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Abstract 

Motivated by papers on approaches to combine generalizability theory (GT) and item response 

theory (IRT), we suggest an approach that extends previous research to more complex measure-

ment situations, such as those with multiple human raters. The proposed model is a logistic mixed 

model that contains the variance components needed for the multivariate generalizability coeffi-

cients. Once properly set-up, we can estimate the model by straightforward maximum likelihood 

estimation. We illustrate the use of the proposed method with a real multidimensional polytomous 

item response data set from classroom assessment that involved multiple human raters in scoring. 
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While item response theory (IRT; Lord, 1980; Rasch, 1960) and generalizability theory 

(GT; Brennan, 2001; Cronbach, Gleser, Nanda, & Rajaratnam, 1972) share common 

goals in educational and psychological research in order to provide evidence of the quali-

ty of measurement, IRT and GT have evolved into two separate domains of knowledge 

and practice in psychometrics that rarely communicate with one another. In practice, it is 

often recommended that researchers and practitioners be able to use and understand both 

methods, and to distinguish the same term with different meanings (e.g., reliability) or 

different terms with similar meanings (e.g., unidimensional testlet design in IRT and p x 

(i : h) design in GT), neither of which is desirable or practical. The separate foundations 

and development of these two techniques have resulted in a wide gap between the two 

approaches and have hampered collaboration between those who specialize in each. 

Additionally, despite the theories’ extensive applicability, IRT and GT are often applied 

to somewhat different areas of research and practice. For example, applications of GT 

are often found in studies on reliability and sampling variability of smaller-scale assess-

ments. Meanwhile, IRT is, relatively speaking, more commonly and more widely em-

ployed, than GT for developing large-scale educational assessments, such as the Pro-

gramme for International Student Assessment (PISA) and the ones currently used by the 

US National Center for Education Statistics (NCES), and the products of large testing 

companies such as Educational Testing Service (ETS). Moreover, most advanced appli-

cations of IRT and GT take only one approach, not both. Considering the advantages of 

the two theories, this limitation and bias in usage call for an alternative approach to pro-

mote a more efficient and unified way to deliver the information that can be provided by 

IRT and GT together. 

Several researchers have undertaken efforts to find the solution to this separation. For 

example, the researchers either: (a) highlight the differences but suggest using both, 

consecutively (Linacre, 1993), (b) discuss the link between the models (Kolen & Harris, 

1987; Patz, Junker, Johnson, & Mariano, 2002), or (c) propose a new approach to com-

bine the two (Briggs & Wilson, 2007). 

Linacre (1993) emphasized the difference between IRT and GT and suggested that deci-

sion-makers select either one or the other, or use both, based on the purpose of the analy-

sis. Many researchers took this advice and used both the IRT and the GT models, for 

example, for performance assessments of English as Second Language students (Lynch 

& McNamara, 1998), for English assessment (MacMillan, 2000), for writing assessments 

of college sophomores (Sudweeks, Reeve, & Bradshaw, 2005), for problem-solving 

assessments (Smith & Kulikowich, 2004), and for clinical examinations (Iramaneerat, 

Yudkowsky, Myford, & Downing, 2008).  

While Linacre’s suggestion promoted the idea of combining the use of the models, the 

statistical notion of links between IRT and GT began to emerge when Kolen and Harris 

(1987) proposed a multivariate model based on a combination of IRT and GT. The mod-

el assumed that the true score in GT could be approximated by the proficiency estimate 

in IRT. Patz, Junker, Johnson, & Mariano (2002) proposed a new model that combines 

IRT and GT, namely, the hierarchical rater model (HRM), which they see as a standard 

generalizability theory model for rating data, with IRT distributions replacing the normal 

theory true score distributions that are usually implicit in inferential applications of the 
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model. The proposed use of the model is open to other possible extensions, although it is 

currently conceptualized as being used for estimation of rater effects.  

These efforts motivated a noteworthy advance in combining IRT and GT, namely, the 

Generalizability in Item Response Modeling (GIRM) approach by Briggs & Wilson 

(2007), and its extensions by Choi, Briggs, & Wilson (2009) and Chien (2008). The 

GIRM approach provides a method for estimating traditional IRT parameters, the GT-

comparable variance components, and the generalizability coefficients, not with ob-

served scores but with the “expected item response matrix” — EIRM. By estimating a 

crossed random effects IRT model within a Bayesian framework, the GIRM procedure 

constructs the EIRM upon which GT-comparable analysis can be conducted. The steps 

can be described as follows:  

Step 1. The probability of a correct answer is modeled using a crossed random ef-

fects item response model that considers both person and item as random 

variables. The model parameters are estimated using the Markov chain 

Monte Carlo (MCMC) method with the Gibbs sampler.  

Step 2. Using the estimates from Step 1, the probability of the correct answer for 

each examinee answering each item is predicted to build the EIRM. 

Step 3. The variance components and generalizability coefficients are estimated 

based on the EIRM.   

Estimation of the variance components and generalizability coefficients utilizes an ap-

proach described by Kolen and Harris (1987) that calculates marginal integrals for facet 

effects, interaction effect, and unexplained error using the prior distributions and the 

predicted probabilities of IRT model parameters.  

The main findings of the Briggs & Wilson (2007) study were as follows:  

 GIRM estimates are comparable to GT estimates in the simple p x i test design 

where there are person and item facets alone, and with binary data.  

 GIRM easily deals with the missing data problem, a problem for earlier ap-

proaches, by using the expected response matrix.  

 Because GIRM combines the output from IRT with the output from GT, GIRM 

provides more information than either approach in isolation.  

 Although GIRM adds the IRT assumptions and distributional assumptions to 

the GT sampling assumptions, GIRM is robust to misspecification of item re-

sponse function and prior distributions. 

In the multidimensional extension of the same method, Choi, Briggs, and Wilson (2009) 

found that the difference between GIRM and traditional GT estimates is more noticeable, 

with GIRM producing more stable variance component estimates and generalizability 

coefficients than traditional GT. Noticeable patterns of differences included the follow-

ing:  

 GIRM item variance estimates were smaller and more stable than GT,  
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 GIRM error variance (pi + e) estimates were larger and more stable than GT 

residual error variance (pie) estimates, and  

 GIRM generalizability coefficients were generally larger and more precise than 

GT generalizability coefficients.    

With the testlet extension of the procedure by Chien (2008), (a) the estimates of the 

person, the testlet, the interaction between the item and testlet, and the residual error 

variance estimates were found to be comparable to traditional GT estimates when data 

are generated from IRT models. (b) For the dataset generated from GT models, the inter-

action and residual variance estimates were slightly larger while person variance esti-

mates were slightly smaller than traditional GT estimates. (c) The person-testlet interac-

tion variance estimates were slightly larger than the traditional GT estimates for all con-

ditions. (d) When the sample size was small, the discrepancy between the estimated 

universe mean scores in GT and the expected data in GIRM increased. (e) MCMC stand-

ard errors were notably underestimated for all variance components.  

The mixed results from the studies of GIRM and its extensions yielded interesting ques-

tions. 

