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Abstract

The Culture Fair Intelligence Test CFT 1-R (Weiß & Osterland, 2013) is one of the most used tests

in Germany when diagnosing learning disabilities (LD). The test is constructed according to the

classical test theory and provides age specific norms for students with LD in special schools. In

our study, we analyzed the test results of 138 students in special schools and 166 students with

LD in inclusive settings in order to test the measurement invariance between students with LD,

who are educated in these two different educational settings. Data were analyzed within an IRT

framework using a non-iterative approach for (item) parameter recovery. This approach parallels

with the principle of limited information estimation, which allows for IRT analyses based on

small datasets. Analyses for Differential Item Functioning (DIF) as well as a test for global and

local model violations with regard to both subgroups were conducted. The results confirmed the

assumption of measurement invariance across inclusive and exclusive educational settings for

students with LD.
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Introduction

In Germany andmany other countries, the construct of LearningDisabilities (LD) refers to

children, who have significant academic difficulties in school and need additional special

educational support for which neither other disabilities (e.g., sensory impairment, mental

retardation, or emotional and behavioral disorders) nor lack of schooling can be found as

a cause (Lloyd, Keller, & Hung, 2007). In almost all school systems, these children are

labeled with LD to give them a legal right for additional assistance and support in school.

However, the concepts of LD, the assessment procedures and the diagnostic criteria, as

well as their interpretation, vary widely from country to country; but, they generally agree

that general cognitive abilities, as measured by standardized IQ tests, are an important

aspect. In the identification process of special educational needs (SEN), an intelligence

test is often used combined with academic performance tests (Bundschuh & Winkler,

2014). In German speaking countries, a below average IQ outcome was considered the

most effective diagnostic criterion of LD during the 1960s and 1970s because this was a

general “objective” assessment of the cognitive performance of a child without a school

reference (Grünke, 2004). One of the most used tests for this purpose is the Culture Fair

Intelligence Test CFT 1-R (Weiß & Osterland, 2013). The CFT 1-R is a language-free

intelligence test, constructed according to the classical test theory tomeasure basic aspects

of intelligence for children aged from five to eleven years. The German adaption of the

CFT 1-R provides standardized tests-scores also for students in special schools. The test

especially measures fluid intelligence, the ability to understand and process complex

information (Cattell, 1963). The concept of fluid intelligence should not be influenced

or rather confounded by the language and the cultural background of a specific test

taker. Thus, children with limited language skills in German should not be disadvantaged

by the CFT 1-R. The test is a group test and has a satisfactory reliability (r = .95),
particularly differentiating the lower levels of intelligence. Therefore, it is recommended

as a diagnostic intelligence inventory for students with SEN (Büttner, 1984). When

using intelligence tests such as the CFT 1-R for the purpose of diagnostic differentiation

between subgroups that are solely defined by their test outcome, the issue of (strong)

measurement invariance immediately arises. Especially in the case of diagnosing LD,

an assumption of measurement invariance regarding a lower proficiency subsample is

a crucial assumption to be verified (Schwab & Helm, 2015). Local distortions from

the general assumption of between group measurement invariance are discussed in the

literature via the term differential item functioning (DIF); see e.g., Holland (1993) for a

general overview and Zwick, Donoghue, and Grima (1993); Zwick (2012) for a summary

of principles of DIF detection in the framework of student assessment. Furthermore,

some classical reviews of different DIF detection methods are given for example by

Rudner, Getson, and Knight (1980), Mellenbergh (1982) and Osterlind (1983), as well

as newer developments given by Khalid and Glas (2014) and Lee and Geisinger (2015).

The detection of DIF itself is usually related to the application of models from Item

Response Theory (IRT – G. Fischer & Molenaar, 1995; Millsap, Gunn, Everson, &

Zautra, 2015). Unfortunately, such IRT-based DIF-analyses in general must be based



Testing psychometric properties of the CFT 1-R 5

on sufficient sample sizes for both subgroups to be tested against invariant outcome

measurement. This is true to greater extent when parametric, specifically iterative and

likelihood based, IRT methodology is to be applied (Zwick, 2012). The general challenge

is to achieve stable model parameter estimates against the backdrop of lacking data or

rather small sample sizes (Heine & Tarnai, 2015). Such small dataset usually arises when

examining marginal groups such as highly gifted students or students with SEN.

Assessing general intelligence of students with LD

The use of intelligence tests in general, and specifically the use of the CFT, has a

long tradition of diagnosing students with SEN. Based on its outcome, decisions are

made regarding the future academic career of the student, special learning support, and

recommendations to attend special schools (Heimlich, Lotter, & März, 2005; Schuck,

2011). Furthermore, the CFT is often used in research focusing on students with LD

(e. g. Hövel, Hennemann, Casale, & Hillenbrand, 2015; Gebhardt, Schwab, Krammer,

& Gasteiger, 2012; Sonntag, 2010; Voß et al., 2014). The CFT was used, for example,

in the first large studies on the effectiveness of special schools and inclusive schools in

studies in Switzerland (Haeberlin, Bless, Moser, & Klaghofer, 1998) and in Germany

(Tent, Witt, Bürger, & Zschoche-Lieberum, 1991). These studies showed positive results

towards inclusion of students with LD that were similar to recent studies (Kocaj, Kuhl,

Kroth, Pant, & Stanat, 2014; G. Lindsay, 2007). Since the research tradition of Alfred

Binet, intelligence has been seen as an important indicator of future school development,

and thus it serves as a criterion for deciding the future school career of students with LD

(Bundschuh &Winkler, 2014). Specifically, the CFT 1-R is one of the most used tests in

practice to identify LD. German students with LD are in general older in comparison to

students without LD. This is due to delayed school enrolment and decelerated schooling

career—the first three years of special schools covers standard schools’ first two years

(Biewer, 2001). In secondary school, students with LD learn basicmathematical skills that

are normally taught to regular students in primary school (Gebhardt, Zehner, & Hessels,

2014). In Germany, students with severe disabilities are more likely to attend special

schools (Gebhardt, 2015), and students with LD in special school settings generally have

a lower IQ and lower academic performance compared to students with LD in inclusive

settings (Kocaj et al., 2014; Myklebust, 2002). Therefore, it is unclear whether students

with LD in both educational settings can be considered part of the same population based

on measurement invariance and other psychometric properties of the CFT 1-R. However,

the test is constructed based on classical test theory as well as existing verifications of its

psychometric properties in the field of LD. In the framework of classical test theory, the

CFT 1-R shows good reliability and validity, and it considers students with LD in special

schools in its latest revision. Admittedly, a proof of the reliability and measurement

invariance in the framework of IRT is still missing for students with special needs who

are educated in inclusive settings. Moreover, when measuring latent variables such as

intelligence, the application and assumptions of classical test theory and the concept of

true scores may only represent an operationalist view of the measurement process, but
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not an underlying formal structure that relates test scores to the hypothesized latent trait

(Borsboom, 2005, p. 49). The later assumptions are better fulfilled in latent-variable

measurement models, primarily used in educational testing, which came to be known as

Item Response Theory (IRT) models. In general, these models provide a useful theoretical

and verifiable model for the emergence of observed manifest student responses based on

an assumed latent trait-intelligence in case of the CFT 1-R. Specifically, the Rasch model

(RM) is not only useful for modeling student’s responses in performance tests, such as

the CFT 1-R, but is also a necessary prerequisite for summative scaling when the number

of correct items is used for individual diagnostic purposes (Kubinger, 2005). However,

studies for the CFT 1-R with regard to specific populations like students with special

needs are still missing. Therefore, the present study aims at examining the psychometric

properties of the CFT 1-R for students with LD in inclusive settings and special schools

in the framework of IRT.

