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Abstract 

Large scale assessment studies typically aim at investigating the relationship between persons 
competencies and explaining variables. Individual competencies are often estimated by explicitly 
including explaining background variables into corresponding Item Response Theory models. Since 
missing values in background variables inevitably occur, strategies to handle the uncertainty related 
to missing values in parameter estimation are required. We propose to adapt a Bayesian estimation 
strategy based on Markov Chain Monte Carlo techniques. Sampling from the posterior distribution 
of parameters is thereby enriched by sampling from the full conditional distribution of the missing 
values. We consider non-parametric as well as parametric approximations for the full conditional 
distributions of missing values, thus allowing for a flexible incorporation of metric as well as cate-
gorical background variables. We evaluate the validity of our approach with respect to statistical 
accuracy by a simulation study controlling the missing values generating mechanism. We show that 
the proposed Bayesian strategy allows for effective comparison of nested model specifications via 
gauging highest posterior density intervals of all involved model parameters. An illustration of the 
suggested approach uses data from the National Educational Panel Study on mathematical compe-
tencies of fifth grade students. 
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1 Introduction 

With large scale assessments, such as the Program for International Student Assessment 
(PISA; e.g., OECD, 2012), the Third International Mathematics and Science Study 
(TIMSS; e.g., Mullis, Martin, Foy, & Arora, 2012), the National Assessment of Educa-
tional Progress in the United States (NAEP; e.g., National Center for Education Statis-
tics, 2013) or the German National Educational Panel Study (NEPS; e.g., Blossfeld, 
Roßnach, & Maurice, 2011), researchers aim at investigating the relationship between 
competencies and explaining variables. Typical research questions concern, for example, 
the explanation of competencies and competence development based on individual char-
acteristics like gender, socio-economic status, migration background, and context varia-
bles like school characteristics. Competencies in large scale studies are assessed via tests 
(see e.g. OECD, 2012; Weinert, et al., 2011) and competence data are usually analyzed 
via Item Response Theory (IRT) models. IRT models belong to the group of Confirmato-
ry Item Factor Analysis (CIFA) models (see Edwards, 2010). These models include, for 
example, the Rasch model (Rasch, 1960), the Partial Credit model (Masters, 1982), the 
3-parameter logistic model (Birnbaum, 1968), or the corresponding model counterparts 
based on the normal ogive description (see, e.g., Albert, 1992; Béguin & Glas, 2001). All 
these modeling approaches have in common that parameter estimation within these 
frameworks routinely relies on the Likelihood principle either in form of Maximum 
Likelihood (ML) estimation typically performed via the EM-algorithm, or in form of 
Bayesian approaches using Markov Chain Monte Carlo (MCMC) based techniques (see 
Edwards, 2010). Since the derived likelihood functions or moment equations involve 
high-dimensional integrals or incorporate latent structures, the considered model frame-
works are in principle straightforward to handle within a Bayesian estimation approach 
using MCMC techniques. Further, all these different modeling frameworks offer the 
possibility to be extended to incorporate auxiliary information in form of context (back-
ground) variables of the examinees into the estimation of ability parameters (Mislevy, 
1987). Incorporating auxiliary information in form of context variables enhances effi-
ciency of estimates and allows for direct assessment of dependencies between the latent 
abilities and context variables. 

Despite tremendous efforts in field work, missing values in these background variables 
occur. Usually these missing values are treated via multiple imputation (Rubin, 1987) 
including relevant variables in the imputation model to capture dependencies. Specifical-
ly questionnaire variables (i.e., background variables) are needed for the provision of 
competence scores (in form of plausible values) and questionnaire variables as well as 
latent competence scores are needed for the imputation of missing responses in question-
naire items. Other large scale studies, such as PISA and NAEP, deal with this problem 
by using missing indicators for each questionnaire variable (indicating whether the re-
sponse on this variable is observed or missing) and aggregating the questionnaire varia-
bles and the response indicators to orthogonal factors. The set of factors is then used as 
background variables in the IRT measurement model of the competence data (see Allen, 
Carlson, Johnson & Mislevy, 2001). Thereby, as many factors as needed to explain 90 
percent of the variance of the questionnaire items are typically considered. However, this 
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approach is a two-step approach that does not incorporate the latent competence score in 
the imputation of the questionnaire variables and does not depict the uncertainty stem-
ming from missing values in questionnaire items.  

We propose to extend available Bayesian estimation routines relying on MCMC meth-
odology and augment the parameter vector with the missing values in the background 
variables. The advantages of the suggested approach compared to a two-step approach 
relate to increased statistical efficiency and model consistency. Whilst the current model 
presupposes the distribution of latent abilities to depend on background variables, this 
dependence could not be reflected to the full extent by a two-step approach using some 
pre estimated latent ability for the imputation of background variables. Fully accounting 
for the assumed conditional variables further increases the statistical accuracy in terms of 
efficiency in assessing the influence of background variables competencies. As the back-
ground variables are not subject to specific modelling, flexible ad hoc assumptions are 
required to provide a valid approximation of the underlying full conditional distribution 
of the missing values. While parametric normal models, as used in Aßmann, Gaasch, 
Pohl, & Carstensen (2016), offer flexible handling of missing values in metric back-
ground variables, background variables in large-scale assessments are typically also 
categorically scaled. Hence, in this paper we suggest to adapt non-parametric approxima-
tions to the full conditional distributions based on sequential regression trees. As dis-
cussed within the literature (Burgette & Reiter, 2010; Doove, van Buuren, & Dusseldorp, 
2014), these are also able to model more complex dependencies, for example, higher 
order interactions. The MCMC approach allows furthermore for direct assessment of 
accuracy measures of estimators without requirement to use combining rules typically 
needed when analyzing data sets with missing values. 

In the following we will first describe the IRT framework and the Bayesian estimation 
routines used in our approach. We will then present our hybrid sampling scheme and 
demonstrate its performance first in a simulation study investigating the estimation accu-
racy and second by an empirical example demonstrating the applicability of the ap-
proach. 

