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Measuring change in training programs: An empirical illustration 

RENATO MICELI1, MICHELE SETTANNI1 & GIULIO VIDOTTO2 

Abstract 
The implementation of training programs often requires a complex design if effectiveness is to be 

accurately evaluated. Part of the difficulty lies in the fact that trainees must be presented with a series of 
ever-changing tasks in order to avoid biases due to learning or carryover effects.  

The aim of the present study is to experiment and illustrate a simple procedure, based on a special 
case of the linear logistic test model (LLTM), used to evaluate the effectiveness of a training program. 
The procedure is empirically applied to a dataset derived from a moped riding skills training program. 
The sample is composed of 207 high school students who took part in three training sessions using a 
riding simulator. A different task presentation order was assigned to each subject and the whole design 
was completely balanced. The procedure applied allowed us to obtain estimates of the overall change in 
ability that occurred over the course of the training process. Furthermore, we were able to obtain esti-
mates of item and subject parameters unbiased by the influence of change in ability due to training. 
Implications of the results are discussed and suggestions for future research are presented. 
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Introduction 
 
Measurement of change and Item Response Theory 

 
The measurement of change is an important issue in many social science contexts. Over 

the past several decades psychometricians and statisticians have attempted a number of dif-
ferent approaches to quantifying change due to development, learning, or other events. Bere-
iter (1963) highlighted some fundamental problems derived from a naïve approach to the 
issue.  

One of the main problems in the study of change using test scores is the lack of an inter-
val level of measurement, as equal numerical changes in test scores do not represent equal 
affective or cognitive changes in latent ability at different levels of the continuum. The ine-
quality of such changes is particularly evident when floor and ceiling effects manifest them-
selves in pre- and post-testing. The disadvantages of these effects are described by Fischer 
(1976).  

One possible method for overcoming problems tied to unequal measurement intervals is 
to use those models of latent trait theory which characterise the qualitative responses of 
persons to test items in terms of person and item parameters (Kissane, 1982). A simple and 
convincing model for these purposes is the Rasch model, which considers a single ability 
parameter for each person, and a single difficulty parameter for each item. The advantage of 
the Rasch model over other measurement models is that no distributional assumptions about 
either person or item parameters need to be made (Rasch, 1960). In addition, by being able to 
choose different subsets of items which conform to the model, different tests of varying 
difficulties can be linked in order to provide much broader tests, thus overcoming floor and 
ceiling effects (Wright, 1977). 

One area in which measurement of change is essential is the evaluation of training effec-
tiveness. Training contexts are excellent examples of situations in which the measurement of 
change is required, in particular to evaluate the effectiveness of the training procedure. Some 
training procedures may actually result in no improvement in the ability for which the train-
ing was implemented, or worse yet, may even cause a significant decrease in the ability level 
it was intended to improve.  

One of the most promising approaches to the issue of change measurement is Item Re-
sponse Theory and, more specifically, models derived directly from the original Rasch 
model (Rasch, 1960). One of the first authors to address this issue was Fischer (1973), who 
developed the linear logistic test model (LLTM), an extension of the original Rasch model 
applicable in measurement contexts in which dichotomous items are administered more than 
once to the same individuals. In order to measure change, LLTM requires that two condi-
tions are met: 1. the test employed must be composed of a set of k unidimensional items 
(displaceable on the same latent continuum); and 2. all items must be presented at all time 
points (Glück & Spiel, 1997). It tests the significance of effects and of differences between 
effects in experimental or quasi-experimental designs and explains differences in difficulty 
between items by modelling the difficulty parameters as linear combinations of some basic 
parameters. With regard to the measurement of change, the difficulty parameter of a test item 
at t2 is assumed to be the result of the sum of the item difficulty at t1 plus one or more pa-
rameters accounting for the change (Glück & Spiel, 1997). In this model, it is assumed that 
the item difficulty parameter of the Rasch model, iσ , can be decomposed into the difficul-
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ties of a set of basic parameters smaller than the number of items, e.g. it allows a set of struc-
tural parameters to be broken down into a weighted sum of component parameters: 
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where X indicates the response of person v on item i, vθ  is the ability parameter of person v, 

jη is the difficulty parameter of component j, the qij denote the a priori fixed constants that 
define the weight of component j for item I, and c is a normalisation constant. 