A psychometric Item Response Theory for practical applications

Scaling

As pointed out in the above section, there is a lack of research concerning the psychometric

properties of the CFT 1-R. This applies to two key problems: first, whether the implicit

assumption of measurement invariance holds true across students with LD in both

inclusive schools and special schools and second, the need to analyze the CFT 1-R

in the framework of Item Response Theory (IRT). In this sense Kuhn, Holling, and

Freund (2008) analyzed and judged the quite similar CFT 20 R (Weiß, 2008) to show

good psychometric properties and measurement invariance for highly gifted students

in comparison to a student population with normally distributed general intelligence.

This investigation also showed strong measurement equivalence with regard to the two

subgroups of highly skilled students and students with average skill levels. Kuhn et

al. (2008) had to fall back on introducing a second model parameter by applying the

2-PL model to fit their data. Although interesting from the perceptive of the mere data

analyst, who is mainly interested in a sophisticated and precise explanation of the data

generating process, such a procedure does not necessarily fulfill the needs of practical

applications, where (unweighted) sum scores are used for diagnostic purposes on an

individual level.

The core idea of any psychometric item response model is to make the nature of the em-

pirically discovered data matrix explainable via a formal, mathematical link of different

assumed model parameters. More precisely, the binary logistic test model, originally

introduced by Georg Rasch (1960), formalizes the response probabilities of a person for

each of two predetermined response categories (e.g., correct = 1 and false = 0) based on

two (model) parameters, σ for the item difficulty and θ for the person ability. The Rasch
model (RM) holds a special unique advantage over other IRT models, which, however,

share some general properties of the RM. By parsimoniously introducing only two types
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of model parameters, it gives the basic conditions for a fair and objective comparison of

both items and persons relating to the modeled latent variable. In short, the term ‘specific

objectivity’ of the estimation as introduced by Rasch (1964, p. 17) means that at any point

on the latent continuum – that is at any degree of trait level – all items share the same

kind of measurement quality as represented by their difficulty estimates on a common

scale. In other words, specific objectivity demands that the item difficulty hierarchy

is relative invariant across person abilities (Fisher, 2010). As discussed in Heine and

Tarnai (2015), specific objectivity can be seen as a prerequisite of scientific inferences in

general (see also Rasch, 1977). However, specific objectivity is especially given when

applying the RM, when scaling response data (e. g. G. H. Fischer, 1988; Scheiblechner,

2009). With regard to specific objectivity Irtel (1987) mentioned that next to the Rasch

model also the ordinal independence model allows for specifically objective comparisons

for psychodiagnostic measurement, but only on ordinal scale level. However, the ordinal

independence model plays an important role for the principle foundation of the Rasch

model (Irtel, 1987). If successfully applied to a dataset, the Rasch model implies an

equally unweighted consideration of every test item contributing to the scale. This in

turn might be seen as a prerequisite for the justification of the usage of item sum scores

as a measure of trait. In contrast to the theoretical assumptions of the 2-PL model that

implies a weighted summation of item scores, the manual of the CFT 1-R advises using

an unweighted summation of item scores – as most test manuals do. Thus, unweighted

unidimensionality of any psychometric scale should be a prerequisite for using the sum

score in individual diagnostics (Wright, 1977). This is especially true when raw values

are regarded as interval-scaled (or rather ratio scaled) and used in the evaluation with

the CFT 1-R for the purpose of diagnosis on an individual level. Additionally, with the

introduction of an item specific varying slope parameter such as in the 2-PL model, a

particularly unfavorable consequence is that the items are no longer uniformly related to

the ability parameter θ. In other words, the property of specific objectivity is abandoned
in favor of a more flexible model adjustment. As a result, persons may be differentially

rated on the latent trait continuum θ, depending on the parameters of the specific item,
i.e. the slope of the Item Characteristic Curve (ICC). In turn, when using the 2-PL model

for scaling, a certain weighted sum score of the individual responses to the items should

rather serve as an estimator for the person’s characteristic expression (Sijtsma & Hemker,

2000). The item slopes then represent not the difficulties, but the different weighting

coefficients of the items (Rost, 2004). In favor of models with more than only one item

parameter (e.g. 3- and 4-PL models), it must be noted that in general the more parameters

such models imply the better they fit the empirical data (e. g. Aitkin & Aitkin, 2011,

p. 42). While all scientific models in general imply some kind of pragmatic simplification

of empirical data (e. g, Stachowiak, 1973), the question of usefulness of a psychometric

model should be a more important criterion for the selection of a model of proficiency

scaling (see also Box, 1979, p. 202). Moreover regarding misfitting items due to hidden

multidimensionality, Crişan, Tendeiro, and Meijer (2017) recently showed that applying

a unidimensional scaling model nevertheless leads to unbiased θ parameter estimates.
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Because we are aiming to verify the approach of using sum scores in practical settings

for diagnostic purposes as in the CFT 1-R, the usefulness of a unidimensional specific

objective scaling model such as the RM is essential for the present study.

Method of parameter estimation

In the history of psychometric research, several parameter estimation techniques for

applying IRT-models have been proposed. In the context of student assessment and social

sciences overall, the three main, most prevalent types are Joint Maximum Likelihood

(JML), Conditional Maximum Likelihood (CML) and Marginal Maximum Likelihood

(MML) estimation (see Heine, Sälzer, Borchert, Siberns, & Mang, 2013). Linacre (1999)

classifies the parameter estimation methods within IRT more broadly into iterative and

non-iterative approaches. The pairwise approach used in the present paper falls into the

second (non-interative) class of techniques for parameter recovery see Heine and Tarnai

(2015), for a more detailed introduction and discussion of the principle of pairwise item

parameter recovery in the framework of IRT).