2 Item Response Theory for scaling of competence tests 

In large scale assessments often different competence domains are assessed, for example 
reading, mathematical competence, science, and computing literacy. The competence 
domains are assessed by tests that contain a number of items that may be dichotomously 
or polytomously scored. Different types of IRT models are used in the different large 
scale assessment studies. While PISA (OECD, 2012) and NEPS (Pohl & Carstensen, 
2012) rely on one parameter IRT models such as the Rasch model (Rasch, 1960) or the 
partial credit model (Masters, 1982), NAEP (National Center for Education Statistics, 
2013) and TIMSS (Mullis, Martin, Foy, & Arora, 2012) use two or three parameter IRT 
models (Birnbaum, 1968). The multidimensional random coefficients multinomial logit 
model is a general model which many large scale assessment studies rely on (e.g., PISA 
[OECD, 2012] and NEPS [Pohl & Carstensen, 2012]). To illustrate the suggested estima-
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tion strategy based on the device of data augmentation, we consider a simplified version 
of the multidimensional random coefficients multinomial logit model. In order to reduce 
the computational burden for estimation, we refer to binary responses only, and use the 
probit link to model the individual response probability. The considered model states the 
probability for person i  to answer item j  correctly as 

 ( ) ( )Pr 1| 1,..., 1,...,ij i j i jy Ф i N j Jθ α θ ξ= = − = = , (1) 

where ( )Ф C  denotes the standard normal cumulative distribution function, ijY refers to 

the response given by person i on item j, iθ  to the ability of person i, jα , 1, ,j J= …  

denote the discrimination parameter, and jξ , 1, ,j J= …  the item difficulty parameter. 

For completion, to solve the inherent non-identifiability of the parameters, the sum of the 

item difficulties is set to equal zero, that is 
1

0
J

j
j

ξ
=

=  and for the discrimination parame-

ters 
1

1
J

j
j

α
=

=∏  with 0jα >  for all 1, ,j J= … . Note, that missing values may also occur 

within the competence test items. These are usually scored as wrong response, partially 
correct, ignored in the estimation, or the missing process is explicitly modelled (for a 
discussion of the different approaches see Pohl et al. (2014)). The suggested approach to 
deal with missing values in background variables is general and applicable to any choos-
en approach on dealing with missing competence items. Further, iθ  is regarded as a 

random parameter with density function ( )ig θ  for all i . Commonly, the population 

distribution ( )ig θ is assumed normal with mean µ and variance σ2. Assuming a mixing 

distribution for iθ  allows for handling the identification problem arising in case of treat-

ing iθ as a fixed individual specific parameter. This model allows to simultaneously 

model item responses and structural relations by allowing the inclusion of explaining 
variables for the latent competence variable. If such explaining variables (background 
variables) are included in the model, the distribution ( )g C  is assumed normal with mean 

iZ γ , where iZ  denotes a vector of Q individual characteristics (background variables) 

influencing individual ability. This corresponds to the multivariate regression equation 

 ( )2
 ,   with   ~ 0, .i i i iZ Nθ γ σ= +   (2) 

Substituting iθ  according to this regression setup into Equation (1) results in 

( ) ( )Φj i j j i j i jФ Zα θ ξ α γ α ξ− = + − . The statistical analysis of this model framework is 

non-trivial, when missing values occur in the background variables.  
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3 The proposed approach for dealing with missing values in 
person background variables within IRT models 

In the following we will describe a data analysis strategy that applies to univariate com-
petence measurement settings with missing values in background variables. Thus, the 
proposed approach is applicable to different IRT models including the Rasch model and 
the two parameter logistic or normal model. The approach is presented for binary re-
sponse variables. The proposed estimation routine is designed to cope with missing 
information on individual level variables influencing person abilities. These background 
variables may be metric or categorical. We adopt a Bayesian estimation scheme that 
allows for a conceptually stringent treatment of missing values in observed individual 
characteristics via the device of data augmentation (see Tanner & Wong, 1987). Bayesi-
an estimation is implemented using MCMC techniques, namely Gibbs sampling, which 
are ideally suited to deal with the hierarchical structure of the model and the handling of 
missing values. In addition, the usage of MCMC simulation methods proves straightfor-
ward for complex IRT models relative to marginal maximum likelihood as discussed in 
(Patz & Junker, 1999). Summarizing all parameters as ψ for a given model and letting S 
denote the sample data, Bayesian inference is concerned with the posterior distribution 

( | )p Sψ  and corresponding moments thereof. Gibbs sampling is a device to produce a 

sample from the joint posterior distribution of the parameter vector ψ, which can be used 
to estimate posterior moments and density estimates. Posterior draws of ψ partitioned 

into convenient blocks { }
1t

T

t
ψ ψ=

=
 are obtained via Gibbs sampling, when direct sam-

pling from the posterior distribution is difficult, but sampling from the full conditional 
distributions is directly accessible. The functional forms of the full conditional distribu-
tions can be deduced from the joint posterior distribution of ψ and S, that is 

( ) ( ), ( | )p S L Sψ ψ π ψ= , where ( | )L S ψ  denotes the model likelihood and ( )π ψ  de-

notes the a priori distribution, via isolating the kernel of a single parameter block tψ  

conditional on all other blocks 1 1 1, , , , ,t t Tψ ψ ψ ψ− +… …  and the data S. Since the function-

al forms of the full conditional distributions depend on the assumed prior distributions, 
these are in general conveniently chosen to facilitate sampling from closed form full 
conditional distributions. Among others Liu, Taylor, G., & Belin (2000) and Schafer 
(1999) propose Gibbs sampling as a special MCMC technique to incorporate uncertainty 
of missing values into parameter estimation. This tool has been applied among others by 
Koskin, Robins, & Pattison (2010) in the context of Bayesian estimation of social net-
work models. Missing values are thereby incorporated within the parameter vector as a 
parameter block of their own. The corresponding MCMC scheme providing a sample 
from the posterior distribution can be adapted to include also the full conditional distri-
butions of the missing values. While several possibilities exist to specify a full condi-
tional distribution for missing values in the explaining factors, a parsimonious yet flexi-
ble alternative to parametric models is offered via non-parametric sequential regressions 
as suggested by Burgette & Reiter (2010). Note that next to non-parametric approaches, 
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also semi-parametric approaches based on chained equations are available (see van 
Buuren & Groothuis-Oudshoorn, 1987). 