Fischer later expanded his approach elaborating the Linear Logistic Model with Relaxed 
Assumptions (LLRA). The LLRA (Fischer, 1976, 1977, 1983, 1987, 1989, 1996; Fischer & 
Formann, 1982) was specifically developed for measuring change. Through the use of virtual 
subjects LLRA allows group-specific changes to be estimated even when test items do not 
measure the same latent dimension (Glück & Spiel, 1997).  

More recently, Linacre (1994) elaborated a model based on LLTM (for a more detailed 
explanation of its connection to LLTM see: Glück & Spiel, 1997; Rost & Carstensen, 2002) 
but specifically addressed to deal with tests designed according to a facet structure. This 
model is called Multi-Facet Rasch model, abbreviated as MFRM. Linacre’s aim was to de-
velop an effective way to include in the measurement process the effect of “facets” in addi-
tion to the two main facets (item difficulty and subject ability) considered by the Rasch 
model, without losing its measurement properties.  

In a facet-designed test, each item can be seen as the result of a systematic combination 
of two or more factors or facets. These facets may represent different contexts or time points 
when the items were administered, or they can account for the effect of different judges 
evaluating responses to the items. These additional facets may be regarded as the decomposi-
tion of the original single Rasch item difficulty parameter (Linacre, 1994). Linacre assigned 
specific sets of parameters to each facet so that the response probability could be modelled as 
the logistic function of the sum of an ability parameter, θv , plus a content parameter, σi , plus 
a situation parameter, δt . Hence, the probability a person v giving a correct answer to an 
item i in the situation t can be described as: 
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One of the clearest examples of how a different facet can affect the measurement process 

is represented by the severity of raters (or judges) in sport competitions. For instance, in the 
case of sports such as gymnastics or diving, it is evident that the final result of the athlete’s 
performance (the final score) depends not only on the difficulty of the task and on his/her 
ability, but also on the severity of the judges. Linacre developed the MFRM in order to allow 
for examination of such, or even more complex assessment situations, e.g. to assess the in-
fluence of more than three factors. The multi-facet model allows all the relevant facets of a 
measurement situation to be modelled concurrently but examined independently (Bond & 
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Fox, 2001). Each facet is calibrated conjointly from the observed ratings. A person’s ability 
is estimated based on all ratings given by all judges on all items. Judge severity is estimated 
based on all ratings given across all persons and items; and so on. This makes it possible to 
estimate the locations of persons, judges, and items on a common interval scale, which 
represents the frame of reference for understanding the relationships with all the facets of the 
measurement context. 

Another important consideration is that, while each subject must usually face all items, 
very often each judge does not rate the performance of every subject. For this reason, in 
order to make the model estimable, assuring a sufficient connection between subjects and 
items, the measurement situation must be designed accordingly (Linacre, 1994). 

When dealing with tests including polytomous items, the Multi-facet version of the Par-
tial Credit Model (Wright & Masters, 1982) can be written as follows: 
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where ikτ is interpretable as the additional difficulty needed by subject v to reach level k of 
item i. 

The MFRM estimation equations derived by Linacre (1994) are in a way similar to those 
obtained for the polytomous models by Wright and Masters (1982), using unconditional 
maximum likelihood (Fisher, 1922). These equations yield sufficient parameter estimates 
and asymptotic standard errors for the ability of each subject, the difficulty of each item, the 
severity of each judge, and the additional level of performance represented by each step on 
the partial credit scale.  

In the present work we employed the MFRM to model the influence of a different kind 
of factor: time. The basic idea is that subsequent administration of test items to the same 
subjects (with items presented in different order according to a precise experimental design), 
as occurs during training based on prolonged experience with similar tasks, can be modelled 
using Linacre’s model. In such a situation we can conceptualize a subject’s performance as 
being affected by a third factor in addition to the subject’s ability and item difficulty: cumu-
lative experience. It is logical to expect that a trainee’s ability will improve the more he or 
she practices a training task. Essentially, it is the subject’s ability that is likely to improve, 
but this process can be better described by decomposing ability in two different components: 
true subject ability and the effect of prolonged experience (or time). In this way, it is possi-
ble to assess how the trainees’ ability evolves over the course of the training. 

 
 

Fit statistics, reliability, and separation index 
 
The multi-facet Rasch model also provides estimates of the consistency of the observed 

response patterns. The fit analysis is based on the computation of the difference between 
expected and observed scores. 