 What is the statistical nature of the EIRM? The main advantage of the GIRM 

procedure comes from this matrix, coupled with the MCMC estimation within a 

Bayesian framework. This is a notable departure from the analogous-ANOVA 

estimation of traditional GT that brings the following benefits: (a) the variance 

component estimates are non-negative and (b) the problems that arise from un-

balanced designs and missing data are easily taken care of. However, the exten-

sion studies revealed that the EIRM does not theoretically guarantee the equiva-

lence of GIRM and traditional GT estimates in more complicated test condi-

tions.  

 Then, what is the benefit of having the extra step that requires multiple sets of 

assumptions and true parameters for each stage?  

 Are there other ways to deal with the negative variance estimate problem in 

traditional GT and the missing data problem, and still get comparable results?  

 Among the different approaches, which procedure gives more correct esti-

mates?  

These questions led to the search for an alternative strategy that requires simple one-

stage modeling, and possibly non-Bayesian estimation that produces GT-comparable 

results, while capturing the essence of having random person and item parameters and 

variance components. The following section describes a different approach, one within 

the GLLAMM framework, to combine GT and IRT. In the next section, we explain how 

the random person and item parameters are estimated using a Laplace approximation 

implemented in the lmer() function (Bates, Maechler, Bolker, & Walker, 2014) in the R 

Statistical Environment (R Development Core Team, 2017). After that, we demonstrate 

applications of our approach to classroom assessment data from the 2008-2009 Carbon 

Cycle project, which includes 1,371 students’ responses to 19 items, rated by 8 raters.  
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The proposed model 

This paper uses a generalized linear latent and mixed model (GLLAMM; Skrondal & 

Rabe-Hesketh, 2004; Rabe-Hesketh, Skrondal, & Pickles, 2004) approach as an alterna-

tive to existing efforts to combine GT and IRT. GLLAMM offers a flexible one-stage 

modeling framework for a combination of crossed random effects IRT models and GT 

variance components models. The model is relatively straight-forward to formulate and 

easily expandable to more complex measurement situations such as multidimensionality, 

polytomous data, and multiple raters. In this section, we describe how the model speci-

fies a latent threshold parameter as a function of cross-classified person, item, and rater 

random effects and the variance components for each facet.  

GLLAMM is an extended family of generalized linear mixed models (Breslow & Clay-

ton, 1993; Fahrmeir & Tutz, 2001), which was developed in the spirit of synthesizing a 

wide variety of latent variable models used in different academic disciplines. This gen-

eral model framework has three parts. The response model formulates the relationship 

between the latent variables and the observed responses via the linear predictor and link 

function, which accommodates various kinds of response types. The structural model 

specifies the relationship between the latent variables at several levels. Finally, the dis-

tribution of disturbances for the latent variables is specified. For more details, see Rabe-

Hesketh et al. (2004) and Skrondal & Rabe-Hesketh (2004). In this section, GT and IRT 

are introduced as special case of GLLAMM. Then, the GLLAMM approach to combin-

ing GT and IRT is detailed. 

GT in the GLLAMM framework 

The GLLAMM framework for traditional GT models consists of the response model for 

continuous responses, and multiple levels of crossing between latent variables. A multi-

faceted measurement design with person, item and rater facets will be used for an exam-

ple. First, suppose, for the moment, that there is a continuous observed score for person j 

on item i rated by rater k which is modeled as  

𝑦𝑖𝑗𝑘 = 𝜈𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘, (1) 

Where the error 𝜖𝑖𝑗𝑘 has variance 𝜎 and the linear predictor 𝜈𝑖𝑗𝑘  is defined as a three-way 

random effects model 

𝜈𝑖𝑗𝑘 = 𝛽0 + 𝜂1𝑖
(2)

+ 𝜂2𝑗
(2)

+ 𝜂3𝑘
(2)

, (2) 

where 𝛽0 is the grand mean in the universe of admissible observations. 𝜂1𝑖
(2)

, 𝜂2𝑗
(2)

, and 

𝜂3𝑘
(2)

 are interpreted as item, person, and rater effects, respectively. The (2) superscript 

denotes that the units of the variable vary at level 2. The subscript starts with a number 

identifier for latent variables and the alphabetical identifier for units. These effects are 

not considered nested but crossed because each person could have answered any item, 
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each person’s responses could have been rated by any rater, and each rater could have 

rated any item. The model with interactions between the random effects can be written as 

a reduced form multilevel model, 

𝜈𝑖𝑗𝑘 = 𝛽0 + 𝜂1𝑖
(3)

+ 𝜂2𝑗
(3)

+ 𝜂3𝑘
(3)

+ 𝜂4𝑖𝑗
(2)

+ 𝜂5𝑗𝑘
(2)

+ 𝜂6𝑖𝑘
(2)

, (3) 

assuming that the interaction effects are latent variables varying at level 2 and the clus-

ter-specific main effects are varying at level 3.  

In traditional GT, the latent variables are assumed to equal the disturbances without 

covariates or factor loadings. Thus, they are described as the random intercepts such that 

𝜂1𝑖
(3)

= 𝜁1𝑖
(3)

,  𝜂2𝑗
(3)

= 𝜁2𝑗
(3)

,  𝜂3𝑘
(3)

= 𝜁3𝑘
(3)

,  𝜂1𝑖𝑗
(2)

= 𝜁1𝑖𝑗
(2)

,  𝜂2𝑗𝑘
(2)

= 𝜁2𝑗𝑘
(2)

 , and 𝜂3𝑖𝑘
(2)

= 𝜁3𝑖𝑘
(2)

. The 

distribution of the disturbances can be specified as 𝜁1𝑖
(3)

~𝑁(0, 𝜓1
(3)

), 𝜁2𝑗
(3)

~𝑁(0, 𝜓2
(3)

),  

𝜁3𝑘
(3)

~𝑁(0, 𝜓3
(3)

), 𝜁4𝑖𝑗
(2)

~𝑁(0, 𝜓4
(2)

), 𝜁5𝑗𝑘
(2)

~𝑁(0, 𝜓5
(2)

), and 𝜁6𝑖𝑘
(2)

~𝑁(0, 𝜓6
(2)

). 

The generalizability coefficient is defined as the ratio of the universe score variance to 

the sum of the universe score variance and relative error variance. 

𝐸(𝜌̂𝐽
2) =

𝑉𝑎𝑟̂(𝜂2𝑗
(3)

)

𝑉𝑎𝑟̂ (𝜂2𝑗

(3)
) + 𝑉𝑎𝑟̂ (𝜂4𝑖𝑗

(2)
) + 𝑉𝑎𝑟̂ (𝜂5𝑗𝑘

(2)
) + 𝑉𝑎𝑟̂(𝜖𝑖𝑗𝑘)

=
𝜑̂2

(3)

𝜑̂2
(3)

+ 𝜑̂4
(2)

+ 𝜑̂5
(2)

+ 𝜎̂
 (4) 

The index of dependability is defined as the ratio of the universe score variance to the 

total variance that includes the universe score variance and absolute error variance. 