3.1 Estimation algorithm 

To illustrate the proposed treatment of missing values, we use the IRT model framework 
for binary items outlined in Equations (1) to (2), which allows for closed form sampling 
from the full conditional distributions employed within the Gibbs sampler along the lines 
suggested by Albert (1992) and Edwards (2010).4 For illustrative purposes the model 
takes the following form. As stated beforehand, missing values may also occur in compe-
tence items. In order to provide the likelihood function of observed item responses, we 
define a missing indicator ijt  taking value one if a response of individual i to item j is 

missing and zero otherwise. Summarizing all parameters as ψ, all binary responses as Y, 
and all background variables as Z, then the corresponding likelihood is given as 

 ( ) ( )( )( )( )
1 1

| , ( 2 1 1 ( | )
N J

ij j i j ij ij i i i
i j

Y Z Ф y t t g Z dψ α θ ξ θ θ
= =

 
= − − − + 

  
∏ ∏  (3) 

where the mixing distribution ( | )i ig Zθ  relates to the regression setup given in Equation 

(2). Given this model setup, the corresponding set of full conditional distributions can be 
described as follows. The derivation of the full conditional distributions follows the 
mechanistic principles outlined by Albert (1992) and also Chib (2001). Note that in 
addition to augmenting the parameter vector by the auxiliary variable *

ijy  arising from 

the latent linear regression providing the probability rationale as stated in Equation (4) 
for observed responses, that is 

 ( )
*

*1 if  0,
 where  with 0,1 ,

0 else,       
, ~

  
ij

ij ij

i

j i j i

d

j

i

j i

y
y y e e Nα θ ξ

 >= = − +


 (4) 

the parameter vector is also augmented with the missing values in background variables. 
As the assumed model is not concerned with the background variables, the likelihood 
from Equation (3) is not informative with regard to the full conditional distribution of 
missing values in the background variables. Instead, we suggest either a parametric or a 
non-parametric ad-hoc approximation to the full conditional distribution of missing 
values, which is then added to the set of full conditional distributions. This allows the 
researcher to account for the uncertainty created by the missing values directly in the 
background variables. Considering the typically occurring categorical context variables 
(such as gender, school type, or migration background), such non-parametric approxima-
tions seem  especially suited to provide valid characterizations of the underlying full 
conditional distributions. As pointed out by Burgette & Reiter (2010) as well as Doove, 

                                                                                                                         
4 See also (Aßmann & Boysen-Hogrefe, 2011) for a general treatment of Bayesian estimation for binary 
panel probit models. 
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van Buuren, & Dusseldorp (2014), the flexibility of non-parametric approaches to cope 
also with non-linear dependency and non-standard interactions possibly the challenges 
inherent to statistical analysis with missing data. 

After initializing parameters as draws from the prior distributions obeying the identifying 
restrictions, the following iterative scheme with repetitions 1, ,r R= …  arises for repeti-

tion r. 

Step 1 

The underlying latent variable *
ijy  is sampled  from a truncated normal distribution with 

corresponding parameters 

* *,      and       1
ij ij

j i jy y
μ α θ ξ σ= − = , 

where truncation sphere is ( ),0−∞  for 0ijy =  and ( )0,∞  for 1ijy = . Note that step 1 is 

performed for all observed answers, that is for all i and j with 0ijt = . 

Step 2 

For sampling discrimination and item parameters, we summarize them as ( ),j j jϕ α ξ=  

as suggested by the equation 

* ,j j j jy X eϕ= +  

where ( ) ( )'* *
1 , , and 1 ,j j j Nj j jy T y y X T θ= … = −  with jT  denoting a ( )

1

1
N

ij
i

t N
=

− ×  matrix 

selecting from all individuals those with observed responses to item j, and θ denotes the 
stacking of individual competencies into a 1N ×  vector.5 This allows for sampling from 
a bivariate normal distribution with mean vector and covariance matrix given as 

( )1 1 * 1 1 1( ) ,   and   ( ) ,j j j j j j j j j j j
j

X X X y m X Xϕ ϕ ϕ ϕ ϕ
ϕ

μ − − − − −= + Ω + Ω ′ Ω′ +′ Σ  

where jmϕ  and jϕΩ  are the mean and variance of the conjugate bivariate normal prior 

distribution. To take the identifying restrictions into account, the drawn parameters de-

noted as jα  and jξ  are restricted after each iteration of the Gibbs sampler to provide 

                                                                                                                         

5 Consider as an example. ( )'* 3.5   3.5jy NA NA= − .. Then with  

1  0 0 0

0  00 1jT
 

=  
 

, 

 we have ( )* 3.5 3.5 'j jT y = − . 
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new draws used in the successive steps, that is 
1/( )

j
j J J

jj

α
α

α
=

∏



 and 

1

1 J

j j j
jJ

ξ ξ ξ
=

= −   . 

Sampling is done for all 1,j J= … . 

Step 3 

The individual abilities iθ  are sampled from a full conditional normal distribution. With 

iT  denoting a ( )
1

1
J

ij
j

t J
=

− ×  matrix selecting all items with observed responses from 

individual i, define ( )*
i i iy T y ξ= −  and i iX Tα= , where *, iyα  and ξ denote the vectors 

of all J discrimination parameters, latent variables or difficulties. This allows for stating 
the moments and variance of the full conditional multivariate normal distribution as 

 ( ) 2 1 2 2 2 1( )  and  ( )
i i

i i ii i i iX X X y Z X Xθ θμ σ σ γ σ σ− − − − −′ ′ ′= + + = +  . 

Sampling is performed for all 1, ,i N= … . In accordance with the assumed model struc-
ture, individual abilities iθ  are sampled conditional on observed responses and back-
ground variables. 

Step 4 

Draws from full conditional distribution for γ  are obtained from a multivariate normal 
distribution with corresponding moments given as 

1 1
1 1 1

2 2 2
  and  

Z Z Z Z Z
γ γ γ γ γ γ

θμ ν
σ σ σ

− −
− − −     = + Ω + Ω Σ = + Ω     

     

′ ′ ′
 

with Z denoting the matrix of background variables, γν  and covariance matrix γΩ  de-
noting the moments of corresponding conjugate normal prior distribution. 

Step 5 

Choosing the independent conjugate prior for 2σ  as inverse gamma with parameters 0a  
and 0b , then the full conditional of 2σ  is also distributed inverse gamma with corre-
sponding parameters 

( )
1

2
0 0

1

1
,  and      .