A common principle in all of the other ML-based methods is that they find the model

parameters as the margins of the empirical data by maximizing their Likelihood in an

iterative process – usually a Newton-Raphson type (Linacre, 2004). Another, perhaps

more practical, commonality of those three iterative estimation methods is that they all

require usually quite large sample sizes, or rather should only be seriously applied on

larger datasets. Such datasets with sufficient sample sizes are prevalent in international

educational surveys like PISA, TIMMS and others. With a sufficient sample size, such

ML-based methods usually result in consistent parameter estimates. With regard to

CML estimates, Linacre (2004) argued that consistency and unbiasedness holds only

when extreme person scores (zero and perfect response vectors) are excluded from data

contributing to the likelihood, which is to be maximized. Moreover, the consistency

of MML-estimates relies heavily on the distributional assumption of normality of the

trait to be estimated based on the underlying sample (e. g. Rost, 2004). In turn when

scaling marginal groups such as SEN student samples with ML-based methods, (1)

optimal sample size requirements, which may fulfill the assumption of normality, are

often not met and (2) extreme response vectors are more likely to occur. In line with this

argumentation, Andrich and Luo (2003) showed that because of low category frequencies

– likely due to small sample sizes – the estimates of the corresponding item parameters

turn out to be unstable.

A standard ML-based estimation method is full information maximum likelihood (FIML)

via the expectation-maximization (EM) algorithm (Bock & Aitkin, 1981; Bock, Gib-

bons, & Muraki, 1988). As stated by Forero, and Maydeu-Olivares (2009), the term

full information is derived from the principle of using the full response pattern based

information when estimating the model parameters. Specifically, the main problem with

the assumption of a full information approach, in connection with small sample sizes,

lies in the rather unrealistic assumption of a data driven model definition based on a
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full set of response pattern. For example, estimating the 1-PL model for a scale of 15

binary items (the number of items in only one of the CFT 1-R subscales) would imply

the theoretical assumption of c = mk = 215 = 32, 768 cells 1 , or different response

patterns, to fulfill the asymptotic requirements for sufficient estimation and statistical

inference on the model to be fitted. The asymptotic efficiency of estimates based on the

FIML approach is that in theoretical samples approaching infinite size, no other estimator

yields parameter estimates with smaller variances (Forero & Maydeu-Olivares, 2009).

Conversely as expressed by the relationship between sample size n and model size c
(i.e., the fraction of number of observations and number of cells n/c), the empirical
type I error rates of inferential model fit-statistics (e.g., Pearson’s χ2) tend to become

inaccurate with increasing sparseness of the data (Maydeu-Olivares & Joe, 2006). To

overcome such problems with inferential model testing against the backdrop of sparse

contingency tables, Maydeu-Olivares and Joe (2005) proposed the use of limited infor-

mation methods (LI) for estimation and model testing which use only univariate and

bivariate information (see also Maydeu-Olivares, 2001; Bolt, 2005; Maydeu-Olivares &

Joe, 2006; Maydeu-Olivares, 2006; Joe & Maydeu-Olivares, 2010). Maydeu-Olivares

and Joe (2005) have proved that Pearson’s full information χ2-based test statistics can

be seen as special cases of a family of LI test statistics. Furthermore, they investigated

the asymptotic distribution of full-information test statistics (as Pearson’s χ2) based on

parameter estimates preserved by LI procedures and showed that these methods result in

superior and stable estimates when sample sizes are limited (Maydeu-Olivares & Joe,

2005). These LI methods also parallel the least-square estimation methodology often

used in Structural Equation Modeling (Bollen, 1996).

The pairwise procedure and the resulting least-square (item) parameter estimates used

in this paper can be seen as LI- estimators because they use only bivariate information

of the pairwise item response frequencies (see e. g. Millsap & Maydeu-Olivares, 2009,

p. 194). For the purpose of model testing in the present paper the parameter estimates

based on the pairwise (limited information) principle were used to calculate different

(established) model fit-statistics – see method section below. This general principle

of the LI procedure is described in (e. g. Maydeu-Olivares, 2015, p. 113), including a

description of the derivation of full information χ2-test-statistic as a special case of a

limited information χ2-test-statistic. The pairwise limited information approach can be

seen as being part of a more general theory of composite (quasi or pseudo) likelihood

approaches (B. G. Lindsay, 1988; Varin, 2008; Varin, Reid, & Firth, 2011). One may

argue that the application of such approach should be restricted to situations when the

full likelihood is computationally unmanageable or very complicated, due to complex

models; which might not be an issue when applying a rather sparse model like the

Rasch model. However, there can be several other reasons for the use of such partial

likelihood approaches. As already pointed out by Cox (1975) such reasons include

aspects like the reduction of dimensionality in presence of nuisance factors – e.g. lack of

1with c being the number of cells in the multidimensional contingency table, with m equals the number of

response categories (equally for all items) and k equals the number of items.
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distributional assumptions with regard to normality due to censored data, as in marginal

selective samples – and the striving for robustness (e. g. Cox & Reid, 2004) in parameter

estimation.

Research question

The present research addresses two main research issues: substantive and methodolog-

ical issues. First, regarding substantive issues there is little research investigating the

psychometric properties of the CFT 1-R for students with LD in inclusive settings and

special schools. Yet, Heydrich, Weinert, Nusser, Artelt, and Carstensen (2013) argued

for the necessity of inclusion of students with SEN during largescale assessments.

Therefore, this article’s purpose is to examine whether the CFT 1-R has sufficient, and

furthermore, desirable psychometric properties within the framework of Item Response

Theory (IRT). Specifically, the usability of the test for students with LD in different edu-

cational settings was investigated (special schools vs. inclusive settings). These students

are on average older than the target population that was taken as a basis for the latest

norming revision of the test. When applying the CFT 1-R, sound psychometric properties

are a fundamental prerequisite for reliable measurement and fair comparisons between

any kinds of subgroups, especially so in heterogeneous surroundings that students with

LD find themselves in. Based on the theoretical considerations in the previous sections,

it is worth questioning whether the achieved test results of any groups of students with

LD are comparable from a psychometric IRT -based perspective. The one- dimensional

scalability of the CFT 1-R was tested by applying the 1-parameter logistic test model

(Rasch model). To do so we scaled the whole 45-item pool as well as the three subscales

separately, comprising 15 items each. Global model tests for each scaling approach

were performed in order to support the hypothesized good psychometric properties of

the CFT 1-R, which were based on earlier findings using methodology from classical

test theory. Alongside the testing of a one dimensional IRT model, the assumption of

measurement invariance across different subgroups was investigated. To do so, the

present sample was divided into subsamples of students with LD in different educational

settings (special setting vs. inclusive setting). Additionally, two other commonly applied

principles of subsample splitting were examined: median-split and split by gender. With

regard to these subgroups any local model violations were examined via tests for differ-

ential item functioning (DIF) to detect specific model violations (e. g. Glas & Verhelst,

1995).

Second, regarding research methodology, the question of applicability of the method used

for the estimation of the model parameters and the different global and local fit indices

for model fit is also important. The above-mentioned, non-iterative pairwise LI method

approach was used in the present study. In addition to being computational simple and

speedy (see e. g. G. H. Fischer, 1970), this principle handles sparse contingency tables in

a theoretically straightforward manner (Heine & Tarnai, 2015; Wright & Masters, 1982;
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G. H. Fischer, 1970; Choppin, 1968).

Because such sparse data often arises in research related to students with SEN, it is

important to investigate whether the proposed pairwisemethodology is a viable alternative

to ML-based IRT estimation techniques, which typically require larger sample sizes.