𝛷𝐽̂ =
𝑉𝑎𝑟̂(𝜂2𝑗

(3)
)

𝑉𝑎𝑟̂(𝜂1𝑖

(3)
) + 𝑉𝑎𝑟̂(𝜂2𝑗

(3)
) + 𝑉𝑎𝑟̂(𝜂3𝑘

(3)
) + 𝑉𝑎𝑟̂(𝜂4𝑖𝑗

(2)
) + 𝑉𝑎𝑟̂(𝜂5𝑗𝑘

(2)
) + 𝑉𝑎𝑟̂(𝜂6𝑖𝑘

(2)
) + 𝑉𝑎𝑟̂(𝜖𝑖𝑗𝑘)

=
𝜑̂2

(3)

𝜑̂1
(3)

+ 𝜑̂2
(3)

+ 𝜑̂3
(3)

+ 𝜑̂4
(2)

+ 𝜑̂5
(2)

+ 𝜑̂6
(2)

+ 𝜎̂
 

(5) 

IRT in the GLLAMM framework 

The GLLAMM framework for traditional IRT models requires a response model for 

categorical responses, two levels of nesting, and a latent variable for persons (Skrondal 

& Rabe-Hesketh, 2004). An important difference between IRT and GT is the type of 

response that is modeled. As item responses are categorical, a classical latent response 

model can be formulated as introduced by Pearson (1901). The underlying continuous 

response 𝑦𝑖𝑗
∗  is modeled

3
 as 

𝑦𝑖𝑗
∗ = 𝜈𝑖𝑗 + 𝜖𝑖𝑗 . (6) 

                                                                                                                         
3
Note that for continuous responses such as the ones modeled in traditional GT, 𝑦𝑖𝑗

∗ = 𝑦𝑖𝑗. 
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𝜈𝑖𝑗 is the log odds of correct answers to items i for person j conditional on person ability 

𝜂𝑗 and 𝜖𝑖𝑗 has a logistic distribution, 𝜖𝑖𝑗~logistic, that has mean 0 and variance 
𝜋2

3
. This 

is the same as writing the model with a logit link function, logit(𝑃(𝑦𝑖𝑗 = 1|𝜂𝑗)) = 𝜈𝑖𝑗 

for dichotomous responses. Other distributions such as probit are used in certain cases 

when it is more appropriate to assume 1 for the error variance of the latent variable and 

when it is not desired to interpret the coefficients in terms of odds ratios.  

For dichotomous responses, the observed response 𝑦𝑖𝑗 is defined as 𝑦𝑖𝑗 = 1 if 𝑦𝑖𝑗
∗ > 0, 

and yij = 0 otherwise. 

ln (
Pr (𝑦𝑖𝑗

∗ > 0|𝜂𝑗)

Pr (𝑦𝑖𝑗
∗ ≤ 0|𝜂𝑗)

) = 𝜈𝑖𝑗  (7) 

The Rasch model (Rasch, 1960) or the one-parameter (1PL) model, has a random inter-

cept for persons and a fixed parameter for items denoted by 

𝜈𝑖𝑗 = 𝜂𝑗 − 𝛽𝑖  (8) 

where 𝜂𝑗 is the latent variable for person j, 𝜂𝑗~𝑁(0,1), and 𝛽𝑖 is the fixed effect for item 

i. In the two-parameter logistic model, or 2PL model, a slope parameter or a factor load-

ing is added for each item such that 

𝜈𝑖𝑗 = 𝜆𝑖(𝜂𝑗 − 𝛽𝑖) (9) 

where 𝜆𝑖 represents item discrimination.  

For polytomous items, let C be the number of categories for an item. Assume that the 

category score is defined as c = 1, …, C-1, also representing the steps between the 

scores. In the polytomous case, each category score 𝑦𝑖𝑐𝑗 for the category score c is mod-

eled with a separate linear predictor 𝜈𝑖𝑐𝑗 . Depending on data and intended interpretation, 

one can specify the model differently. For example, using the sequential stage continua-

tion ratio logit scheme, 𝑦𝑖𝑐𝑗 takes the value of 1 if  𝑦𝑖𝑐𝑗
∗ > 𝑐 and 0 if  𝑦𝑖𝑐𝑗

∗ = 𝑐 for catego-

ry c. Then 

ln (
Pr (𝑦𝑖𝑐𝑗

∗ >𝑐|𝜂𝑗)

Pr (𝑦𝑖𝑐𝑗
∗ =𝑐|𝜂𝑗)

) = 𝜈𝑖𝑐𝑗. (10) 

Using the adjacent category logit scheme (Agresti & Kateri, 2011), 𝑦𝑖𝑐𝑗 takes the value 

of 1 if  𝑦𝑖𝑐𝑗
∗ = 𝑐 and 0 if  𝑦𝑖𝑐𝑗

∗ = 𝑐 − 1 for category c. The adjacent category logit specifi-

cation is widely used in polytomous item response models such as the rating scale model 

(Andrich, 1978) and the partial credit model (Masters, 1982): 

ln (
Pr (𝑦𝑖𝑐𝑗

∗ =𝑐|𝜂𝑗)

Pr (𝑦𝑖𝑐𝑗
∗ =𝑐−1|𝜂𝑗)

) = 𝜈𝑖𝑐𝑗 . (11) 
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In cumulative models for ordered categories, 𝑦𝑖𝑐𝑗 takes the value of 1 if  𝑦𝑖𝑐𝑗
∗ > 𝑐 and 0 if  

𝑦𝑖𝑐𝑗
∗ ≤ 𝑐 for category c. The graded response model (Samejima, 1969) is specified using 

cumulative probabilities and threshold parameters. When a logit link is used, the model 

is specified as, 

ln (
Pr (𝑦𝑖𝑐𝑗

∗ >𝑐|𝜂𝑗)

Pr (𝑦𝑖𝑐𝑗
∗ ≤𝑐|𝜂𝑗)

) = 𝜈𝑖𝑐𝑗. (12) 

In the case of the partial credit model, the linear predictor is specified as 

𝜈𝑖𝑐𝑗 = 𝑐𝜂𝑗 − 𝛽𝑖𝑐  (13) 

with 𝛽𝑖𝑐 representing the c
th
 step difficulty for item i. The graded response model uses a 

set of ordered threshold parameters 𝜅𝑐 such that 

𝜈𝑖𝑐𝑗 = 𝜅𝑐𝜂𝑗 − 𝛽𝑖𝑐  (14) 

where 𝜅𝑐 can be viewed as the factor loadings for each step. 

Zheng & Rabe-Hesketh (2007) presented the Rasch, 2PL, partial credit model and rating 

scale model using the additional parameters for covariates for latent variables and other 

parameters, so that the structure of item loading and scoring is more explicit. 

 

Theoretical link and justification of combining GT and IRT using GLLAMM 

The combination of GT and IRT ideas become simpler when GT and IRT features are 

expressed in the same GLLAMM language. The key elements of the combined model 

include: the latent response specification, a logit link, and a linear predictor specified as a 

crossed random effects model.  

For dichotomous responses, the underlying continuous response to the i
th
 item of the j

th
 

person rated by the k
th
 rater is modeled using a classical latent response model: 

𝑦𝑖𝑗𝑘
∗ = 𝜈𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘,   𝜖𝑖𝑗𝑘~𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜇,

𝜋2

3
), (15) 

where 𝜈𝑖𝑗𝑘  designates the true score for every possible pair of units i, j, and k, or the 

expected responses. The observed response 𝑦𝑖𝑗𝑘 is modeled as a threshold that takes the 

value of 1 if  𝑦𝑖𝑗𝑘
∗ > 0 and 0 otherwise.  

