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Investigating DIF and extensions using an LLTM approach and also an individual 
differences approach: an international testing context1 

YIYU XIE2 & MARK WILSON 

Abstract 
This study intends to investigate two ways to generalise differential item functioning (DIF) by 

grouping of items that share a common feature, or an item property as in the Linear Logistic Test 
Model (LLTM). An item “facet” refers to this type of grouping, and DIF can be expressed in terms of 
more fundamental parameters that relate to the facet of items. Hence the differential facet functioning 
(DFF) model, a particular version of the LLTM, helps to explain the DIF effects more substantively. 
Using the mathematics data from the Program for International Student Assessment (PISA) 2003, this 
study shows that modeling the DFF effect through an interaction of the group-by-facet parameter rather 
than DIF effect on the individual item level can be handled easily with the NLMIXED procedure of 
SAS. We found that the results are more interpretable when the bias is interpreted on the facet level 
rather than the item level. Analogous to the multidimensional DIF model, one natural extension of the 
DFF model is to make the model multidimensional when DFF facets (i.e., LLTM facets) are considered 
as dimensions. This extension, multidimensional DFF (MDFF), is also investigated. The MDFF model 
allows individual differences to be modeled on the dimension that exhibits a DFF effect. However, it is 
always recommended to check the individual DIF estimates and construct a substantive analysis first 
before conducting DFF and MDFF analysis. 
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As international studies of educational achievement have gained increasing popularity, 
test fairness arises as a vital issue in such studies. Researchers are generally concerned with 
the question of whether an item is fair for members of certain focal groups compared to 
members of a reference group. In psychometrics, a statistical analysis to test the fairness on 
the item level is called a differential item functioning (DIF) analysis. An item is said to be 
fair, or unbiased, if it is equally difficult for persons of the focal and the reference groups 
who are matched with respect to the underlying dimension that the test is intended to meas-
ure. DIF occurs when persons at the same point on the underlying dimension respond differ-
ently to an item given his/her group membership, such as gender, ethnicity, etc. 

Numerous studies have been focused on the procedures for detecting DIF (for an over-
view, see Millsap & Everson, 1993). The Mantel-Haenszel procedure modified by Holland 
and Thayer (1988) is a theoretical milestone in psychometrics. It is a classical approach to 
detect DIF. Dorans and Kulick (1986) developed a standardized p-difference index, which is 
also broadly used. There are other approaches in item response modeling, including using 
loglinear item response models (Mellenbergh, 1982; Kelderman, 1989), logistic regression 
models (Swaminathan & Rogers, 1990), area measures (Raju, 1988), Wald statistics (Lord, 
1980) and likelihood-ratio tests (Thissen, Steinberg & Wainer, 1988). Yet all these studies 
remain largely technical. They are just various approaches to show how DIF in individual 
items affects the distribution of the test scores in different groups. William Stout pointed out 
in his presidential address given at the 67th annual meeting of the Psychometric Society held 
in Chapel Hill, North Carolina (2002), “one of the subtle ways that DIF has been compart-
mentalized is the almost total disconnect that has evolved between substantive (content-
based) and DIF (statistical) approaches to the understanding and practice of test fairness”. In 
many situations, no explanation can be given why some substantively sound items show 
large DIF values statistically whereas some other items expected to be biased from the sub-
stantive analysis do not display DIF at all. In an attempt to produce substantively interpret-
able DIF results, Shealy and Stout (1993a, b) developed a multidimensional method, called 
SIBTEST, to model DIF. Analogous to DIF which measures the bias at the individual item 
score level, differential bundle functioning (DBF), and differential test functioning (DTF), 
are defined in the multidimensional model to measure the bias at the item bundle score level 
and the test score level. Wainer, Sireci, and Thissen (1991) also illustrated how to model DIF 
at the testlet score level. 