2 2

N

i i
i

N
a a b Z bθ γ

−

=

 
= + = − + 

 
  

Step 6 

As the parameter vector is augmented with the missing values in background variables, 
corresponding draws are either obtained based on parametric approximations to the full 
conditional distributions or on non-parametric approximations to the full conditional 
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distributions. While a parametric approximation is efficient for dealing with metric 
background variables and known dependencies, the non-parametric approach allows for 
flexible handling of categorical background variables and is capable to account for non-
linear dependencies among the variables. The following set of conditioning variables 

denoted as matrix ( ), , ,q qW Z SCι θ−=  is considered, where ι denotes a vector of N ones, 

qZ−  the matrix of background variables except variable qZ , and SC denotes a vector of 

sample statistics, for example the sum score, of the competence items for each individu-
al. Note that the draws for the missing values in the background variables are based upon 
the competence score θ and, thus, the latent ability is incorporated in the imputation. 
Note that if no missing values are present within the responses to the competence items, 
using the sum score as a sample statistic of observed item responses may not enrich the 
model with further information, as the sum score may be subsumed within the vector of 
latent abilities θ. 

a) When using a parametric approximation to the full conditional distribution of the 
missing values, draws for the missing values in the N Q×  matrix of background 

variables Z can be obtained via specifying a univariate normal full conditional dis-
tribution for each of the Q variables contained in Z. Within the intercourse of the 
Gibbs sampler, imputed and hence complete variables are at hand for each iteration 
r, resulting in the following Q regression equations given as  
    ,  1, ,q q q qZ W q Qϕ= + = … . 

Imputations are then generated as follows. Each missing value in qZ  is replaced via 

a draw from a univariate normal distribution with expectation ˆ'misW ϕ  and variance 

2σ . To account for the uncertainty of the least squares estimators ϕ̂  and  2σ , 

draws from the corresponding asymptotic distributions are used for generating 
draws for the missing values in qZ . Further, it should be explicitly noted that the es-

timation scheme introduces the updated draws of the individual latent abilities θ into 
the imputation model for each iteration and that a parametric scheme becomes com-
putationally burdensome for missing values in discrete variables with many catego-
ries.  

b) In order to establish flexible approximations to the full conditional distributions of 
missing values in background variables Z, Burgette & Reiter (2010) suggest to use 
nonparametric approximations obtained via Classification and Regression Trees 
CART (see Breiman, Friedman, Olshen, & Stone, 1984). The flexibility of the 
CART algorithm to incorporate nonlinear dependencies among the variables with 
missing data has been highlighted by Doove et al. (2014). CART constitutes a non-
parametric recursive partition algorithm. The objective of CART is to split up the 
observations into different groups, fulfilling the condition that respondents and thus 
observations assigned to one group show highest intra-group homogeneity with re-
spect to the relevant variable, whereas the inter-group homogeneity is intended to be 
as small as possible.  There exist manifold possibilities to define a partition. CART 
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defines binary partitions via a set of conditioning variables. In the present applica-
tion the set of conditioning variables containing all available information is given 
via qW . To ensure computational feasibility, the CART algorithm does consider 

univariate splits only, that is only binary partitions defined upon a single variable 
are considered.  
The sequential partitioning algorithm proceeds via consideration of all binary parti-
tions. Of all possible binary partitions defined by univariate splits, the split with the 
maximum reduction in heterogeneity is selected as the optimal partition. As indica-
tors for heterogeneity the variance in case of metric and the entropy in case of cate-
gorical variables are chosen. The resulting binary partition of the data along the set 
of conditioning variables provides sets of admissible values defining the nonpara-
metric characterization of the full conditional distribution and serving as donors for 
filling in the missing values. All respondents can be assigned to one of these identi-
fied donor groups. Each missing value is imputed via a draw from the empirical dis-
tribution within this donor group using a Bayesian bootstrap. Thus, the uncertainty 
of the unobserved missing values is directly taken into account in parameter estima-
tion. With regard to the settings of the CART algorithm, concerning stopping crite-
ria and minimum requirements for the size of donor groups, we follow the sugges-
tions of Burgette & Reiter (2010). Hence, no further split is considered when the re-
sulting reference groups contain less than 50 or the gain in homogeneity is less than 
0.01. 

 

Given a sample of all model parameters obtained via iterative sequential cycling through 
the set of full conditional distributions, the plausible values for each individual can be 
directly taken from the provided Gibbs output. After discarding an appropriate burn-in 

phase each sweep { } 1
,  1, ,

R
i r

i nθ
=

= …  from the posterior distribution could be taken as a 

vector of plausible values. The proposed approach simultaneously deals with the estima-
tion of plausible values and the imputation of missing values in background variables, 
thus, accounting for both sources of uncertainty. 

3.2 Simulation study 

To assess the statistical validity of the proposed approach, we set up a simulation design 
investigating the statistical accuracy of parameter estimation. Within this design we 
compare the Bayesian data augmentation approach to handle missing values with the 
Bayesian full sample estimates before deletion and those from a Bayesian complete case 
analysis in which cases with missing values in background variables are deleted listwise. 
Further, we assess the parametric and the non-parametric approximation towards the full 
conditional distribution of missing values. The before deletion situation is thereby cho-
sen as a benchmark providing estimators with highest possible statistical accuracy for a 
given data set, whilst the complete case situation illustrates reduced efficiency in pa-
rameter estimation when ignoring missing values. The simulation study builds upon 
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repeated estimation of simulated data sets. Different data and missing values generating 
mechanisms are considered. The data sets with missing values in the background varia-
bles are generated based on the complete data sets. Then for each of the complete data 
sets the corresponding Bayesian estimates before deletion are calculated, while for each 
of the data sets with missing values the Bayesian estimates based on data augmentation 
for handling of missing values are calculated. The estimates using data augmentation are 
compared to the estimates before deletion and the complete cases, when all individuals 
with missing values in the background variables are removed from the data set. 

The detailed conditions of the data generating and missing values generating processes 
are as follows. For each of the 200C =  replications, the binary response pattern to com-
petence items is simulated using the model stated in Equations (1) and (2) with a sample 
setup of 1000N =  individuals facing 10J =  items. The item difficulty parameters are 

fixed across the replications. To fulfil the implemented identifying restriction 
1

0
J

J
j

ξ
=

=  

they are derived as 
1

1 J

j j j
jJ

ξ ξ ξ
=

= −    , where ( )0,0.5 , 1 ,j N Jξ ∼ …  are draws from a 

normal distribution. Correspondingly, to ensure the positivity and scaling constraint on 
the discrimination parameters, these are generated as transformed draws from a lognor-

mal distribution, that is 

( )1/

1

j
j JJ

jj

u

u
α

=

=
∏

 with ( )3,0.25   for 1, , ju LN j J∼ = … . For 

each data set, four background variables , 1, ,4qZ q = … , explaining differences in indi-

vidual abilities iθ  are generated from a multivariate normal distribution, where each 

variable has mean of zero, unit variance, and pairwise correlation equal to 0.5. The fol-
lowing transformations were applied to the variables. 2Z  is squared, 3Z  is transformed 

into a dichotomous variable with split at a value of 0, and 4Z  is categorized into a 4-way 

categorical variable by its quartiles. The regression coefficients including an intercept are 
set to ( )1.0,0.5, 0.5,0.5, 0.25, 0.5, 1γ = − − − −  for the corresponding set of background 

variables given as 

 { } ( ) { } { } { }( )2
1 2 3 4 25 25 4 50 50 4 750,1 0,1 0,1 0,11, , , 0 , ( ), ( ), (   ) Z Z Z I Z I Z q I q Z q I q Z q= < < < < < < .  