The linear predictor 𝜈𝑖𝑗𝑘 is defined as a crossed random effects model with or without 

interaction. For simplicity, a model without interaction is presented here as 

𝜈𝑖𝑗𝑘 = 𝛽0 + 𝜂1𝑖
(2)

+ 𝜂2𝑗
(2)

+ 𝜂3𝑘
(2)

 (16) 
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where 𝛽0 is the average logit of the probability of response 1 averaging over all persons, 

items, and raters. Note that the effects for persons and items are not considered nested 

but crossed because each person could have answered each item. As above, the (2) su-

perscript denotes that the units of the variable vary at level 2. 𝜂1𝑖
(2)

 is the first latent varia-

ble that varies among items (i = 1,…,I) at level 2, and 𝜂2𝑗
(2)

 is the second latent variable at 

level 2 that varies among persons (j = 1, …, J). 𝜂3𝑘
(2)

 is the third latent variable at level 2 

that varies among raters (k = 1, …, K). The interpretations of 𝜂1𝑖
(2)

, 𝜂2𝑗
(2)

, and 𝜂3𝑘
(2)

 are item 

easiness, person ability, and rater leniency, respectively. If the addition signs are 

switched to subtraction signs for 𝜂1𝑖
(2)

 and 𝜂3𝑘
(2)

, the interpretations are also reversed as 

item difficulty and rater severity. 

The latent variables are assumed to equal the disturbances, 𝜂1𝑖
(2)

= 𝜁1𝑖
(2)

, 𝜂2𝑗
(2)

= 𝜁2𝑗
(2)

 and 

𝜂3𝑘
(2)

= 𝜁3𝑘
(2)

, which are specified as 𝜁1𝑖
(2)

~𝑁(0, 𝜓1
(2)

), 𝜁2𝑗
(2)

~𝑁(0, 𝜓2
(2)

), and 

𝜁3𝑘
(2)

~𝑁(0, 𝜓3
(2)

), corresponding to the assumptions of traditional GT.  

In the case of person-specific unobserved heterogeneity, the model is specified as  

𝜈𝑖𝑗𝑘 = 𝛽0 + 𝜂1𝑖
(2)

+ ∑ 𝜆𝑖𝑑𝜂2𝑗𝑑
(2)

+ 𝜂3𝑘
(2)𝐷

𝑑=1 ,   𝜁2𝑗𝑑
(2)

~𝑀𝑉𝑁(𝟎, 𝚿2
(2)

). (17) 

with the number of dimensions D, the item factor loadings 𝜆𝑖𝑑, and a covariance matrix 

𝚿. For the Rasch model, 𝜆𝑖𝑑 is 1 if the i
th
 item maps onto the d

th
 dimension, 0 otherwise.  

The continuation ratio approach is used for polytomous data, following Tutz’s (1990) 

parameterization in his sequential stage modeling (De Boeck, Bakker, Zwitser, Nivard, 

Hofman, Tuerlinckx, & Partchev, 2011). 𝑦𝑖𝑐𝑗𝑘 takes the value of 1 if 𝑦𝑖𝑐𝑗𝑘
∗ > 𝑐 and 0 if 

𝑦𝑖𝑐𝑗𝑘
∗ = 𝑐, where c (c = 1, …, C–1) denotes the category score and C denotes the number 

of score categories including the score 0. The linear predictors 𝜈𝑖𝑐𝑗𝑘  for unidimensional 

and multidimensional cases are specified as 

𝜈𝑖𝑐𝑗𝑘 = 𝛽0 + 𝜂1𝑖𝑐
(2)

+ 𝜂2𝑗
(2)

+ 𝜂3𝑘
(2)

, (18) 

𝜈𝑖𝑐𝑗𝑑𝑘 = 𝛽0 + 𝜂1𝑖𝑐
(2)

+ ∑ 𝜆𝑖𝑑𝜂2𝑗𝑑
(2)

+ 𝜂3𝑘
(2)

𝐷

𝑑=1

,   𝜁2𝑗𝑑
(2)

~𝑀𝑉𝑁(𝟎, 𝚿2
(2)

). (19) 

Using the variance components estimates, the generalizability coefficient 𝐸(𝜌̂𝐽
2) for the 

person estimates is calculated. In GT terms, 𝐸(𝜌̂𝐽
2) is the ratio of the universe score 

variance to the sum of itself plus the relative error variance. The universe score variance 

is defined as the variance of all the scores in the population of all the persons, items, and 

raters. The relative error variance means the measurement error variance relevant to the 

relative rank order between persons. The variance of 𝜖𝑖𝑗𝑘 is included in the denominator 

to take into account the variance of the underlying logit. Additionally, using the variance 
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component for items and raters in the model, we calculate the generalizability coefficient 

for measurement of item easiness, 𝐸(𝜌̂𝐼
2), and rater leniency, 𝐸(𝜌̂𝐾

2 ), in the same manner: 

𝐸(𝜌̂𝐽
2) =

𝑉𝑎𝑟̂(𝜂2𝑗
(2)

)

𝑉𝑎𝑟̂(𝜂2𝑗

(2)
) + 𝑉𝑎𝑟̂(𝜖𝑖𝑗𝑘)

=
𝜑̂2

(2)

𝜑̂2
(2)

+
𝜋2

3

 (20) 

𝐸(𝜌̂𝐼
2) =

𝑉𝑎𝑟̂(𝜂1𝑖
(2)

)

𝑉𝑎𝑟̂(𝜂1𝑖

(2)
) + 𝑉𝑎𝑟̂(𝜖𝑖𝑗𝑘)

=
𝜑̂1

(2)

𝜑̂1
(2)

+
𝜋2

3

 (21) 

𝐸(𝜌̂𝐾
2 ) =

𝑉𝑎𝑟̂(𝜂3𝑘
(2)

)

𝑉𝑎𝑟̂(𝜂3𝑘

(2)
) + 𝑉𝑎𝑟̂(𝜖𝑖𝑗𝑘)

=
𝜑̂3

(2)

𝜑̂3
(2)

+
𝜋2

3

 (22) 

The index of dependability Φ̂ is the ratio of the universe score variance to the sum of 

itself plus the absolute error variance. Absolute error variance focuses on the measure-

ment error variance of a person that is attributed by the measurement facets regardless of 

how other people do on the test. Thus,  Φ̂ accounts for the variance related to another 

random facet, for example, items. The denominator also includes the variance of the 

underlying logit. The same logic can be extended to calculation of the indices of depend-

ability for item easiness and rater leniency: 

𝛷𝐽̂ =
𝜑̂2

(2)

𝜑̂1
(2)

+ 𝜑̂2
(2)

+ 𝜑̂3
(2)

+
𝜋2

3

 (23) 

𝛷𝐼̂ =
𝜑̂1

(2)

𝜑̂1
(2)

+ 𝜑̂2
(2)

+ 𝜑̂3
(2)

+
𝜋2

3

 (24) 

𝛷𝐾̂ =
φ̂3

(2)

φ̂1
(2)

+ φ̂2
(2)

+ 𝜑̂3
(2)

+
π2

3

 (25) 