This study investigates a more general way to model DIF as well, namely differential 
facet functioning (DFF). The term DFF was first introduced by Engelhard (1992). He sug-
gested that “studies of differential facet functioning (DFF) can be conducted by a variety of 
procedures that are conceptually similar to current approaches for studying differential item 
functioning" (p. 175). An item facet refers to a group of items that share a common feature, 
or an item property. Hence DIF can be expressed in terms of more fundamental parameters 
that relate to the properties of items. Meulders and Xie (2004) presented an approach to 
explore DFF using a general software package that allows the flexibility of building and 
estimating a variety of models. They demonstrated on a verbal aggression data set that DFF 
can be viewed as a parsimonious way to summarize DIF. They also showed one extension of 
the DFF model that includes random interaction parameters over persons. Denoted as ran-
dom-weight differential facet functioning (RW-DFF), it allows the model to capture the 
heterogeneity of the interactions between person and item via an interaction parameter. 
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Most educational surveys report students’ performance at the national level for interna-
tional comparisons in their publicly released documents. The results are usually arranged to 
show national means on each subject or content area. Under the frameworks of these assess-
ments, items are designed using several domains. For instance, the Trends in International 
Mathematics and Science Study (TIMSS) 2003 assessment is framed by two domains: con-
tent and cognitive. The Program for International Student Assessment (PISA) 2003 frame-
work for mathematics defines three domains, content, process and situation. Each item be-
longs to one category in each domain. Thus, it may be more appropriate to apply the DFF 
approach rather than the DIF approach to such data; i.e., the results might be more meaning-
ful if the facets explain, at least in part, the DIF effects. 

 
 

Model 
 
For dichotomously scored responses, the Rasch model (1960) defines the probability of a 

response in item i for person n as 
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where θ  and δ  are the person proficiency and item difficulty parameters, respectively. It is 
also common in psychometrics to express Equation 1 in logit form: 
 
 log n iit θ δ= − . (2) 

 
The Rasch model explains the variation in the response data through individual person 

and item parameters. 
Fischer (1973) developed a linear logistic test model (LLTM) to estimate the effects of 

item properties instead of individual items. This model is useful in testing hypotheses on the 
cognitive operations involved in the process of solving the items. The logit expression of the 
LLTM is: 
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where kη  is the difficulty parameter for item property k and ikQ  is the indicator weight of 
item i on item property k. In the application that follows, ikQ  takes the value of 1 if item i 
belongs to item property k, and 0 otherwise, but other values are also possible. For identifica-
tion purpose, the mean of the person parameters is constrained to be 0, so an item intercept is 
needed for ikQ  = 1 for all items when k = 0. When the mean of the person parameters is free 
to be estimated, k would take values from 1 to K in the above equation. Note Q is a 
I K× matrix, “a priori” determined from theory where I and K are total numbers of items 
and item properties or facets, respectively. 
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When DIF occurs, the logit expression in the Rasch model becomes 
 

 log n i n iit Zθ δ γ= − + ,  (4) 
 

where Zn is an indicator variable of person n’s group membership, and iγ  is the DIF parame-
ter for item i. The additional term in Equation 4 can be viewed as an interaction term be-
tween item i and person group membership Z. The interpretation of the DIF parameters de-
pends on the coding scheme of the variable Z. If dummy coding is used, Equation 4 for the 
reference group is the same as Equation 2, and the logit expression of the focal group is 
 
 log n i iit θ δ γ= − + . (5) 

 
If contrast coding is used where the reference group takes the value of -1 and the focal 

group takes the value of 1, the logit expressions of the two groups become 
 

 log n i iit θ δ γ= − − , and  
 log n i iit θ δ γ= − + , (6) 

 
respectively. 

By analogy with the LLTM treatment, a DFF term can be added to Equation 3 as well: 
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Here, kγ  is the DFF parameter for item property k and k runs from 1 to K for the DFF 

term. If contrast coding is used for the indicator variable Z, Equation 7 for the reference and 
focal groups turns into 
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for the two groups, respectively. 
 
 
Data 

 
The data under investigation are from the Program for International Student Assessment 

(PISA) 2003 international database. The PISA 2003 study has a focus on Mathematics and 
developed 85 mathematics items along three domains: content, process and situation. There 
are four categories of mathematical content identified by the Organization for Economic 
Cooperation and Development (OECD): space and shape, change and relationships, quan-
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tity, and uncertainty. The process domain defines three cognitive demands imposed by dif-
ferent mathematical problems. They are reproduction, connections, and reflection. The PISA 
study also classifies the situations represented by the stimulus material for each item. There 
are four sorts of situations: personal, educational or occupational, public, and scientific 
situations.3 Table 1 shows the breakdown by each domain of the 85 items. 

Data from countries that have comparable mean performance on the overall mathematics 
scale were chosen to investigate DFF. This is to minimize any overall country effect that 
may contribute to the difference in performance. Two groups of countries were selected, 
Canada and Japan, and the United States and Spain. The mean of the mathematics scale of 
the international comparison is set to 500 with a standard deviation of 100. Table 2 lists the 
mean scores and standard errors of the four selected countries. 