Instead of parameter estimation relying upon the full set of possible response patterns,

the pairwise approach uses only bivariate item association information. Therefore, in

the resulting model, additional test statistics therefore represent limited information fit-

statistics. In the present paper we examined how such indices contribute to inferences

with regard to model fit based on small sample sizes when applying a rather tight scaling

model (1-PL model) in comparison to more relaxed models (e.g. 2-PL model) estimated

via ML- based technique.

Method

Measure

The German version of the CFT-1-R (Weiß & Osterland, 2013) is a partial adaptation and

revision of the ’Culture Faire Intelligence Tests – Scale 1’ introduced by Cattell (1950).

It is based on Cattel’s (1941; 1963) theory of fluid and crystalized Intelligence. The full

test comprises 150 items according to six subscales that are named as substitution (UT1

– 75 Items), labyrinths (UT2 – 15 Items), similarities (UT3 – 15 Items), series (UT4 –

15 Items), classification (UT5 – 15 Items) and matrices (UT6 – 15 Items). Each of the

six subscales is related to a specific cognitive task, each of which contributes a varying

amount to fluid intelligence. In the present study, only three of the six subscales (45

items in total) were administered in order to keep cognitive load at a minimum level.

However, the three subscales give a sufficient coverage of the basic aspects of general

intelligence (Weiß & Osterland, 2013). They included series (UT4; completing a series

of numbers), classification (UT5; distinguishing one dissimilar figure among four other

similar ones) and matrices (UT6; choosing a figure to complete the pattern). A more

comprehensive, formal description and theoretical foundation of these three scales is

presented in Weiß and Osterland (2013).

Sample and data

Students with LD in the fifth grade were administered the short version of the CFT 1-R

(45 Items) comprising of three different cognitive tasks – series (UT4), classification

(UT5) and matrix (UT6) – as part of a more general research project related to students

in an inclusive educational setting (BilieF – Wild, Lütje-Klose, Schwinger, Gorges,

& Neumann, 2017). The initial sample in this project comprised n = 316 students.
However, for altogether 11 students no response data related to the three CFT 1-R

subscales were available. These respective cases had to be excluded from further analysis,

either due to (CFT 1-R) unit none-response (5 students) or data entry errors (6 students).

Thus the remaining total sample for this study comprised n = 304 students. Out of
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these 138 students attended special schools while 166 students attended inclusive school

settings with non- SEN classmates. The total sample included 58.8 % male students,

which is in line with the gender ratio of SEN students in Germany (Hasselhorn &

Autorengruppe Bildungsberichterstattung, 2014).

Approximately half (51.0 %) of students from the total sample were aged 12 years,

followed by 32.9 % aged 11, 14.8 % at age of 13 years and only 1.3 % were at age of 14

years at the point of testing. As the CFT 1-R offers only norm tables up to age of 11 years

and 11 months (11;00 - 11;11), those were taken to compute T-values for the whole sample

to give some first descriptive impressions of the distribution of general intelligence within

the sample. The total sample reached an average T-value ofM = 53.07; (SD = 9.08)
with a range ofM = 31.00 for the lower bound andM = 72.00 for the upper bound
(see figure 1).

Distribution of CFT 1−R T−Values
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Figure 1:
Distribution of T-values from the CFT 1-R for n = 304 students with LD using Norms for students aged from

11;00 up to 11;11 years attending special schools (see Weiß & Osterland 2013, p. 92, table D1).

Even though the older students should theoretically achieve higher scores when applying

norms related to students with age 11 years, they did not show better results than the

younger part of the sample. The Spearman’s correlation between the T-value and student’s

age revealed at ρ = −0.04. Students with SEN in inclusive educational settings showed

significantly better T-values (M = 55.49;SD = 8.66) than students attending special
schools (M = 50.16;SD = 8.72); (t = −5.31, df = 302, p = .000). The proportion
of missing responses over all items for the present sample ranged from 0 %, items 4

(UT4) and 5 (UT5) to 11.8 %, item 15 (UT4). During parameter estimation, any missing

values were treated as missing data points and thus not recoded as wrong answers.

IRTAnalyses

IRT analyses were conducted within the R statistical environment (R Core Team, 2017),

using the package pairwise (Heine, 2017). We choose this package because it imple-

ments a stable, non-iterative method for item parameter recovery, even under sparse

data conditions, like in our study. In a first run, we applied a one-dimensional scaling
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approach to the total set of 45 items (from the three subscales). This aligns with the

implicit assumption from the principle given in the CFT 1-R manual, which requires an

invariant, one-dimensional proficiency continuum to additively combine the single items

of the three subscales. To check for any sub dimensionality, possibly resulting from the

theoretic foundations with regard to the three subscales, a Rasch residual factor analysis

(RFA – Wright, 1996; Linacre, 1998) was performed, as well as three separate one-

dimensional scaling procedures for each dimension to accomplish more differentiated

analyses for each sub scale of the CFT 1-R. For these scaling approaches, both global

and local model fit measures were calculated. For global model checks, the likelihood

ratio based model-test (Andersen, 1973) was conducted using the three splitting criteria

of gender, educational setting of schooling and median-split. Using the identified model

parameters, weighted mean square item fit-statistics – INFIT and OUTFIT – (Wright &

Masters, 1982) were evaluated to detect any local model violations. We again conducted

those checks for the overall scaling approach and for scaling each of the three subscales

separately.

In order to further test the respective model-fit on item level, analyses of differential item

functioning (DIF) were carried out using test statistics based on the pairwise estimates,

which can be also used based on CML or MML estimates (e. g. Glas & Verhelst, 1995).

For the analysis of DIF effects across LD, gender and median-split subgroups, the item

parameters were calculated based on the sub samples respectively and then compared to

each other. Specifically, the test statistic Si, as implemented in the R-package pairwise
was evaluated on item level. This item fit statistic is also (perhaps misleadingly) named

as ’Wald test’ in other R-packages. According to (G. H. Fischer & Scheiblechner, 1970),

the Si statistic is defined in the following equation (1) given below (see also equation

(3) in van den Wollenberg, 1982, p. 124).

Si =
σ̂i

(1) − σ̂i
(2)√(

SE(1)
σi

)2

+
(
SE(2)

σi

)2
(1)

Where σ̂i
(1) is the estimate of the item parameter of subsample one, σ̂i

(2) the estimate

of the item parameter of subsample two and (SE(1)
σi

) and (SE(2)
σi

) are the respective
standard errors. In (G. H. Fischer, 1974, p. 297) the resulting test statistic (as defined

above) is labeled with Zi as it is asymptotically normally distributed. Contrary to the

’Wald-type’ test statisticWi which was derived by Glas and Verhelst (1995) from the

(general) χ2 distributed test of statistical hypotheses concerning several parameters, as

introduced by Wald (1943).

To further evaluate the relative model fit for the rather restrictive scaling model (Rasch

1- PL model) in comparison to the more relaxed 2-PL model, an alternative scaling

approach using the R-package TAM (Robitzsch, Kiefer, & Wu, 2017) was performed.