In the multidimensional and/or polytomous case, we use the dimension- and category- 

specific variance component estimates along with the number of items in each dimension 

and with the number of persons who got each category score as weights to calculate the 

composite generalizability coefficient and the index of dependability (Brennan, 2001; 

Choi, Briggs & Wilson, 2009).  
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𝐸(𝜌̂𝑑
2) =

𝜑̂𝑑
(2)

𝜑̂𝑑

(2)
+

𝜋2

3

 (26) 

𝐸(𝜌̂𝑐
2) =

𝜑̂𝑐
(2)

𝜑̂𝑐
(2)

+
𝜋2

3

 (27) 

𝛷𝑑̂ =
𝜑̂𝑑

(2)

𝜑̂𝑐
(2)

+ 𝜑̂𝑑

(2)
+ 𝜑̂3

(2)
+

𝜋2

3

 (28) 

𝛷𝑐̂ =
𝜑̂𝑐

(2)

𝜑̂𝑐
(2)

+ 𝜑̂𝑑

(2)
+ 𝜑̂3

(2)
+

𝜋2

3

 (29) 

where 𝜑̂𝑑
(2)

 is the composite of universe score variance on the person side, and 𝜑̂𝑐
(2)

 is the 

composite of universe score variance on the item side. Formally, these are defined as 

𝜑̂𝑑
(2)

= ∑𝑑𝑤𝑑
2𝜑̂2𝑑

(2)
+ ∑∑𝑑′≠𝑑𝑤𝑑

2𝑤𝑑′
2 𝜑̂2𝑑𝑑′

(2)
 (30) 

𝜑̂𝑐
(2)

= ∑𝑐𝑤𝑐
2𝜑̂1𝑐

(2)
+ ∑∑𝑐′≠𝑐𝑤𝑐

2𝑤𝑐′
2 𝜑̂1𝑐𝑐′

(2)
 (31) 

where the weights 𝑤𝑑 =
𝑛𝑖𝑑

𝑛𝐼
 for d = 1,…D and 𝑤𝑐 =

𝑛𝑗𝑐

𝑛𝐽
 for c = 1,…C–1, 𝑛𝐼  is the total 

number of items over all dimensions, 𝑛𝑖𝑑 is the number of items in dimension d, 𝑛𝐽 is the 

total number of items over all dimensions, and 𝑛𝑗𝑐  is the number of persons who got each 

category score. 

Estimation 

For generalized linear mixed models with crossed random effects, the likelihood of the 

data given the random variables needs to be integrated over the latent distribution. Since 

the high-dimensional likelihood function does not have a closed form in general, there 

are several approaches to approximating the maximum likelihood. The Laplacian ap-

proximation evaluates the unscaled conditional density at the conditional mode and is 

optimized with respect to the fixed effects and the disturbances. It is equivalent to the 

adaptive Gaussian quadrature with one node and is most accurate when the integrand of 

the likelihood is proportional to a normal density. Thus, a large cluster size corresponds 

to close-to-normal posterior density of the random variables, which then again leads to 

better approximation and less bias in estimates, especially for person parameter estima-
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tion (Cho & Rabe-Hesketh, 2011; De Boeck et al., 2011; Joe, 2008; Pinheiro & Bates, 

1995; Skrondal & Rabe-Hesketh, 2004).  

Specifically, the model is fitted using the computational method implemented in the 

lme4 package (Bates, 2010). Given the response vector 𝒴, the q-dimensional random 

effect vector ℬ, the variance-component parameter vector 𝜃, the scale parameter 𝜎 for 

which it is assumed that 𝜎 > 0, and a multivariate Gaussian random variable 𝒰 such that 

ℬ = Λ𝜃𝒰 where a covariance matrix Λ𝜃 satisfies 

𝑉𝑎𝑟(ℬ) = Σ𝜃 = 𝜎2Λ𝜃Λ𝜃
⊺ , (32) 

the joint density function of 𝑓𝒰,𝒴(𝒖, 𝒚) is evaluated at the observed vector 𝒚𝑜𝑏𝑠 . The 

continuous conditional density 𝑓𝒰|𝒴(𝒖|𝒚𝑜𝑏𝑠) can be expressed as a function of an un-

normalized conditional density ℎ(𝒖), of which integral ∫ 𝑓(𝒖)𝑑𝒖 is the same as the 

likelihood that needs to be evaluated for our model fitting.  

Since the integral does not have a closed form for the kinds of mixed model we are inter-

ested in, it is evaluated using the Laplace approximation that utilizes the Cholesky factor 

𝑳𝜃 and the conditional mode 𝒖̃. The conditional mode of u given 𝒴 = 𝒚𝑜𝑏𝑠 is defined as 

a maximizer of the conditional density and a minimizer of a penalized residual sum of 

squares (PRSS) criterion or a function of the parameters given the data, 

𝑟𝜃,𝛽
2 = min𝒖‖𝒚𝑜𝑏𝑠 − 𝜇‖2 + ‖𝒖‖2, (33) 

where 𝜇 is the mean of the conditional density. The Cholesky factor 𝑳𝜃 is defined as the 

sparse lower triangular 𝑞 × 𝑞 matrix with positive diagonal elements such that 

𝑳𝜃𝑳𝜃
⊺ = 𝚲𝜃

⊺ 𝒁⊺𝒁𝚲𝜃 + 𝑰𝑞. (34) 

The sparse triangular matrix 𝑳𝜃 can be efficiently evaluated even with large data sets by 

the fill-reducing permutation that reduces the number of non-zeros in the factor. After 

evaluating 𝑳𝜃 and solving for 𝒖̃, the likelihood can be conveniently expressed as a func-

tion of 𝜎, 𝑳𝜃,𝛽 , and 𝑟𝜃,𝛽
2 . On a deviance scale, the Laplace approximation of the likeli-

hood is given as 

𝑑(𝜃, 𝛽, 𝜎|𝑦𝑜𝑏𝑠) = −2log (𝐿(𝜃, 𝛽, 𝜎|𝑦𝑜𝑏𝑠)) ≈= 𝑛 ∙ log(2𝜋𝜎2) + 2 ∙ log|𝑳𝜃,𝛽| +
𝑟𝜃,𝛽

2

𝜎2  (35) 

and the parameter estimates are the values at which this deviance is minimized.  

Currently, xtmelogit in Stata and the lmer() function in R are as available as general 

statistical packages that have the capacity to estimate one or more cross-classified ran-

dom variables using the Laplacian approximation, while the lmer() function is signifi-

cantly more efficient than xtmelogit with regard to the calculation time. Therefore, we 

chose the lmer() function to estimate our model parameters.  
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In addition to the IRT random person and item variables, we also parameterize and esti-

mate the variance components using lmer(). This direction also corresponds to the rec-

ommendation by Robinson (1991), Gelman, Carlin, Stern, & Rubin (2003), and Gelman 

(2005) to treat the hierarchical regression coefficients as random variables (and thus 

‘predicted’) and the variance components as parameters (and thus ‘estimated’). In tradi-

tional GT, since it depends on the analogous-ANOVA variance decomposition procedure 

based on the design of the existing data, there are known limitations such as negative 

variance estimates. ANOVA’s main advantage is the ease of variance component estima-

tion, but it is mostly applied to balanced designs. With proper reconstruction of data, 

lmer() easily estimates the variance components of incomplete data, which, we argue, 

would serve as a significant improvement of the problems in traditional GT. In addition, 

there has been no clearly best estimation method for variance decomposition of incom-

plete data and unbalanced mixed designs. Even though the resulting estimates have been 

proved to be unbiased, other properties of estimates are generally unknown (Khuri, 2000; 

Khuri & Sahai, 1985; Skrondal & Rabe-Hesketh, 2004). It is thus useful to know that for 

unbalanced multistrata ANOVA, lmer() is preferred to estimate variance components 

rather than the aov() and Anova() functions, which are also currently available in R for 

general ANOVA.  