The individual abilities are then generated as draws from a normal distribution with 

mean as implied by Zγ  and a conditional variance parameter of 2 1.44σ = . Given val-

ues for the individual abilities, the latent variables *
ij j i j ijy eα θ ξ= − +  are calculated with 

ije  given as independent draws from a standard normal distribution and then dichoto-

mized according to { }
*

0,1 ( 0)ij ijy I y= < . 

Missing values are generated as follows. We distinguish two missing data generating 
mechanisms, which differ in their severity. With regard to data generating mechanism I  
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on average 5% missing values in 1Z   and 10% missing values in 2Z   were generated 

completely at random. For data generating mechanism II the rates of missingness in-
crease to 10% and 20% and depend on variable 3Z  according to 

( ) ( )1 3Pr 0.5 0.5i iZ NA Ф Z= = − − , and ( ) ( ) ( )2 4 3Pr Pr 1.5 0.5i i iZ NA Z NA Ф Z= = = = − + . 

Thus, data generating mechanism II  poses more challenges on the estimation routine 
than data generating mechanism I. Further note, that the data generating mechanism I is 
in line with the parametric approximation of the full conditional distribution for the 
augmented missing values, while missing data generating mechanism II with missing 
values in the categorical variable is not accessible to the parametric approximation of the 
full conditional distribution of the missing values.  

Each of the repeated estimations for the total of 200C =  data sets is based on MCMC 
sequences with each having a length of 2000  iterations. Inspection of time series and 
autocorrelation plots for all parameters indicates convergence. After discarding the first 
quarter of the samples as burn-in, inference is based on the remaining 1500  simulated 
draws from the joint posterior distribution. For evaluation of the results, the parameter 
estimates using the data augmentation approach are compared to those before deletion 
and complete cases via inspection of average estimates, the root mean squared errors, 
and the proportion of 95% highest posterior density regions that contain the true parame-
ter values, that is coverages. 

For the missing data generating mechanism I Table 1 shows the true parameter values, 
the means of the posterior expected values, their standard deviations, root mean squared 
errors (RMSE), and coverages over 200C =  replications for all considered estimation 
approaches, that is the before deletion ( BD ), the complete case analysis ( CC ), the 
parametric ( PI ), and the non-parametric ( NPI ) imputation method. For the BD  esti-
mators we find overall unbiased estimation results for all parameters with all correspond-
ing coverages reaching their nominal level as expected. Also, average standard devia-
tions and RMSE coincide, thus highlighting the statistical accuracy of estimation in the 
case without missing values. Similar results are revealed for the PI  estimators. Note 
that the implemented parametric imputation model using full conditional normal distri-
butions reflects completely the chosen simulation setup making use of the normal distri-
bution. Hence, in this setup the PI  procedure is the most efficient way to handle miss-
ing values in the estimation. In this sense, the statistical accuracy of the PI  approach 
serves as a benchmark for the NPI  approach. Within the considered simulation study, 
the NPI  approach reveals unbiased estimation of all parameters. Further, inspection of 
the statistical accuracy in terms of the RMSE and coverages suggest no severe loss of 
statistical accuracy compared to the BD  and the parametric approach. For example, the 
mean standard deviation of the regression parameter 4γ  almost equals its RMSE, which 

is in line with the findings for the BD  and PI  estimators. Also with respect to the cov-
erage rates, the findings support that there is no notable difference to the BD  estimators 
reported in the first block columns of Table 1. The observed number of intervals cover-
ing the particular parameter corresponds to their expected theoretical values, for example   
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a 95% binomial proportion interval allows the coverages to lie between [0.907; 0.993] at 
200C =  replications for all considered parameters. For all considered estimation ap-

proaches, the 95% highest density intervals concur with this range.  

The results for the simulation study considering the missing data to occur at random are 
presented in Table 2. Similarly to the results from the missing completely at random 
simulation design, the NPI  method performs very well to estimate item parameters and 
the structural relations on individual abilities. Overall, inspection of the simulation re-
sults suggests again high statistical accuracy of the suggested data augmentation ap-
proach. For instance, the mean standard deviations of the regression parameters differ 
from their corresponding RMSEs only modestly. This is supported by the reported cov-
erage rate, which meets the expected level of 95% for all estimated parameters. 

Given the evidence from the simulation study, we conclude that the nonparametric ap-
proach provides a valid and highly flexible approximation to the full conditional distribu-
tion of missing values. Given the almost negligible loss in statistical accuracy compared 
to the benchmark BD  and PI  estimators, we suggest that the use of data augmentation 
using non-parametric devices is a suitable solution for dealing with partially observed 
background variables in the context of IRT models, regardless of the scaling type of 
background variables. 

3.3 Empirical application 

To illustrate the applicability of the suggested estimation approach, we provide an exem-
plary empirical analysis, where we use data from the NEPS cohort sample of students in 
fifth grade (Blossfeld, Roßnach, & Maurice, 2011).  For a description of the assessment 
of mathematical competence in NEPS, see Weinert, et al. (2011) and Neumann, 
Durchhardt, Ehmke, Grüßing, & Knopp (2013). Duchhardt & Gerdes (2012) provides an 
overview of the respective competence data and Skopek, Pink, & Bela (2013) the data 
manual of the corresponding scientific use file. The data used in this analysis contains 
student information on the first panel wave in the year 2010. We restrict our sample to 
the cases where parental information is available and to students with a valid response to 
at least one of the 23J =  binary mathematics test items. The sample considered in our 
analyses consists of N 3615=  students and their parents. Consistent with the scaling in 
the NEPS (Pohl & Carstensen, 2012;  Pohl, Gräf, & Rose, 2014), missing values on test 
items set are ignored. To check the robustness of this approach, we further provide the 
estimation results based on cases with complete background variables only (N = 2955). 