Contrary to the pairwise approach, the package TAM implements an ML-based approach
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for parameter estimation relying on Marginal Maximum Likelihood. We evaluated the

relative global model fit, by inspecting the respective information theoretic indices’

AIC (Akaike, 1974) and BIC (Schwarz, 1978). We calculated the person estimates for

the CFT 1-R outcomes for both – based on the 1-PL modeling approach and based on

the more differentiated 2-PL model. Lastly, we examined the practical consequences

on individual person estimates when choosing between the tight scaling model (1-PL

model) and the more differentiated model (2-PL model). Correlations were calculated

for the CFT 1-R sum scores, pairwise (1-PL) WLE estimates and the TAM (2-PL) WLE

estimates.

Results

Overall scaling

The results from applying the one-dimensional 1-PL model (Rasch model) to the total 45

item set for all 304 students revealed a far good scalability. WLE reliability reached an

acceptable value of rWLE = .89. Looking at the wright map, the test showed a quite good
targeting for the sample of students with LD - apart from three items – 1 (UT6), 4 (UT5)

and 2 (UT6) – which were too easy for the present sample (see figure 2). The global model

test (Andersen, 1973), confirmed the model assumption of a one-dimensional scaling

model. When testing our central hypothesis, no significant deviation from the model

assumption was found for dividing by school setting (χ2 = 31.42; df = 89; p = 0.99).
This was also true with a median-split (χ2 = 108.58; df = 89; p = 0.08) and when
splitting by gender (χ2 = 72.02; df = 89; p = 0.91).
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Figure 2:
Wright-Map for 45 Items (plus signs on the right panel) from the CFT 1-R and n = 304 students with LD

(histogram of trait distribution on the left panel).

The three badly targeted items (see figure 2) were inspected with regard to their category

frequencies. Based on the total sample (n = 304), item 4 (UT5) had a 98 % correct

rate, item 1 (UT6) had 99 % correct, and item 2 (UT6) had 96 % correct. Similarly high

percentage correct rates were found when comparing school settings, with even higher

rates for students in inclusive settings. Moreover, for item 1 (UT6), a constant column
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vector of correct answers from all of the n = 166 students in inclusive school settings was

found. Based on these practical grounds those three items were excluded from further

analysis, but the WLE reliability remained at an acceptable value of rWLE = .89 for the
test with the reduced item set.

With regard to a graphical over all global model fit test using the split criteria school

setting, which is related to our main research question, the data including both subgroups,

can be adapted to the model assumptions sufficiently when eliminating the three items

mentioned above (see figure 3).
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Figure 3:
Graphical model test with split criteria “school setting” for 42 remaining items from the CFT 1-R and

n = 304 students with LD; ellipses represent confidence intervals for item parameter point estimates.

To confirm the results of the global model tests and better understand any possible causes

of local model deviations, further analyses on item level were conducted. Also for the one-

dimensional scaling approach, the results from the analysis on item level with the reduced

item set are quite in line with the above findings from the global model tests. In summary

only four items (Item 10 from UT 4 and Items 9, 11 and 14 from UT 5) show somewhat

unambiguous deviations from the model assumption when simultaneously taking into

account the results from the rout-mean-square statistics (INFIT and OUTFIT ) and the

results from the Fischer-Scheiblechner test in any of the three splitting conditions (see

table 1).
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Table 1:

Over all one dimensional scaling according to the Rasch model - Tests for local model deviations.

school setting gender median

Item χ2 df pχ2 OUTMSQ OUTzSTD INMSQ INzSTD Si p Si p Si p

1 (UT4) 242.43 302 1.00 0.85 −0.65 1.03 0.32 0.95 0.34 1.54 0.12 −0.23 0.82
2 (UT4) 301.99 302 0.49 1.04 0.26 1.01 0.18 1.37 0.17 −1.00 0.32 −0.12 0.91
3 (UT4) 298.86 302 0.54 1.03 0.38 1.04 0.82 0.38 0.71 −0.72 0.47 0.65 0.52
4 (UT4) 218.71 303 1.00 0.76 −0.82 0.97 −0.24 0.46 0.64 −0.17 0.86 −0.18 0.86
5 (UT4) 304.48 301 0.43 1.05 0.59 0.96 −0.68 −0.05 0.96 0.85 0.40 −0.24 0.81
6 (UT4) 257.26 300 0.97 0.90 −0.77 0.98 −0.36 0.74 0.46 0.37 0.71 −0.42 0.68
7 (UT4) 254.13 300 0.97 0.89 −1.37 0.93 −1.29 1.44 0.15 −0.06 0.96 −1.25 0.21
8 (UT4) 286.68 291 0.56 1.03 0.34 1.02 0.38 1.03 0.30 0.10 0.92 0.56 0.57
9 (UT4) 263.86 290 0.86 0.95 −0.25 1.01 0.17 0.25 0.81 1.10 0.27 −0.23 0.82
10 (UT4) 203.85 285 1.00 0.76 −2.39 0.85 −2.84 −0.53 0.60 1.81 0.07 −2.72 0.01
11 (UT4) 291.21 286 0.40 1.06 0.67 1.03 0.60 0.38 0.71 −0.20 0.84 0.04 0.97
12 (UT4) 256.91 282 0.86 0.95 −0.53 0.95 −0.84 1.41 0.16 1.36 0.17 −0.42 0.67
13 (UT4) 310.45 278 0.09 1.16 1.64 1.05 0.84 −2.50 0.01 −0.72 0.47 0.24 0.81
14 (UT4) 268.94 271 0.52 1.03 0.31 0.99 −0.11 0.41 0.69 −1.19 0.24 0.60 0.55
15 (UT4) 327.10 267 0.01 1.27 1.62 0.97 −0.35 −0.54 0.59 2.06 0.04 0.29 0.77
1 (UT5) 298.56 300 0.51 1.04 0.22 1.00 0.08 −1.37 0.17 1.54 0.12 0.98 0.33
2 (UT5) 275.17 300 0.85 0.96 −0.03 0.96 −0.27 −1.57 0.12 −0.82 0.41 0.49 0.62
3 (UT5) 243.15 296 0.99 0.86 −0.32 0.99 −0.03 −0.14 0.89 −1.26 0.21 −0.10 0.92
5 (UT5) 382.61 303 0.00 1.30 1.20 0.98 −0.12 −1.29 0.20 −1.06 0.29 1.24 0.22
6 (UT5) 321.00 297 0.16 1.12 0.49 0.95 −0.37 −0.25 0.80 −0.86 0.39 1.76 0.08
7 (UT5) 295.76 299 0.54 1.03 0.21 1.01 0.10 −1.15 0.25 −1.86 0.06 0.88 0.38
8 (UT5) 359.11 294 0.01 1.26 1.43 1.05 0.68 −0.11 0.91 −0.14 0.89 2.23 0.03
9 (UT5) 369.20 294 0.00 1.30 2.91 1.25 4.45 −0.89 0.37 0.41 0.68 3.12 0.00
10 (UT5) 308.45 294 0.27 1.09 0.63 1.05 0.68 0.36 0.72 −2.05 0.04 0.84 0.40
11 (UT5) 391.93 293 0.00 1.38 4.06 1.29 5.01 −0.88 0.38 −0.43 0.67 3.34 0.00
12 (UT5) 297.39 293 0.42 1.06 0.60 1.07 1.32 1.31 0.19 −0.35 0.73 0.34 0.73
13 (UT5) 270.18 282 0.68 1.00 0.03 1.02 0.35 0.39 0.70 −1.52 0.13 0.05 0.96
14 (UT5) 351.22 284 0.00 1.28 1.98 1.10 1.28 −1.17 0.24 2.40 0.02 2.22 0.03
15 (UT5) 271.10 284 0.70 1.00 −0.01 1.01 0.20 −0.75 0.45 1.48 0.14 0.04 0.97
3 (UT6) 184.74 301 1.00 0.66 −1.01 0.99 −0.04 −0.03 0.98 −0.34 0.73 −0.23 0.82
4 (UT6) 192.54 302 1.00 0.68 −1.07 0.95 −0.34 0.36 0.72 −0.58 0.56 −0.28 0.78
5 (UT6) 282.71 302 0.78 0.98 −0.09 0.96 −0.61 1.73 0.08 −0.64 0.52 −0.55 0.59
6 (UT6) 253.28 302 0.98 0.88 −0.93 0.96 −0.71 0.11 0.92 −0.58 0.56 −0.50 0.62
7 (UT6) 246.43 302 0.99 0.86 −1.19 0.94 −1.11 0.63 0.53 0.20 0.84 −0.62 0.54
8 (UT6) 230.74 302 1.00 0.81 −1.71 0.90 −1.85 0.44 0.66 2.61 0.01 −1.39 0.17
9 (UT6) 257.74 302 0.97 0.90 −0.84 0.98 −0.37 1.39 0.17 2.35 0.02 −0.63 0.53
10 (UT6) 267.35 302 0.93 0.93 −0.85 0.94 −1.24 0.18 0.86 0.79 0.43 −0.63 0.53
11 (UT6) 262.19 302 0.95 0.91 −1.10 0.94 −1.21 0.43 0.67 1.19 0.24 −0.45 0.65
12 (UT6) 225.94 301 1.00 0.79 −2.69 0.84 −3.25 0.59 0.56 −0.97 0.33 −2.01 0.04
13 (UT6) 288.34 300 0.68 1.00 0.06 0.98 −0.43 −0.07 0.95 0.37 0.71 0.22 0.82
14 (UT6) 318.83 301 0.23 1.10 0.66 1.02 0.26 −0.21 0.83 −1.93 0.05 −0.10 0.92
15 (UT6) 320.05 301 0.22 1.11 1.01 1.12 1.86 −0.95 0.34 −0.44 0.66 0.77 0.44

