
In this study, we compared the differences among different combinations of human and 
machine scores, and more such studies are needed (Attali, 2013; Zhang et al., 2013). We 
believe that the use of the statistical analyses (both classical and IRT) in this study is a 
useful way to advance the study of automated scoring in the evaluation of speech re-
sponses. Our study can help our clients make decisions related to machine and human 
scoring. A future study is needed to provide guidelines about how to establish the set of 
weights that will generate optimal reliability to combine human rater and SpeechRaterSM 
scores. Reliability is just one criteria and there might be other criteria, such as validity that 
are also important to investigate. A simulation study should be conducted to test different 
scoring combination scenarios, and different cut scores, under different conditions.   

Limitations 

Since human raters’ scores are based on three areas (delivery, language use, and topic 
development) while SpeechRaterSM scores are based only on delivery and language use, 
differences between the two types of scores will probably always exist (and these differ-
ences relate to validity issues). There are issues and questions that need to be investigated 
and answered before an automated speech scoring system such as SpeechRaterSM can be 
implemented for the operational scoring of English language assessment speaking items.  
We want to stress that the automated speech scoring engine SpeechRaterSM is still evolv-
ing, and that additional features, covering a more extended subset of the Speaking con-
struct, are currently under development and are planned for use in future scoring models.  
Moreover, we are also exploring alternative approaches to the standard linear regression 
scoring model currently used by SpeechRaterSM, which may lead to improvements in its 
scoring performance. The current SpeechraterSM distribution has high frequency at middle 
scores (see Figure 6 in the Appendix C), which may be due to the regression toward the 
mean effects from the linear regression scoring model. 

Notes 

1–3. See definitions in Appendix B. 
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Appendix A 

 
Note. Human rater 2 is only 10% of the H1 data. 
Figure A1. Rater comparison between rater 1, rater 2 and SpeechRaterSM.  

Appendix B 

Parallel measures 
The measures (items) comprising a scale are parallel if the following two conditions hold: 

1.  for all i and j; τ = true scores; p = person; 

2.  for all i and j: e = error: 

This implies that the amount of variation in the item score that is determined by the true 
score is the same for all items. It also implies that the expected value of each of the items 
will be the same.  

Tau-equivalent measures 

When measures are tau-equivalent, for all i and j, as in the case of parallel 

measures, but we relax the assumption that for all i and j.  
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Congeneric measures 

Congeneric measures relax both the assumption that for all i and j, and that 

 for all i and j.  

Appendix C 

Test Information Curves and Standard Error Curves 

Figure C1: 

S1. 

 
Figure C2: 

S2 
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Test information curve: solid line Standard error curve: dotted line
The total test information for a specific scale score is read from the left vertical axis.
The standard error for a specific scale score is read from the right vertical axis.
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The total test information for a specific scale score is read from the left vertical axis.
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Figure C3: 

S3. 

 
 

Figure C4: 

S4 

 
 
  

Test information curve: solid line Standard error curve: dotted line
The total test information for a specific scale score is read from the left vertical axis.
The standard error for a specific scale score is read from the right vertical axis.
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The total test information for a specific scale score is read from the left vertical axis.
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Figure C5: 

S5 

 
 
 

Figure C6: 

Frequency distribution of H1-Rater and SpeechRaterSM. 

 

Test information curve: solid line Standard error curve: dotted line
The total test information for a specific scale score is read from the left vertical axis.
The standard error for a specific scale score is read from the right vertical axis.
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