We consider several background variables on student level to gauge their impact on 
mathematical competence. These are gender, a dummy variable indicating if the student 
is a German native speaker or not, students mathematical self-concept, and satisfaction 
with school. Additionally, we include years of education of the parent who is responsible 
for the everyday issues of the child and the amount of books at home (ordinal variables) 
as indicators of the socio-economic and cultural context. Descriptive statistics for the 
data considered in the application are displayed in Table 3. With at most 6% univariate  
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Table 3: 
Descriptive statistics for backround variables. 

Variable min max mean sd missing 

categorical      
female 0 1 0.48 - 0% 

non German native speaker 0 1 0.11 - 2% 

number of books 0 5 - - 5% 

continuous      
self-concept 1 4 2.95 0.84 6% 

school satisfaction 0 10 7.74 2.94 3% 

parent years of education 8 18 13.90 2.94 4% 

      
Notes: N=3615 
 

 
missing values, namely for mathematical self-concept, the total amount of missing data 
is considered to be relatively small. 

We apply the proposed data augmented Gibbs sampling approach based on the nonpara-
metric approximation of the full conditional distribution of missing values for estimating 
the regression coefficients relating background variables and the latent mathematics 
competence. The trace plots show no indication of convergence problems (Figure 1, 
Figure 2, and Figure 3). The observed autocorrelations are low, and also the cumulative 
means indicate no converge problems at all. Taken a burn-in period of 2000  draws, all 
parameter estimates are based on 8000  simulated draws. Table 4 depicts the estimated 
posterior means and standard deviations, as well as the 95% highest density intervals. 
While the results indicate a lower level of competence for females and non German 
native speakers, mathematical self-concept, and school satisfaction have a positive effect 
on students mathematical abilities. Both, a higher level of parental education and a high-
er number of books available in the household, are positively associated with students’ 
mathematical ability (with all other predictors assumed constant). Note that the regres-
sion coefficients reflect the relationship of questionnaire variables with latent mathemat-
ics scores that are purified from measurement error. The estimated standard errors of the 
regression coefficients incorporate not only the uncertainty due to person sampling, but 
also uncertainty due to missing values in the predictors. Comparison with the results 
obtained for cases with complete background variables reveals no substantial differences. 
However, all parameter estimates based on complete cases only have higher standard 
deviations. This illustrates the increased efficiency of the suggested data augmentation 
approach to handle missing values in background variables. 
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Figure 1:  
Trace plots for the regression constant ( 1γ ), the regression coefficients for sex ( 2γ ), German 

native speaker ( 3γ ), mathematical self-concept ( 4γ ), school satisfaction ( 5γ ), years of 
education parent ( 6γ ), number of books at home ( 7 8 9 10 11, , , ,γ γ γ γ γ ), as well as the residual 

variance ( 2σ ). 
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Figure 2:  
Trace plots for the discrimination parameters ( jα , 1, ,j J= … ). 
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Figure 3:  

Trace plots for the difficulty parameters (ߦ௝, ݆ = 1,… ,  (ܬ
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Table 4:  
Mathematical competencies: Parameter estimates of random coefficient IRT model 

 Non-parametric imputation   Complete cases  
 N=3615   N=2955  
Parameter mean sd 95% HDI   mean sd 95% HDI  

γ1 (constant) −1.202 0.071 [-1.344;-1.062] −1.183 0.082 [-1.344;-1.027]  
γ2 (female) −0.098 0.017 [-0.131;-0.064] −0.112 0.019 [-0.150;-0.075]  
γ3 (nongerman) −0.156 0.026 [-0.209;-0.105] −0.189 0.033 [-0.256;-0.123]  
γ4 (selfconcept) 0.147 0.010 [0.127;0.168] 0.154 0.012 [0.131;0.177]  
γ5 (schoolsat) 0.016 0.003 [0.009;0.022] 0.017 0.004 [0.009;0.024]  
γ6 (peduc) 0.054 0.004 [0.047;0.061] 0.052 0.004 [0.044;0.060]  
γ7 (nobooks1) 0.066 0.051 [-0.034;0.165] 0.079 0.060 [-0.040;0.195]  
γ8 (nobooks2) 0.213 0.048 [0.122;0.308] 0.226 0.056 [0.113;0.336]  
γ9 (nobooks3) 0.293 0.048 [0.198;0.390] 0.308 0.057 [0.196;0.422]  
γ10 (nobooks4) 0.399 0.050 [0.302;0.498] 0.415 0.058 [0.300;0.527]  
γ11 (nobooks5) 0.389 0.051 [0.289;0.489] 0.421 0.059 [0.304;0.538]  
σ^2 0.162 0.006 [0.151;0.175] 0.166 0.007 [0.153;0.180]  
α1 1.142 0.059 [1.025;1.258] 1.116 0.064 [0.989;1.243]  
α2 1.199 0.061 [1.082;1.320] 1.240 0.068 [1.109;1.376]  
α3 1.057 0.056 [0.951;1.169] 1.045 0.063 [0.922;1.170]  
α4 0.789 0.050 [0.691;0.888] 0.822 0.057 [0.712;0.933]  
α5 1.229 0.058 [1.116;1.341] 1.192 0.065 [1.068;1.323]  
α6 0.752 0.047 [0.661;0.844] 0.768 0.051 [0.669;0.870]  
α7 1.374 0.063 [1.253;1.499] 1.397 0.069 [1.263;1.536]  
α8 1.050 0.064 [0.928;1.178] 1.075 0.072 [0.936;1.217]  
α9 1.271 0.079 [1.121;1.427] 1.223 0.091 [1.046;1.404]  
α10 1.399 0.064 [1.276;1.527] 1.322 0.069 [1.190;1.458]  
α11 1.201 0.055 [1.095;1.310] 1.179 0.062 [1.060;1.302]  
α12 0.662 0.050 [0.563;0.760] 0.687 0.055 [0.581;0.799]  
α13 0.674 0.050 [0.575;0.770] 0.713 0.054 [0.609;0.817]  
α14 0.934 0.057 [0.822;1.046] 0.895 0.062 [0.773;1.018]  
α15 1.120 0.059 [1.004;1.237] 1.085 0.065 [0.959;1.214]  
α16 0.997 0.059 [0.883;1.114] 0.982 0.068 [0.847;1.116]  
α17 1.019 0.054 [0.914;1.125] 1.064 0.061 [0.944;1.184]  
α18 0.880 0.048 [0.787;0.976] 0.889 0.054 [0.782;0.993]  
α19 1.050 0.054 [0.946;1.156] 1.015 0.059 [0.901;1.130]  
α20 0.748 0.048 ][0.654;0.843] 0.763 0.052 [0.659;0.863]  
α21 0.795 0.062 [0.672;0.914] 0.789 0.071 [0.651;0.928]  
α22 1.122 0.055 [1.015;1.231] 1.081 0.060 [0.965;1.198]  
α23 1.092 0.053 [0.990;1.198] 1.155 0.061 [1.035;1.276]  
ξ1 0.069 0.027 [0.016;0.121] 0.052 0.030 [-0.005;0.113]  
ξ2 −0.270 0.025 [-0.319;-0.220] −0.246 0.030 [-0.306;-0.187]  
ξ3 −0.177 0.026 [-0.228;-0.127] −0.189 0.030 [-0.246;-0.131]  
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 Non-parametric imputation   Complete cases  
 N=3615   N=2955  
Parameter mean sd 95% HDI   mean sd 95% HDI  