Notes. Items UT6_1, UT5_4 and UT6_2 were omited from scaling; pχ2 = p-value for pearson χ2-square test; Si = test

statistic for Fischer-Scheiblechner test, p = p-value for Fischer-Scheiblechner test, all p < .05 in bold face; OUTMSQ =

outfit-mean-square statistic (OUTFIT ); INMSQ = infit-mean-square statistic (INFIT ); OUTzSTD = z-standardized outfit
statistic (OUTFIT ); INzSTD = z-standardized infit statistic (INFIT ), values above 1.964 or below -1.964 in bold face.

In order to evaluate the relative model-fit of the 1-PL model compared to a more complex

model, an alternative scaling approach applying the 2-PL model by using the R-software

TAM (Robitzsch et al., 2017) was performed. Overall, the results of such comparison

indicate no severe deviations of model fit between the two respective scaling models.

On person level the WLE reliability for the 2-PL model reached a similarly good value

of rWLE = .87 (rWLE = .89, for the pairwise approach). The inter correlations

between the respective person estimates and the simple sum score (percent correct), as

recommended in the CFT 1-R test manual to be used for individual diagnosis, reached

both an almost perfect value of r = .98. Relative global model fit, as indicated by
the information theoretic indices’ AIC (Akaike, 1974) and BIC (Schwarz, 1978), both

suggest a slightly better fit of the sparser Rasch 1-PL model (1-PL model: AIC =
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11782.71, BIC = 12091.23; 2-PL model: AIC = 12657.41, BIC = 12813.53).

In the Rasch residual factor analysis (Linacre, 1998) to examine sub dimensionality, the

theoretical assumptions of the three CFT 1-R subscales were upheld for the reduced

overall 42 - item set – omitting items 1 (UT6), 4 (UT5) and 2 (UT6). The pattern of the

item loadings upon the first main component roughly reflects the theoretically derived sub

dimensionality of the CFT 1-R based on the sample of students with LD (see figure 4).
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Figure 4:
First component from a Rasch residual factor analysis (Linacre, 1998), for 42 remaining items from the

CFT 1-R and n = 304 students with LD; y-Axis: Loadings on the first main component; x-Axis: Item
difficulty based on one dimensional Rasch scaling including 42 items; + = UT6 - matrices, o = UT5 -

classification, − = UT4 - series.

The loadings of the residuals on the first main component of the Rasch residual factor

analysis show a quite narrow range, λmax = .42 to λmin = −.24. Overall, the Rasch
residuals from the items of sub scale UT6 (matrices) tend to show positive loadings

on the first main component (except item 5 and 7), while those from the items of the

sub-scale UT4 (series) show rather negative loadings (except item 14 and 15). The

loadings of the Rasch residuals from the items of subscale UT5 (classification) cluster

around zero (see figure 4). Based on the findings from the Rasch residual factor analysis,

separate one-dimensional scaling approaches for each sub scale were performed – again

omitting the three items mentioned above due to their insufficient distribution of category

frequencies.

Analysis of subscales

In summary, the results for the more differentiated analyses for each of the three sub

dimensions show that the model assumption holds for all three scales, based on the

Andersen likelihood-ratio global model test. For the dimension series (UT4) including
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all items and for the dimension classification (UT5; excluding item 4) and the dimension

matrices (UT6; excluding items 1 and 2), no significant model deviation was found

when using the split criteria school setting, gender and median-split. However, for

scale classification (UT5) the p-value for the likelihood ratio test is close to the level of
significance (but still above α = .05) when splitting the sample based on median. Table
2 gives an overview of the global model tests for each scale using the three different

splitting criteria.

Table 2:

Andersen Likelihood Ratio tests for three CFT 1-R subscales.

CFT 1-R Subscale Split criterion χ2 df p

Series (UT4)

school setting 8.905 29 0.99
median 35.505 29 0.19
gender 18.581 29 0.93

Classification (UT5)

school setting 11.723 27 0.99
median 37.987 27 0.08
gender 30.879 27 0.28

Matrices (UT6)

school setting 7.453 25 0.99
median 6.819 25 0.99
gender 21.413 25 0.67

Notes: One dimensional Scaling according to the Rasch model for three sub-

scales of the CFT 1 R respectively; Items 1 (UT6), 4 (UT5) and 2 (UT6) were

omitted from scaling in the respective scale.