Unexpected low ratings for able subjects are improbable failures, often due to careless 
mistakes or misunderstanding, while unexpected high ratings obtained by scarcely able sub-
jects are improbable and usually due to lucky guessing or special knowledge. 
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Two fit statistics have been used here: Outfit and Infit (Wright & Masters, 1982). They 
can be computed for each of the facets involved in the measurement process, however their 
computations will be shown for items only.  

Rasch models supply a direct estimate of the modelled error variance for each estimate of 
a person’s ability and item difficulty (Wright, 1999; Wright & Masters, 1982; Wright & 
Stone, 1979). The same holds true for MFRM as well (Linacre, 1994). Individual standard 
errors (SEs) are more useful than a sample or test average, which overestimates the error 
score variance of persons with high and low scores. The Rasch measurement model is able to 
produce an optimal estimate of internal consistency because the numerical values express 
interval scale measures if the data fit the model, and the actual average error variance of the 
sample is used instead of the error variance of an average person. Based on these considera-
tions, Wright and Stone (1979) developed person separation reliability (Rsep), which is an 
index of the sample standard deviation in terms of standard error.  

The separation index (also referred to as G index) can be defined as the ratio of the stan-
dard deviation of the sample expressed in logits adjusted for inflation due to error (i.e., true 
variance) to the standard error of measurement. The ratio expresses the relationship between 
the amount of variability (standard deviation adjusted for error) within the sample to the 
precision (Root Mean Square Error, RMSE) with which that variability was measured. It is a 
measure of how well the instrument’s items separate the subjects in the sample (Wright & 
Masters, 1982).  

The higher the value of G (and hence Rsep), the more spread out the subjects are on the 
variable being measured (Schumacker & Smith, 2007).  

 
 

Purpose of the study 
 
The present study has been carried out with the purpose of testing a simple procedure 

based on the Multi-facet Rasch model to evaluate the effectiveness of a training program. 
Procedure and outcomes will be presented and discussed employing empirical data derived 
from training sessions with a riding simulator.  

 
 

Materials and methods 
 
Sample 

 
The sample consists of 207 high school students aged 14-15, balanced for gender (51% 

females), living in northeast Italy. The main subject inclusion criterion was, in addition to 
age, that the students would have begun riding a moped in the next six months.  

Motivation to take part in the project was supported by a reward, which was the opportu-
nity to earn school credits that could be used by the subjects in their final examination. For-
mal consent to participate in the research was obtained from all the students’ parents. 
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Riding simulator and training procedure 
 
The data derives from a training programme for improving riding ability through the use 

of a riding simulator (Honda Riding Trainer, HRT). The simulator was developed as a means 
to improve drivers’ hazard awareness, coordination, and perception skills by allowing them 
to safely experience hazards in a variety of settings (e.g. in a city, on a motorway). A number 
of training situations are included with various training modes in differing environments. 

The HRT has been set to propose twelve full tracks, including hazard scenes, automatic 
replay, and a final summary: six tracks are located in a city with wide streets (tracks P_01 to 
P_06); five tracks are located in a city with narrow streets (tracks S_01 to S_05); one track is 
located in a residential area (track T_01). Each track consists of eight hazard scenes. All 
hazard scenes come from a European study that analysed in detail more than one thousand 
road accidents involving motorbikes and mopeds (MAIDS, 2004).  

 
 

Data collection 
 
The HRT collects data for each subject during the training sessions. Data are obtained 

from two sources: the handlebar device (e.g. accelerator activation, brake activation, handle-
bar turn angle, use of turn signals, peripheral view, and gear position) and HRT internal 
variables. 

For the aims of the present study, only internal HRT data were used. In particular, analy-
ses were carried out using scores provided by the HRT on the performance of every subject 
facing each hazard scene presented during the training. The internal software is programmed 
to assign a grade for each subject’s performance. The four possible grades are “D” for acci-
dent, “C”, “B”, and “A” respectively for sufficient, good, and excellent performance. The 
different “non-accident” grades are intended to reflect the ability of the trainee in avoiding 
the risk proposed by the scene: the closer the accident (due to high speed, abrupt stops, or 
lane changes, etc.) the lower the assigned grade. 

A different track presentation order was assigned to each subject and the whole design 
was completely balanced, as shown for a subsample in Table 1, in order to have all the 
tracks, and consequently all the hazard scenes, presented in every possible order (for a more 
detailed presentation of data collection and further different analyses see Settanni, 2008). 