The key to estimating the generalizability coefficients lies in using proper variance com-

ponent estimates for diverse measurement situations. We take the variance component 

estimates from lmer() and use the calculation methods from Brennan (2001), which 

includes the most comprehensive set of calculation methods for these coefficients in 

measurement situations that match a variety of complex ANOVA-like designs. Recall 

that the classical definition of reliability is the proportion of the total variance of the 

measurements that is due to the true score variance. We take this definition to calculate 

the generalizability coefficient 𝐸(𝜌̂𝐽
2) for person measurement. In the same manner, we 

calculate the generalizability coefficient for measurement of item easiness and rater 

leniency as specified in Equations (20) to (22). In the multidimensional and/or poly-

tomous case, the dimension-specific and category-specific variance components are 

estimated as specified in Equations (26) to (29). 

Through extensive simulation studies (Choi, 2013), the accuracy of the results from the 

proposed approach in various measurement conditions was evaluated. In conclusion, the 

simulation results suggested that the proposed approach gives overall accurate generali-

zability coefficients. While more students and skewness in person distributions showed a 

significant interaction effect on the accuracy of the generalizability coefficients, the 

effect sizes were all very small. The next section presents the datasets and design of an 

empirical study. 

The example data 

The illustrative data set has three features that illuminate the utility of the proposed 

method: multidimensionality, polytomous responses, and multiple raters. The data was 

collected by researchers from Michigan State University and the University of Califor-
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nia, Berkeley for the Carbon Cycle project, which was supported by the National Science 

Foundation: Developing a Research-based Learning Progression on Carbon-

Transforming Processes in Socio-Ecological Systems (NSF 0815993). The participants 

included U.S. students from the state of Michigan in grades 4 through 12 during the 

2008–2009 school year. After the data were cleaned, the data consisted of 869 students, 

including 190 elementary students, 346 middle school students, and 333 high school 

students. The 19 items in the data set represented six latent ability domains and were 

polytomously scored into four categories by 8 raters. The numbers of items designed to 

measure each of the dimensions were 3, 3, 3, 2, 3, 3, and 5, respectively. However, not 

every item was designed to measure all six domains, not every item was rated by all 8 

raters, not every person answered all items, not every item had four category scores, and 

so on. That is, the data was unbalanced and incomplete. The reshaping of the data, based 

on Tutz’s (1990) sequential stage continuation ratio logit, resulted in a response vector 

with a length of 18,695. A unidimensional model and a multidimensional model for 

polytomous data with a rater facet were fitted to this data set.  

The models fitted to the Carbon Cycle 2008-2009 empirical data sets were (a) a unidi-

mensional model (without raters), UD, (b) a unidimensional model (with raters), UDR, 

(c) a multidimensional model (without raters), MD, and (d) a multidimensional model 

(with raters), MDR. The composite person and item variance components are the 

weighted averages based on the number of items per each dimension and the number of 

persons who scored each category, respectively. The results are summarized in Table 1. 

The person, item, and rater variance component estimates stay relatively stable across the 

four models. Overall, adding the rater effect to the unidimensional model (UD to UDR) 

and to the multidimensional model (MD to MDR) did not result in noticeable changes in 

the person and item variance component estimates and generalizability coefficients. The 

person generalizability coefficients decreased about 0.02 on average: from 0.340 and 

0.249 to 0.315 and 0.224 for the unidimensional case, and from 0.376 and 0.286 to 0.352 

and 0.261 for the multidimensional case. The item generalizability coefficients changed 

on average less than 0.005: from 0.358 and 0.269 to 0.360 and 0.274 for the unidimen-

sional case, and from 0.337 and 0.241 to 0.335 and 0.243 for the multidimensional case. 
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Table 1: 

Estimated Variance Components and Generalizability Coefficients 

 
Model 

 
UD UDR MD MDR 

 
Est Est Est Est 

Person 1.696 1.509 1.981(c) 1.783(c) 

Dim 1 
  

2.803 2.678 

Dim 2 
  

2.044 1.785 

Dim 3 
  

1.105 1.062 

Dim 4 
  

2.066 1.977 

Dim 5 
  

2.321 1.978 

Dim 6 
  

1.623 1.386 

Item 1.836(c) 1.845(c) 1.669(c) 1.658(c) 

Step 1 2.799 2.780 2.470 2.446 

Step 2 0.639 0.659 0.541 0.559 

Step 3 2.089 2.123 2.046 2.015 

Rater 
 

0.093 
 

0.092 

Error 3.287 3.287 3.287 3.287 

AIC 12,168 12,130 12,177 12,140 

BIC 12,246 12,216 12,451 12,422 

Dev. 12,148 12,108 12,107 12,068 

GCP 0.340 0.315 0.376 0.352 

GCI 0.358 0.360 0.337 0.335 

GCR 
 

0.027 
 

0.027 

IDP 0.249 0.224 0.286 0.261 

IDI 0.269 0.274 0.241 0.243 

IDR 
 

0.014 
 

0.013 

Notes. 1. The item and rater parameters are interpreted as easiness and leniency, respectively. 2. The (c) 

marks are for the weighted or composite variance component estimates.  

 

Similarly, adding the multiple dimensions did not produce significantly different general-

izability coefficients for person, item, and rater facets. Compared to the unidimensional 

results, the person-side generalizability coefficients were slightly greater (about a 0.035 

increase on average) while the item-side generalizability coefficients were slightly 

smaller (about a 0.025 decrease on average). Including the multiple person dimensions in 

the model only slightly improved the deviances: from 12,148 to 12,107 for the models 

without the rater effect and from 12,108 to 12,068 for the models with the rater effect. 
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However, the AIC and the BIC showed that the multidimensional models did not fit 

better than the unidimensional models did. Thus, we can select the simpler unidimen-

sional model when summarizing the generalizability coefficients for the Carbon Cycle 

data analysis. The best fit was found for the unidimensional model with the rater effect 

(UDR), where the generalizability coefficient and the index of dependability of the per-

son measurements (0.315 and 0.224) were about 0.05 logit less than those of the item 

measurements (0.360 and 0.274). The rater variance component was very small (0.093) 

and the resulting generalizability coefficients for the raters were also very small (0.027 

and 0.014).  

Previous research on the multidimensionality of the same data using multidimensional 

item response models also reported high latent correlations between the dimensions, as 

shown in Table 2 (Choi, Lee, & Draney, 2009). All empirical results lead to the conclu-

sion that the person dimensions are statistically indistinguishable.  