In line with the findings related to the global model tests, the majority of the items show

no severe deviation from ideal model fit based on the respective graphical model test

when splitting based on educational setting (see figure 5).
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Figure 5:
Graphical Model-Test with split criterion educational setting for three subscales of the CFT 1-R based on one

dimensional Rasch scaling; 15 Items for series (UT4 – left panel); 14 Items for classification (UT5 – middle

panel); 13 Items for matrices (UT6 – right panel).
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Considering all item fit-statistics (INFIT, OUTFIT and Fischer-Scheiblechner test) si-

multaneously, no consistent, distinct item misfit based on all fit-statistic was observed,

but with regard to the scale UT6 (matrices), some items show a somewhat larger DIF

based on the Fischer-Scheiblechner test under a median-split (see table 3).

Table 3:

Model fit on item level based on one dimensional scaling for three scales of the CFT 1-R

respectively.

school setting gender median

Scale Item χ2 df pχ2 OUTMSQ OUTzSTD INMSQ INzSTD Si p Si p Si p

S
er
ie
s
(U
T
4
)

1 219.56 302.00 1.00 0.81 −0.57 0.97 −0.30 1.09 0.27 1.09 0.27 −0.01 0.99
2 287.83 302.00 0.71 1.03 0.21 0.98 −0.14 1.22 0.22 1.22 0.22 0.40 0.69
3 297.19 302.00 0.57 1.06 0.55 1.10 1.55 −0.25 0.80 −0.25 0.80 0.89 0.37
4 178.05 303.00 1.00 0.67 −0.85 0.93 −0.53 0.65 0.51 0.65 0.51 −0.12 0.91
5 296.14 301.00 0.57 1.06 0.49 1.00 0.01 −0.81 0.42 −0.81 0.42 0.17 0.86
6 246.58 300.00 0.99 0.90 −0.54 0.99 −0.11 0.23 0.82 0.23 0.82 −0.46 0.64
7 233.37 300.00 1.00 0.86 −1.21 0.96 −0.63 1.17 0.24 1.17 0.24 −0.65 0.52
8 262.16 291.00 0.89 0.98 −0.13 1.06 1.03 0.42 0.68 0.42 0.68 1.35 0.18
9 246.97 290.00 0.97 0.93 −0.28 1.03 0.44 −0.28 0.78 −0.28 0.78 −0.38 0.71
10 181.45 285.00 1.00 0.72 −2.12 0.85 −2.35 −1.60 0.11 −1.60 0.11 −2.53 0.01
11 269.19 286.00 0.76 1.02 0.21 1.08 1.28 0.10 0.92 0.10 0.92 0.70 0.49
12 214.56 282.00 1.00 0.84 −1.33 0.91 −1.57 0.87 0.39 0.87 0.39 −1.19 0.23
13 299.41 278.00 0.18 1.16 1.26 1.11 1.69 −2.82 0.01 −2.82 0.01 0.33 0.74
14 372.30 271.00 0.00 1.45 2.61 1.04 0.58 −0.24 0.81 −0.24 0.81 1.48 0.14
15 381.35 267.00 0.00 1.51 2.35 0.99 −0.10 −0.75 0.45 −0.75 0.45 1.36 0.17

S
er
ie
s
(U
T
5
)

1 238.28 300.00 1.00 0.92 −0.21 1.00 0.04 −0.81 0.42 −0.81 0.42 0.02 0.98
2 220.70 300.00 1.00 0.87 −0.42 0.98 −0.15 −1.15 0.25 −1.15 0.25 −0.17 0.87
3 263.48 296.00 0.91 1.02 0.17 0.97 −0.19 0.51 0.61 0.51 0.61 −0.07 0.95
5 268.70 303.00 0.92 1.02 0.15 0.94 −0.56 −0.66 0.51 −0.66 0.51 1.28 0.20
6 214.04 297.00 1.00 0.85 −0.45 0.91 −0.65 −0.16 0.87 −0.16 0.87 −0.01 1.00
7 238.06 299.00 1.00 0.93 −0.30 0.96 −0.44 −0.47 0.64 −0.47 0.64 0.08 0.94
8 257.36 294.00 0.94 1.01 0.08 0.99 −0.06 0.26 0.79 0.26 0.79 0.15 0.88
9 309.20 294.00 0.26 1.18 1.93 1.17 3.20 −0.11 0.92 −0.11 0.92 0.80 0.42
10 264.66 294.00 0.89 1.03 0.26 1.02 0.35 0.86 0.39 0.86 0.39 0.05 0.96
11 328.47 293.00 0.08 1.25 2.79 1.16 2.99 0.08 0.94 0.08 0.94 0.65 0.52
12 251.72 293.00 0.96 0.99 −0.10 1.02 0.42 1.65 0.10 1.65 0.10 −0.23 0.82
13 220.23 282.00 1.00 0.91 −0.98 0.95 −0.85 1.60 0.11 1.60 0.11 −1.15 0.25
14 291.88 284.00 0.36 1.16 1.15 1.03 0.36 −0.56 0.57 −0.56 0.57 0.41 0.68
15 213.23 284.00 1.00 0.88 −1.29 0.92 −1.52 0.30 0.76 0.30 0.76 −1.34 0.18

S
er
ie
s
(U
T
6
)

3 122.26 301.00 1.00 0.59 −0.96 0.82 −1.26 −0.08 0.94 −0.08 0.94 −22.14 0.00
4 133.85 302.00 1.00 0.63 −0.94 0.85 −1.09 0.22 0.83 0.22 0.83 −0.04 0.97
5 308.62 302.00 0.38 1.20 1.08 1.12 1.61 1.50 0.13 1.50 0.13 2.98 0.00
6 260.02 302.00 0.96 1.04 0.31 1.11 1.52 −0.26 0.79 −0.26 0.79 2.03 0.04
7 285.51 302.00 0.74 1.13 0.84 1.15 2.15 −0.05 0.96 −0.05 0.96 2.56 0.01
8 242.13 302.00 1.00 0.98 −0.06 1.01 0.13 0.30 0.77 0.30 0.77 1.94 0.05
9 245.47 302.00 0.99 0.99 0.02 1.00 −0.04 1.58 0.11 1.58 0.11 2.38 0.02
10 210.58 302.00 1.00 0.88 −0.92 0.94 −0.97 −0.43 0.67 −0.43 0.67 1.13 0.26
11 200.54 302.00 1.00 0.85 −1.16 0.89 −1.75 −0.06 0.95 −0.06 0.95 0.64 0.52
12 177.64 301.00 1.00 0.77 −1.71 0.84 −2.56 −0.06 0.95 −0.06 0.95 −0.26 0.79
13 226.89 300.00 1.00 0.94 −0.38 0.97 −0.48 −0.75 0.46 −0.75 0.46 1.11 0.27
14 343.20 301.00 0.05 1.32 1.16 1.06 0.73 −0.59 0.55 −0.59 0.55 2.42 0.02
15 453.21 301.00 0.00 1.69 3.20 1.24 3.36 −0.81 0.42 −0.81 0.42 5.55 0.00

Notes. Items UT6_1, UT5_4 and UT6_2 were omitted from scaling; pχ2 = p-value for pearson χ2-square test; Si = test statistic

for Fischer-Scheiblechner test, p = p-value for Fischer-Scheiblechner test, all p < .05 in bold face; OUTMSQ = outfit-mean-

square statistic (OUTFIT ); INMSQ = infit-mean-square statistic (INFIT ); OUTzSTD = z-standardized outfit statistic (OUTFIT );
INzSTD = z-standardized infit statistic (INFIT ), values above 1.964 or below -1.964 in bold face.