 
Table 1:  

Presentation order of the tasks (for a subsample) 
 

  Track presentation order 
  [ , 1] [ , 2] [ , 3] [ , 4] [ , 5] [ , 6] [ , 7] [ , 8] [ , 9] [ ,10] [ ,11] [ ,12] 

[1, ] 2 4 11 8 14 1 10 6 13 3 7 5 
[2, ] 8 10 3 14 6 7 2 12 5 9 13 11 
[3, ] 5 7 14 11 3 4 13 9 2 6 10 8 
[4, ] 1 3 10 7 13 14 9 5 12 2 6 4 
[5, ] 3 5 12 9 1 2 11 7 14 4 8 6 Su

bj
ec

ts
 

[6, ] 12 14 7 4 10 11 6 2 9 13 3 1 
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Data analysis 
 
The grades assigned by the simulator to the subjects (one per hazard scene) were ar-

ranged in a rectangular matrix (subject x item) to allow for analysis using statistical soft-
ware. 

The first operation performed was the screening of the frequency distributions of the 
grades for each item. This was required in order to avoid the presence of items with void 
response categories, i.e., to exclude from analysis any item for which the HRT was unable to 
assign a grade. 

The following step was an analysis of the score data obtained from HRT based on the 
Multi-facet Rasch model. This enabled us not only to estimate parameters referring to item 
difficulty and subjects’ ability, but also to estimate parameters related to the influence of 
track presentation order. This analysis was carried out to assess the indirect influence of the 
training on subject performance. To make this step clearer, it is useful to draw a comparison 
between the effects of the presentation position and the influence of judge severity in a more 
typical test situation. Each possible track presentation order (from the first to the twelfth) can 
be conceptualized as a different judge evaluating subject performance. The tracks presented 
earlier in the training are expected to be evaluated by stricter judges. The greater the number 
of tracks encountered, the more lenient the judge. Clearly our expectation was to find a gen-
eral decreasing trend in “judge severity”, actually indicating a symmetrical increase in sub-
jects’ ability over the course of the training. 

Facets software (Linacre, 2004) was employed for the MFRM analysis, which allowed 
measures to be constructed from complex data involving heterogeneous combinations of 
examinees, items, tasks, and judges as well as other measurement and structural facets. Fac-
ets utilises the estimation algorithm JML (de Jong & Linacre, 1993). 

 
 

Results and discussion 
 
Preliminary screening 

 
The first step of the analysis was the screening of the frequency distributions of the 

grades (response categories) assigned by the HRT simulator to the participants. 
The aim of this step was to assess the possibility of retaining all the possible grades in the 

subsequent analyses.  
Many of the items were found to have empty response categories, meaning that for those 

items any participants got one or more of the possible grades. This issue had to be confronted 
in order to prevent potential problems in parameter estimation. For this reason, the number 
of possible grades was reduced from four to three, collapsing the central grades into one 
single rating, corresponding to sufficient or good performance. This allowed for improved 
response (grade) distribution for many of the items, though some problems did persist: Even 
after the recoding, some of the items still had empty categories. Given the possible bias 
associated with the presence of such items, they were excluded from further analyses. A total 
of nine items were excluded. 
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Multi-facet Rasch model analysis 
 
In the following step of the analysis, the MFRM was applied to estimate item and subject 

parameters, meanwhile considering the effect of the order of presentation of the tracks, i.e. 
the effect of cumulative experience with the simulator on subject performance. More pre-
cisely, it was expected that, on the first tracks, subjects would have performed more poorly 
than on subsequent ones, due to improved ability. This expected gradual change in ability 
may be computed and described as the parameter δt (equation 3) of the MFRM. Conse-
quently, the estimates regarding the third facet of this model (e.g. presentation order) repre-
sent the effect on performance of progressive experience with the simulator and may be 
interpreted as change in ability caused by practice with the simulator.  

If HRT actually improved the trainees’ level of driving ability, then the estimated meas-
ures of the twelve subsequent presentation orders should represent the change in driving 
ability that occurred during (and because of) the training. 

 
 

Misfit diagnosis 
 
Item and person fit statistics. The first step in the MFRM analysis was to consider the fit 

of both items and participants. The employed software allowed us to compute fit statistics for 
subjects, items, and presentation order. The rationale behind the interpretation of these statis-
tics is to be able to assess the underlying assumptions about dimensionality and local inde-
pendence that must accrue for invariant, equal-interval scaling.  