ξ4 0.662 0.028 [0.607;0.717] 0.687 0.033 [0.622;0.750]  
ξ5 0.269 0.027 [0.217;0.321] 0.253 0.031 [0.193;0.314]  
ξ6 0.374 0.025 [0.325;0.424] 0.384 0.029 [0.327;0.441]  
ξ7 0.687 0.031 [0.627;0.748] 0.706 0.036 [0.638;0.778]  
ξ8 −0.724 0.027 [-0.777;-0.672] −0.725 0.030 [-0.784;-0.665]  
ξ9 −1.062 0.030 [-1.123;-1.002] −1.082 0.034 [-1.147;-1.016]  
ξ10 0.055 0.027 [0.003;0.107] 0.034 0.030 [-0.026;0.093]  
ξ11 −0.058 0.025 [-0.107;-0.010] −0.056 0.029 [-0.113;0.000]  
ξ12 0.858 0.029 [0.801;0.915] 0.872 0.034 [0.805;0.938]  
ξ13 0.118 0.026 [0.068;0.167] 0.145 0.029 [0.087;0.202]  
ξ14 −0.394 0.026 [-0.446;-0.343] −0.425 0.030 [-0.484;-0.367]  
ξ15 −0.428 0.026 [-0.478;-0.378] −0.438 0.029 [-0.494;-0.382]  
ξ16 −0.728 0.026 [-0.780;-0.679] −0.769 0.030 [-0.827;-0.710]  
ξ17 0.024 0.025 [-0.025;0.074] 0.036 0.029 [-0.021;0.094]  
ξ18 0.134 0.024 [0.087;0.182] 0.153 0.028 [0.098;0.209]  
ξ19 0.383 0.027 [0.331;0.435] 0.375 0.031 [0.313;0.436]  
ξ20 0.580 0.026 [0.529;0.631] 0.602 0.030 [0.542;0.661]  
ξ21 −0.945 0.028 [-0.999;-0.891] −0.962 0.032 [-1.027;-0.900]  
ξ22 0.138 0.026 [0.087;0.188] 0.125 0.029 [0.068;0.182]  
ξ23 0.439 0.027 [0.387;0.491]   0.468 0.032 [0.406;0.530]   
 

 

4 Conclusion 

In large scale assessments researchers are usually interested in explaining competence 
scores by individual characteristics and context variables. Measurement error in compe-
tence scores as well as missing values in background variables capturing individual 
characteristics and context variables need to be accounted for. We propose a Bayesian 
data augmented MCMC approach that simultaneously estimates plausible values and 
accounts for missing values in background variables. With this approach latent relation-
ships between competence scores and background variables may be estimated, which 
efficiently incorporate the uncertainty stemming from only partially observed back-
ground variables into parameter estimation. Especially the iterative use of updated pa-
rameter values from posterior sampling within the full conditional distribution of missing 
values is an appealing feature of our approach. Treatment of missing values in back-
ground variables using the device of data augmentation further has the advantage that, in 
contrast to approaches using dummy indicators to model missingness of values, the 
interpretability of parameters governing the relationship between background variables 
and competencies remains the same as in situations with completely observed back-
ground variables. In a simulation study the proposed approach shows high statistical 
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accuracy as well as the ability to adequately recover the model parameters, even when 
higher rates of missing values occur in the data. The applicability to educational large 
scale research data has been illustrated via an empirical example. 

So far, in large scale assessments the issue of missing values in background variables of 
IRT models has been typically approached by a two-step procedure, first accounting for 
missing values in background variables using indicator variables and then estimating 
plausible values. With this procedure, the latent competence is not efficiently included in 
the imputation of the background variables and the uncertainty stemming from the impu-
tation is not directly accounted for. The proposed approach in this paper allows for sim-
ultaneously accounting for measurement error and missing values in background varia-
bles and, thus, efficiently incorporates both sources of uncertainty in the parameter and 
variance estimation. This approach is not only applicable to competence measurement in 
large scale studies, but to any study in which relationships are estimated for latent con-
structs with explaining variables that include missing values. The evidence from the 
simulation study documents that a moderate sample size of 1000 and 10 measurements 
per individual facilitate accurate parameter estimation, however, given the high accuracy, 
even smaller sample sizes may suffice. 

Future research could focus on extending the suggested estimation approach towards 
other model frameworks and capturing the different demands of large scale assessment 
studies. Extending the proposed approach to incorporate other IRT models would 
strengthen its applicability in empirical studies. As many large scale studies apply a two-
stage sampling scheme, drawing first from a set of schools and then from a set of stu-
dents within these schools, incorporation of hierarchical structures within our estimation 
approach would also extend the applicability of the suggested approach. Furthermore, 
often more than one competence is of interest or change in competence scores is consid-
ered. In future research the proposed approach could be extended to multidimensional 
models including both within and between multidimensionality. 