We use the results from the polytomous multidimensional model with the rater effect to 

illustrate the advantages of using the proposed approach. While the model fit was worse 

than the unidimensional model, we purposefully chose this model because our goal here 

is to demonstrate the extendibility of the proposed approach to more complex test condi-

tions. We can not only estimate random variance components of the persons, items, and 

raters but also estimate the individual person, item, and rater estimates via the proposed 

method. Table 3 shows examples of those predicted individual estimates. When the 

intercepts and group means are added, these estimates are comparable to the traditional 

item response theory person ability, item step difficulty (easiness with reversed sign), 

and rater severity (leniency with reversed sign) estimates on the same logit scale. For 

example, the fixed effects estimates for the grand mean and the dimension 2 were 1.998 

and 0.177, respectively. Thus, the estimated ability for the dimension 2 of the student 

S00001 is 1.998 + 0.177 – 2.623 = –0.448 logit. 

Table 2:  

The correlation between six person dimensions for the 2008-2009 Carbon Cycle data 

 

Dimension 

1 

Dimension 

2 

Dimension 

3 

Dimension 

4 

Dimension 

5 

Dimension 2 0.994 
    

Dimension 3 0.989 0.999 
   

Dimension 4 0.857 0.901 0.911 
  

Dimension 5 0.962 0.984 0.988 0.904 
 

Dimension 6 0.992 1.000 1.000 0.911 0.983 

 

Next, Figure 1 and Figure 2 present the precision in predicting the random person ability, 

item difficulty, and rater severity effects. First, in Figure 1, the students and items are 

ordered from left to right according to increasing standard normal quantiles. The dots are 

the conditional modes of the random effects, and the lines indicate the 95% prediction 

intervals. The prediction interval is obtained from the conditional standard deviation, 
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which is a measure of the dispersion of the parameter estimates given the data (Bates et 

al., 2015). The x axis is the standard normal quantiles for students and items and the y 

axis is the logit scale. The patterns show that about 40% to 50% of the person random 

effects contain zero in their prediction interval while most of the item random effects do 

not. This means that for the students it is more probable that their ability estimate is close 

to the mean than for the items. This is reasonable because the cluster sizes for person 

estimation are much smaller than those for items.  

Figure 2 depicts the pattern of the 95% prediction intervals on the person and item ran-

dom effects ordered differently according to increasing estimated values for the first 

level (e.g., dimension 1 for persons, step 1 for items). By doing so, we can discern 

whether the patterns of the dimensions are similar to each other. The x axis is the logit 

scale and the y axis is the persons or the items, respectively. The graph confirms that the 

person dimensions are highly correlated with the dimension 1 except for dimension 4, as 

shown by the previous results of the latent correlation from a multidimensional IRT 

analysis shown in Table 2. 
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Table 3:  

An example set of predicted person, item, and rater effects estimates 

Student ID Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 

S00001 -3.178 -2.623 -2.029 -2.257 -2.679 -2.318 

S00002 -0.211 -0.161 -0.102 -0.017 -0.138 -0.136 

S00003 -1.141 -0.925 -0.688 -0.647 -0.900 -0.808 

S00004 -0.202 -0.191 -0.187 -0.377 -0.159 -0.170 

S00005 -1.578 -1.307 -1.019 -1.166 -1.237 -1.144 

S00006 -1.441 -1.144 -0.811 -0.583 -1.182 -1.002 

S00007 -1.885 -1.564 -1.223 -1.418 -1.643 -1.389 

S00008 -1.405 -1.179 -0.944 -1.186 -1.151 -1.040 

S00009 -2.677 -2.186 -1.651 -1.665 -2.222 -1.924 

S00010 -2.593 -2.128 -1.625 -1.718 -2.197 -1.880 

S00011 -0.977 -0.821 -0.658 -0.831 -0.776 -0.721 

S00012 -1.597 -1.289 -0.951 -0.855 -1.193 -1.118 

S00013 -1.441 -1.210 -0.968 -1.215 -1.353 -1.087 

S00014 -1.277 -1.076 -0.867 -1.113 -1.048 -0.949 

S00015 -0.853 -0.663 -0.446 -0.207 -0.571 -0.563 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Note. All students shown here are at elementary school level, hence the low estimates. 

Item ID Step 1 Step 2 Step 3  Rater ID Estimates 

i01 0.949 0.092 0.960  r1 -0.014 

i02 -2.519 -1.355 -0.278  r2 0.200 

i03 -0.842 0.268 0.302  r3 0.014 

i04 -0.715 -0.903 0.061  r4 0.270 

i05 1.307 0.308 0.755  r5 -0.005 

i06 1.128 0.901 0.215  r6 -0.240 

i07 -2.832 -0.916 -3.245  r7 -0.551 

i08 -0.772 -0.166 0.521  r8 0.182 

i09 1.255 0.558 0.672    

i10 -1.354 -0.802 0.157    

i11 -0.148 -0.001 0.726    

i12 0.212 -0.588 1.121    

i13 -0.198 -0.092 2.055    

i14 0.020 0.321 -0.271    

i15 1.759 0.611 1.592    

i16 -0.155 -0.166 2.304    

i17 -1.167 0.250 -2.576    

i18 -1.998 -1.529 -2.813    

i19 1.803 0.971 0.557    
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Figure 1: 

95% prediction intervals on the person and item random effects compared to the standard 

normal quantiles of students and items 
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Figure 2: 

95% prediction intervals on the person and item effects ordered based on increasing estimated 

values for the first levels (e.g., dimension 1 and step 1) 
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Figure 3:  

95% prediction intervals on the rater effects ordered based on 1) the standard normal quantiles 

and 2) increasing estimated values 

On the other hand, the item step estimates are not showing much correlation among the 

steps. What is more interesting in the item graphs is that we can observe for some items 

(e.g., the first three items from the bottom: i7, i17 and i18), achieving the second and the 

third steps was relatively easier than for other items. The greater imprecision (i.e., longer 

bars crossing the estimate) for the first step is caused by the small number of responses at 

that level of performance, compared to the responses at higher levels of performances 

which showed greater precision (i.e., shorter bars). 

The 95% prediction intervals for the rater random effects are shown in Figure 3. In the 

graph on the left, the x axis is the standard normal quantiles and the y axis is the logit 

scale. Overall, the rater estimates are quite close to each other and to zero, as we should 

expect, since the raters went through training and screening procedures. Unlike the per-

son and item estimates, the y scale ranges narrowly between -0.5 and 0.5 logits. Only 

two rater estimates do not have prediction intervals that contain zero. In the graph on the 

right, the x axis is the logit scale and the y axis is the persons or the items. The rater 7 

was the most lenient: when other variables were controlled, it was easier for the students 

to get the scores on items when rated by the rater 7.  

The benefit of having the set of predicted person, item, and rater effects in Table 3 is 

explicitly shown through Figure 4, a modified version of a Wright Map (Wilson, 2005). 

The person ability estimates for each dimension are calculated as sums of the estimated 

intercept, the cluster mean for each dimension (except the reference dimension 1), and 

the estimated person random effects. Likewise, the item difficulty estimates for each step 

are calculated as sums of the estimated intercept, the cluster mean for each step (except 

for the reference step 1), and the estimated item random effects. The rater severity esti-

mates were calculated as the means of the rater severity for the three thresholds. One can 

compare the location of the distributions of the person, item, and rater parameter esti-
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mates on the same logit scale, which gives insight into how easy it was for the students 

to get the target score on the items by the raters. 