Study of item fit provides insight into whether all the items sample the same underlying 
trait or at least a set of underlying personal factors that function together to determine the 
subjects’ performance in the same way on each item (Bond & Fox, 2001) and is central to 
the validity of an assessment tool. If an item does not produce ratings that fit the pattern 
expected according to the MFRM it is assumed that the item is not measuring the same con-
struct as other items. For instance, it could be poorly written (in this case grade assignment 
might be poorly “programmed”), or raters might interpret a rating scale differently from the 
way it was intended by test developers, consequently producing unexpected responses.  

With regard to participants, fit statistics have been computed in order to detect individu-
als whose response patterns do not fit the pattern predicted by the MFRM. The presence of 
such individuals, indeed, decreases the precision of difficulty parameter estimates. 

According to Linacre (2002) an acceptable range for Infit and Outfit values is between 
0.5 and 2.0. Infit or Outfit values of less than 0.5 indicate that the element of the facet (item, 
person, or other) does not provide information beyond that provided by the rest of elements 
on the scale. For instance, this can occur when there are several items that are similar or 
highly correlated or when one item is dependent on another. In contrast, Infit /Outfit values 
greater than 2.0 indicate that the element does not define the same construct as defined by 
the rest of the elements. With respect to items, it could mean that the item is either poorly 
constructed or misunderstood, or that it is ambiguously defined. Items with such values may 
distort or degrade the measurement system. However, even items with Infit/Outfit values 
between 1.50 and 2.00 should be examined carefully as, though not necessarily degrading, 
they may be unproductive for construction of measurement. 
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 With regard to the HRT items, our analysis yielded the following results: The maximum 
Infit value detected was 1.40 (item S_05.08) and there were no overfitting items (Infit <.50), 
with minimum Infit value for item S_01.07 (Infit = .78).  

The Outfit values showed the presence of only one slightly misfitting item, T_05.08, 
with Outfit = 2.35, but with a corresponding Infit value in the acceptable range (Infit = 1.03). 
In terms of Outfit values as well, no overfitting items were detected.  

With respect to trainee fit, looking at Infit, only one misfitting individual was detected 
with an Infit value of 1.85. No overfitting persons were found. 

In terms of Outfit values, eight participants were found with Outfit values greater than 
1.50 but none of them had a value exceeding 2.00. Furthermore, the highest Infit value was 
linked to the participant with the highest Outfit value. Thus, this person’s response pattern 
does not appear to fit the model and the usefulness of his/her presence in the data set is ques-
tionable. However, for this study, the subject was retained for the analyses.  

 
Presentation order fit statistics. We used Facets to compute fit statistics for the twelve 

presentation orders as well. This allowed us to evaluate the consistency of the effect of the 
different presentation order on subject performance. Fit statistics are reported in table 2. 

 
 

Table 2:  
Presentation order fit statistics 

 
Presentation 

order Infit Outfit 

#1 1.05 1.05 
#2 1.07 1.03 
#3 1.04 1.01 
#4 1.00 1.09 
#5 0.94 0.97 
#6 0.88 0.84 
#7 1.03 0.97 
#8 0.98 0.93 
#9 1.08 1.14 
#10 1.01 0.91 
#11 0.99 1.05 
#12 0.99 0.98 

 
 
As seen in the table above, orders of presentation fit the MFRM well. There were no 

presentation orders with Infit or Outfit values outside the acceptable range. Indeed, Infit 
ranges from .88 to 1.07, while Outfit values are all in the range of .84 – 1.14. The absence of 
fit problems concerning the presentation order facet indicates that training experience, in this 
case operationalised as the number of sessions already completed, had a consistent effect on 
trainees’ ability.  
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Reliability and separation index 
 
Reliability values for items, subjects, and presentation orders are shown in table 3. High 

person reliability means that we have developed a test on which some persons score higher 
and some lower and that we can trust the consistency of these inferences. The value of per-
son reliability computed by Facets is .89, indicating good replicability. 

Even with respect to items, the value of reliability found was very high (rsep = .98). 
Hence, we can have confidence in the item difficulty estimates.  