Acknowledgements 

This paper uses data from the National Educational Panel Study (NEPS): Starting Cohort 
3 '- 5th grader (Schule, Ausbildung und Beruf), doi:10.5157/NEPS:SC3:1.0.0. From 
2008 to 2013, NEPS data were collected as part of the Framework Programme for the 
Promotion of Empirical Educational Research funded by the German Federal Ministry of 
Education and Research (BMBF). As of 2014, the NEPS survey is carried out by the 
Leibniz Institute for Educational Trajectories (LIfBi) at the University of Bamberg in 
cooperation with a nationwide network. Further, we thank the anonymous referees for 
the very constructive comments, which helped to improve this paper. The authors also 
gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft 
(DFG) for their research project (“Analyzing relations between latent competencies and 
context information in the National Educational Panel Study”) within the DFG priority 
programme 1646 (“Education as a Lifelong process”) under grants AS 368/3-1, PO 
1655/2-1, and CA 289/8-1. 



Bayesian estimation in IRT models with missing values in background variables 617

References 

Albert, J. (1992). Bayesian estimation of normal ogive item response curves using gibbs 
sampling. Journal of Educational Statistics, 17, 251-269. 

Allen, N., Carlson, J., Johnson, E., & Mislevy, R. (2001). Scaling procedures. U.S. Depart-
ment of Education: The NAEP Technical Report. 

Aßmann, C., & Boysen-Hofgrefe, J. (2011). A bayesian approach to model-based clustering 
for binary panel probit models. Computational Statistics & Data Analysis, 55, 261-279. 

Aßmann, C., Gaasch, C., Pohl, S., & Carstensen, C. (2016). Estimation of plausible values 
considering partially missing backround information: A data augmented MCMC ap-
proach. In H.-P. Blossfeld, J. von Maurice, J. Skopek, & M. Bayer (Eds.), Methological 
Issues of Longitudinal Surveys (pp. 505-522).Wiesbaden: Springer. 

Béguin, A. A., & Glas, C. A. W. (2001). MCMC Estimation and some Model-Fit Analysis of 
Multidimensional IRT Models. Psychometrika, 66, 541-562. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. 
In F. M. Lord & M. R. Novick, Statistical theories of mental test scores (S. 397-479). 
Reading, MA: Addison-Wesley. 

Blossfeld, H.-P., Roßnach, H.-G., & Maurice, J. (2011). Education as a Lifelong Process. The 
German National Educational Panel Study (NEPS) [Special Issue]. Zeitschrift für Erzie-
hungswissenschaften, 14, 283-299. Wiesbaden: VS Verlag für Sozialwissenschaften 
Springer. 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regres-
sion trees. Chapman & Hall. 

Burgette, L., & Reiter, J. (2010). Multiple imputation for missing data via sequential regres-
sion trees. American Journal of Epidemiology, 172, 1070-1076. 

Chib, S. (2001). Markov Chain Monte Carlo Methods: Computation and inference. Handbook 
of Econometrics, 5, 3569-3649. 

Doove, L., van Buuren, S., & Dusseldorp, E. (2014). Recursive partitioning for missing data 
imputation in the presence of interaction effects. Computational Statistics & Data Analy-
sis, 72, 92-104. 

Duchhardt, C., & Gerdes, A. (2012). Neps technical report for mathematics: Scaling results of 
starting cohort 3 in fifth grade. University of Bamberg: Leibniz Institute for Educational 
Trajectories. 

Edwards, M. (2010). A Markov Chain Monte Carlo Approach to Confirmatory Item Factor 
Analysis. Psychometrika, 75, 474-497. 

Koskin, J., Robins, G., & Pattison, P. (2010). Analysing exponential random graph (p-star) 
models with missing data using bayesian data augmentation. Statistical Methodology, 7, 
366-384. 

Liu, M., Taylor, J., G., M., & Belin, T. (2000). Multiple Imputation and Posterior Simulation 
for Multivariate Missing Data in Longitudinal Studies. Biometrics, 4, 1157-1163; 4(56). 

Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174. 



C. Aßmann, C. Gaasch, S. Pohl & C. H. Carstensen 618

Mislevy, R. (1987). Exploiting auxiliary information about examinees in the estimation of 
item parameters. Applied Psychological Measurement, 11, 81-91. 

Mullis, I., Martin, M., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in math-
ematics. Bosten College: MA: TIMSS & PIRLS International Study Center. 

National Center for Education Statistics. (2013). The nation's report card: A first look: 2013 
mathematics and reading (NCES 2014-451). Washington D.C.: Institution of Education 
Sciences, U.S. Department of Education. 

Neumann, I., Durchhardt, C., Ehmke, T., Grüßing, M. H., & Knopp, E. (2013). Modeling and 
assessing of mathematical competence over the lifespan. Journal for Educational Re-
search Online, 5,  80-109. 

OECD. (2012). PISA 2009 Technical Report. OECD Publishing. 

Patz, R., & Junker, B. (1999). A straightforward approach to Markov Chain Monte Carlo 
methods for item response models. Journal of Educational and Behavioral Statistics, 24, 
146-178. 

Pohl, S., & Carstensen, C. (2012). Scaling the data of the competence tests. NEPS Technical 
Report 14. Bamberg: Otto-Friedrich-University, Nationales Bildungspanel. 

Pohl, S., Gräf, L., & Rose, N. (2014). Dealing with Omitted and Not-Reached Items in Com-
petence Tests - Evaluating Approaches Accounting for Missing Responses in Item Re-
sponse Theory Models. Educational and Psychological Measurement, 74, 423-452. 

Rasch, G. (1960). Probabilistic Models for some Intelligence and Attainment Tests. Danish 
Institute for Educational Research. 

Rubin, D. (1987). Multiple imputation for Nonresponse in Surveys. J. Wiley & Sons. 

Schafer, J. (1999). Multiple Imputation: a primer. Statistical Methods in Medical Research, 8, 
3-15. 

Skopek, J., Pink, S., & Bela, D. (2013). Starting cohort 3: Grade 5 (sc3). suf version 1.0.0. 
data manual (neps research data paper). University of Bamberg, Leibniz Institute for Ed-
ucational Trajectories, National Educational Panel Study. 

Tanner, M., & Wong, W. (1987). The calculation of posterior distributions by data augmenta-
tion. Journal of American Statistical Association, 92, 528-540. 

van Buuren, S., & Groothuis-Oudshoorn, K. (1987). mice: Multivariate imputation by chain 
equations. Journal of Statistical Software, 45, 1-67. 

Weinert, S., Artel, C., Prenzel, M., Senkbeil, M., Ehmke, T., & Carstensen, C. (2011). Devel-
opment of competencies across the life span. Education as a Lifelong Process. The Ger-
man National Educational Panel Study (NEPS), S. 67-86. 

 

 

 