However, item 3 of scale UT6 showed the biggest deviation in the median-split Fischer-

Scheiblechner test (Si = −22.14, p = 0.00). This finding can be traced back to a
boundary problem in estimation. Because there was a 100 % correct rate for scores above

the median (for UT6md = 8), the result for the Fischer-Scheiblechner test for this item
in the median-split cannot be interpreted in a sensible way.
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In line with the above findings of the overall unidimensional scaling, theWLE reliabilities

for the subscales reached acceptable values of rWLE = .80 for UT4, rWLE = .69 for
UT5, and rWLE = .80 (UT6), taking into account the shortened scales compared to the
overall scaling approach.

Discussion

This study examined the psychometric properties of the CFT 1-R with a specific focus

on measurement invariance between students with LD in inclusive settings and special

schools. Since inclusive education is increasingly implemented across the globe, it is

important to have valid measures of key variables like intelligence to analyze the initial

conditions for different school settings as a control variable. The relevance of mea-

surement invariance for group comparisons of latent variables was ignored in most test

construction and research studies in recent decades. However, measurement equivalence

is a requirement of group comparisons. Especially for a widely used instrument like the

CFT 1-R, it is of vital interest and necessary to demonstrate that there is no severe bias

when comparing different groups with this instrument.

Our first result indicated that in general the CFT 1-R is a fair test to students with LD.

The reliability for the WLE estimates turned out to be relatively high. In comparison to

Kuhn et al. (2008), we showed that the use of a 1-PL model is possible. Furthermore,

the AIC and BIC information criteria for the comparison of the two scaling approaches

(i.e., the 1-PL model and the 2-PL model) support the sparser 1-PL model. Moreover,

because the practitioner using the test calculates and interprets unweighted individual

sum scores in the field, the application of the 1-PL model is more valid with regard

to applied settings. In general, the analyses reported above conform to the summative

allocation rule of the individual item scores as a measure of intelligence for individual

diagnosis.

Additional Rasch residual factor analyses were able to uncover some slight sub di-

mensionality of the total item set, which might be traced back both to the theory of

constructing the CFT 1-R and the different instructions (i.e., cognitive tasks) necessary to

solve the items of the respective subscale. The three item sets, series (UT4), classification

(UT5) and matrices (UT6), could be clearly distinguished by their loading pattern on the

first main component of the Rasch residual factor analysis. For subscale series (UT4),

the items 14 and 15 turned out to be rather hard to solve and so might stand out from

the typical loading pattern of sub dimensionality in the series (UT4) subscale. Both

subscales matrices (UT6) and classification (UT5) tend to stick together with regard to

their loading pattern as both might require similar cognitive processes for solving the

items. In classification (UT5), students have to discover one dissimilar figure among four

other similar ones, and in matrices (UT6), students had to find one figure to complete a

homogeneous matrix pattern. Thus, both tasks essentially are similarity (or rather dissim-

ilarity) judgments. In principle, such similarity judgments can be performed in a simple
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sequential manner – even for complex stimuli. Therefore, the difficulty-generating rules

for individual items in both subscales may be similar, but nevertheless more complicated

for matrices (UT6) than for classification (UT5). In contrast, when solving the items

in series (UT4), one must take into account the whole series given in the stimulus in a

holistic way in order to properly select the next object that completes the series. Thus,

series (UT4) might differ from matrices (UT6) and classification (UT5) in the fundamen-

tal principle of two different solution strategies – i.e., a holistic approach vs. a simpler

and more focused sequential approach. However, all differences in the loadings of the

residuals on the first main component of the Rasch residual factor analysis turned out to

be quite small (λmax = .42 to λmin = −.24) when compared to the findings regarding
multidimensionality by Linacre (1998). Thus our findings from the Rasch residual factor

analysis on one hand could simply reflect the slightly different instructions for students

and on the other hand, could justify the theoretical underpinnings of the construction of

the CFT 1-R. Nevertheless, for practical applications, the one-dimensional principle of

summation of all item scores as a measure for intelligence is not negatively affected by

these findings.

According to our research goals, we measured students with SEN in the fifth grade. In

the present study, the CFT 1-R was subject of psychometric review in the framework of

IRT with regard to the target population of students with LD. Thus, even older students

who were potentially not properly covered by the respective norms in the test manual

were included in the sample. As a result, the adequacy of the outcome T-values with

regard to a meaningful comparability to normal classes, might be questioned. However,

this limitation of the present research seems to be a minor point, as it was not the aim to

achieve correct T-values in the sense of a norming study. With regard to its psychometric

properties in the framework of Item Response Theory, the test comprising all items

showed good targeting for the sample of students with LD – except for three items that

turned out to be too easy (e.g. see figure 2).

By using the package pairwise, all statistical analyses were based on parameter es-
timates which parallel the principle of limited information estimation (e. g. Maydeu-

Olivares, 2001; Bolt, 2005; Maydeu-Olivares & Joe, 2006; Maydeu-Olivares, 2006;

Joe & Maydeu-Olivares, 2010). By doing so, it is possible to apply wide spread model

fit-statistics with small datasets at the level of global model testing (i.e., Andersen

likelihood tests and graphical model tests) as well as tests at the item level (i.e., Fischer-

Scheiblechner tests and root-mean-square statistics). In this way, the fit-statistics could

be used as evidence of the psychometric properties of the CFT 1-R in this study. Mea-

surement invariance across students from inclusive settings and from special schools was

fulfilled for our sample in this study. Such measurement equivalence is a requirement for

the interpretation of latent group differences. Thus, the findings of the present research

justify the use of the CFT 1-R to compare special student samples as was done in previous

research (e. g. Hövel et al., 2015; Gebhardt et al., 2012; Sonntag, 2010; Voß et al., 2014)

Certainly, we did not directly test the measurement invariance for students with and

without LD in this research, but it can be assumed that such invariance is highly likely
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because the test was originally constructed to measure students without LD. However,

the question of whether the measurement concept is valid for students with LD was

tested in this study. As recommended by (Heydrich et al., 2013), some further analysis

for students with SEN / LD in the regular age range and in comparison to regular classes

might be necessary and thus should be subject of further research.
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