Unlike the person reliability estimate, which has a maximum value of 1.00, the person 
separation index, G, is not constrained by an upper boundary, but has a range of zero to 
infinity. The recommendation is that the separation ratio should exceed 2; in other words, the 
variability in the sample should be at least twice the variability of noise in the test. It was 
2.81 for this sample, suggesting more than acceptable reliability.  

 
Table 3:  

Reliability and separation indexes 
 

Facet Reliability (Rsep) Separation index (G) 
Subject .96 2.81 

Item .98 7.76 
Presentation order .98 7.80 

 
 

Subjects and item estimates 
 
Figure 1 depicts measures of subjects and items on the same map. Inspection of the sub-

ject-item map indicates that the items are not well targeted toward the higher end of driving 
ability. This result seems to indicate that, on the whole, the training sessions were experi-
enced by subjects as quite easy, i.e., for most of the subjects the majority of the hazard 
scenes were easy to deal with. Table 4 shows summary item and subject statistics. 

Item measures range between -2.19 (item P_01.01) and 3.54 (item S_03.08) with an av-
erage standard error of .14. 

With regard to the subjects, their ability measures are comprised between -.81 and 3.02 
logits, and are less dispersed than the item measures (SD = .57). Mean standard error is .14 
and the average measure is .97, almost 1 logit higher than the mean of item difficulty. The 
items are generally easy for the participants. As seen in table 3, the accuracy of the measures 
(which is different at different levels of the continuum) is generally high both for items and 
subjects. Expressing these values as mean reliability, we found a value equal to .96 (min = 
.90) for subjects and .98 (min = .85) for items. 
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Figure 1: 

 Map of items and subjects based on MFRM calibration. 
 
 

Table 4:  
Summary statistics 

 

 Participants (ability) Items (difficulty) 
N 207 86 
Mean .97 .00 
SD .57 1.18 
Min -.81 -2.19 
Max 3.02 3.54 
MSE[SD; min; max] .20 [.02; .18; .31] .14 [.05; .09; .39] 
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Presentation order estimates 
 
The main reason for having employed MFRM in this research is that it allowed us to es-

timate measures related to different presentation order. These estimates, as explained previ-
ously, can be interpreted as change in subject ability due to practice with the simulator.  

Figure 2 shows the estimates for the subsequent training sessions (standard errors rang-
ing between .04 and .05). As the figure clearly shows, employing the MFRM made it possi-
ble to detect a significant influence on performance attributable to the training itself. Per-
formances tend to improve with the training and this effect can be accounted for by practice 
with the simulator. This result can be interpreted as an increase in the ability of the partici-
pants corresponding to the length of time spent using the instrument. 

More specifically, the steepest line is the one connecting the first and the second track. 
This might indicate that after the first items, i.e. after having encountered the first hazard 
scenes, trainees had learned how to use the simulator controls correctly. Subsequently, there 
was constant improvement in performance, with the exception of small decreases corre-
sponding to the first track of both the following training sessions, probably due to the proc-
ess of becoming re-acquainted with the simulator. At the end of the curve, a plateau can be 
observed, which probably indicates achievement of the maximum level of improvement in 
driving ability attributable to the HRT.  
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Figure 2: 
Presentation order estimates. 
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Conclusions 
 
The procedure described here allowed for the application of a special case of LLTM to 

a training programme, with a structure that is quite common in real life, i.e. the subse-
quent administration of ever-changing items. Use of the Multi-facet Rasch model made it 
possible to obtain estimates of overall change in ability due to the training over the course 
of the training process. This allowed us to monitor not only the potential presence of a 
substantive change caused by the entire training procedure, e.g., confronting initial and 
final estimates, but also to detect, if present, particular or local trends of induced change, 
making it possible to identify unexpected or flawed functioning of the training pro-
gramme.  

At the same time, having partialled out the learning process, estimates were obtained of 
item and subject parameters free from the effect of the change in ability due to training. In 
particular, estimation of the presentation order facet freed the difficulty parameters from the 
influence of their position in the test, which allowed item difficulty parameters to be ob-
tained which were not biased by order effect. 

On the whole, the use of the MFRM as proposed here was found to be useful in as-
sessing overall training effectiveness. However, a major issue which was not addressed 
here is the stability of interindividual differences over time or, more precisely, the consis-
tency of interindividual differences in intraindividual change. Given the fundamental 
importance of this aspect for the study of training effectiveness, further research is needed 
(and is actually in progress by the authors) to find an effective way to obtain individual 
measures of change. 
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