The person ability scores are displayed as density curves on the logit scale. Dimensions 3 

and 4 have relatively small variances and the shape of dimension 4 density is slightly off 

from the symmetric normal distribution. The ability distributions of the six dimensions 

shared similar locations and dispersions, again validating the finding that the multidi-

mensional model does not fit the data better than the unidimensional one. The result 

corresponds with the lower latent correlation for dimension 4 with other dimensions as 

well as the fuzzy dots in the 95% prediction interval graph. Most likely, the reason why 

dimension 4 behaves as an oddity is the very low number of items (2) that measures it. 

Next, the three groups of points represent item difficulties. The location of the points can 

be interpreted as where the students on average have a 50% probability to get a particular 

score as compared to a score below that. Since the data had four possible scores 

(0,1,2,3), three steps or thresholds exist between the four scores. As the Wright Map 

shows, most of the students had more than 50% chance to achieve the first thresholds of 

all items, except for the items 13 to 16. In other words, for most of the students, getting 

the score 1 versus 0 was relatively easy. The second thresholds of the items were reason-

ably located near the means of the person distributions, meaning that on average students 

were able to get the score 2 on most items with about a 50% probability of success. Get-

ting the highest score was generally difficult for the students, particularly for the items 1, 

5, 6, 9, and 15. 

Last, the raters were generally non-separable from each other except for the rater 6 and 7 

who were on average more lenient than others in giving scores (compared to the score 

below) for the items to the students. The small variance component, the small resulting 

generalizability coefficient, and non-separable individual rater effects that we found in 

this analysis suggest that the rater training sessions were highly effective. The eight 

raters were indeed graduate research assistants who were involved in every stage of the 

research process — thus for this group of raters it makes sense that they showed con-

sistent ratings. 
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Discussion 

In this study, we have suggested an approach for combining GT and IRT. We recognize 

that IRT models can be written in terms of a latent continuous response and that a classic 

IRT model can be modeled directly using a simple GT design with items as a fixed facet. 

The resulting logistic mixed models extend a classic IRT model by treating items as a 

random facet and/or considering other facets such as raters. The advantage of the pro-

posed approach is that it allows a straightforward maximum likelihood estimation of 

individual random effects as well as the variance components needed for the generaliza-

bility coefficients. 

In addition, application of the proposed approach was illustrated using a moderately 

large-scale education data set. The results demonstrated another advantage of the pro-

posed approach: its flexibility with respect to incorporating extra complications in meas-

urement situations (e.g., multidimensionality, polytomous responses) and explanatory 

variables (e.g., rater facet). The variance components and the generalizability coeffi-

cients were presented. Also, predicted individual random effects were presented by tak-

ing advantage of the usefulness of a modified Wright Map.  

The results motivate further research on the following. In suggesting an approach to 

combine GT and IRT, the robustness of the generalizability coefficient estimates may not 

necessarily become a concern. However, the effects of (a) the discrete nature of data 

(e.g., more than two categories), (b) the violation of normality assumptions, and (c) more 

complex designs (e.g., person by item by rater design, multidimensionality), on the esti-

mation accuracy of the variance components and the generalizability coefficients, should 

be examined and reported. 

The proposed approach can be generalized to other measurement situations, both simpler 

and more complex ones. A simpler example is a balanced design with no missing data, or 

a design where the facets are nested. A more complex example is an unbalanced design 

with more than three crossed facets. For example, in addition to person, item, and rater 

facets, one could include an occasion facet that involves repeated measurement. Such 

attempts may offer an even closer connection between existing GT designs and IRT 

models. Currently, research is underway to extend the proposed approach to such alter-

native designs. It is in our hopes that the results from these studies will provide a more 

comprehensive basis to understand and evaluate methodological advantages and disad-

vantages of the existing and proposed approaches. 

In the meantime, whether the proposed method is extendable to different designs, such as 

nested designs or designs with more than three facets, partly depends on the estimation 

methods chosen. Until recently, estimation of crossed random effects models has been 

limited to a relatively small number of random effects, or facets, and their levels. Even 

though the flexibility of the proposed approach allows a straightforward extension of the 

models to those situations, questions remain regarding how to estimate the variance 

components in the models with an increased number of crossed random facets. Moreo-

ver, incorporating other item parameters such as discrimination differences or guessing 

in IRT models may add more challenges in estimation and interpretation. It will be inter-



Modeling rater effects 77 

esting to investigate what advanced and/or alternative estimation methods might be 

needed in extending the approaches to combine GT and IRT.  

Lastly, an interesting topic for further studies exists around understanding the interaction 

effect between raters and persons (i.e., ratees). For example, a rater’s rating of a person’s 

response can differ systematically based on the characteristics of the response that the 

person gave. An interaction can also exist between the persons’ group membership and 

the raters. For example, some raters might rate female students’ responses differently 

than male students’ responses. Or raters might differ their ratings systematically between 

groups of students, not knowing which group each student belongs to. Jin & Wang 

(2017) recently discussed a mixture facets model to account for differential rater func-

tioning — the interaction between the ratees’ unknown group membership and raters. In 

the proposed approach the interaction between individual raters and individual persons 

can be either included or not included, although it was not the focus of this study to fully 

explore this topic. As interactions between these facets can occur in real testing situa-

tions, it will be worthwhile to further explore how best we can model this effect. 

Conclusion 

The integrated modeling approach provides advantages by combining GT and IRT anal-

yses. The logistic mixed model allows for a straightforward and effective maximum 

likelihood estimation of individual random effects for IRT analysis as well as the vari-

ance components needed for GT analysis. Through the Laplacian approximation imple-

mented in the lmer() function in R, it estimates more than one cross-classified random 

effect efficiently with regard to the calculation time; and it estimates the variance com-

ponents of incomplete data from the unbalanced mixed design relatively easily, without 

producing negative variance estimates. The findings from the sample data analysis 

showed that the proposed approach can be extended to more complicated test conditions 

(e.g., multidimensionality, polytomous responses, multiple raters) and produces individ-

ual estimates for persons, items, and rater random effects as well as the generalizability 

coefficients for person, item, and rater facets. 
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Appendix 

We provide generic examples of lmer() syntax for logistic mixed models with crossed 

random effects. In the syntax, we assume that the name of dataset is ‘data’. Syntax for 

simpler models have been also provided for comparisons. We recommend Gałecki & 

Burzykowski (2013) for details in specifying linear mixed effects models using R. Please 

contact authors for further assistance with model specification. 

(a) Main effects for persons, items, and raters  

R> lmer(y ~ personid + itemid + raterid, data=data,  

   family=binomial) 

(b) Main effects with random intercepts for persons, items, and raters 

R> lmer(y ~ (1|personid) + (1|itemid) + (1|raterid),  

   data=data, family=binomial) 

(c) Crossed random effects with random intercepts for persons, items, raters and their 

interactions 

R> lmer(y ~ (1|personid) + (1|itemid) + (1|raterid) +  

   personid:itemid + personid:raterid + per 

   sonid:itemid:raterid , data=data, family=binomial) 

 