The publicly released data has 84 mathematics items for these countries. For Canada, one 
item is not available, so there are 83 items in total. Among all items, 13 items were scored 
polytomously. They were recoded to just 0 and 1 for the current study.4 The recoding does 
not substantially affect the purpose of the study much as the investigation is aimed at the 
facet rather than individual item level, but the estimation process is much easier to carry out. 
A random sample of 500 students was drawn for each country. 

 
 

Table 1: 
Distribution of items by the domains 

 
Content Number 

of items 
Process Number 

of items 
Situation Number 

of items 
Space and shape 20 Reproduction 26 Personal 18 
Change and 
relationship 

22 Connections 40 Educational or 
occupational 

20 

Quantity 23 Reflection 19 Public 29 
Uncertainty 20   Scientific 18 

 
 

Table 2: 
Mean scores and standard errors of selected countries 

 
Country Mean (S. E.) Country Mean (S. E.) 
Canada 532 (1.8) U. S. 481 (2.9) 
Japan 534 (4.0) Spain 485 (2.4) 

 

                                                                                                                         
3 For more details about each domain, see The PISA 2003 Assessment Framework: Mathematics, Reading, 

Science, and Problem Solving Knowledge and Skills (OECD, 2003e).  
4 All response categories greater than 1 were recoded to 1. Alternate recodings (such as setting the scores 0 

and 1 to be 0, and those above to 1) would also be interesting, but are beyond the scope of this paper. 
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Results 
 
The two groups of data were analyzed separately using the SAS computer program, in 

particular, its NLMIXED procedure (SAS Institute, 2004). At first, the Rasch model and 
exploratory DIF models were fit to each group. For an exploratory DIF model the DIF pa-
rameters for all items are estimated simultaneously. A main effect term, the country effect, 
was also added to the model to account for group mean difference in the performance. Note 
this country effect can also be modeled through the latent regression model of θ with country 
as the regressor. The results for these two approaches are essentially the same. In both com-
parisons, contrast coding is used. Canada and the United States are set as reference groups. A 
design matrix of I item indicator variables is necessary for the Rasch and DIF analyses. In 
this case, it is an 84 × 84 matrix with 1s on the diagonal line and 0s for the remainder. In 
order for the exploratory DIF models to be identified, only I-1 DIF parameters are included 
in the model. Thus, there are 82 DIF parameters for the Canada-Japan comparison with the 
last item-by-country interaction omitted, and 83 DIF parameters for the U.S.-Spain compari-
son with the last item-by-country interaction omitted. The model fit statistics are reported in 
Table 3 and Table 4.  

Table 3 shows that the AIC and BIC values are smaller for the DIF model compared to 
the Rasch model for the Canada-Japan data. Comparison of the deviance using the likeli-
hood-ratio (LR) test also indicates that the DIF model has a better fit (χ2=589, df=83, 
p<0.001). The estimated country effect is -0.338 (SE=0.145), indicating that Japanese stu-
dents perform better than Canadian students overall. This effect is significant at α=0.05 but 
not at α=0.01. Table 4 shows that the AIC indicates the DIF model fits the U.S.-Spain data  
 

Table 3: 
Model fit statistics for the Canada-Japan comparison 

 
Model No. of 

Parameters5 
Deviance 

-2*log-likelihood 
AIC BIC 

Rasch 85 24430 24600 25017 
DIF 168 23841 24177 25001 
LLTM 10 27008 27028 27077 
DFF 19 26850 26888 26981 

 
Table 4: 

Model fit statistics for the U.S.-Spain comparison 
 

Model No. of 
Parameters 

Deviance 
-2*log-likelihood 

AIC BIC 

Rasch 85 24638 24808 25226 
DIF 169 24258 24596 25425 
LLTM 10 27352 27372 27421 
DFF 19 27294 27332 27425 

                                                                                                                         
5 A parameter for the variance of the person distribution is also estimated in each model. 
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better whereas the BIC value is smaller for the Rasch model. According to the LR test, the 
DIF model shows significant improvement in the deviance (χ2=380, df=84, p<0.001). The 
estimated country effect is -0.028 (SE=0.149), indicating that Spain has higher performance 
but this is not statistically significantly higher than the United States. Closer examination of 
the individual DIF estimates reveals that there are 18 and 14 DIF parameters statistically 
significantly different from 0 at α=0.05 level for the two groups respectively. It is not an 
easy task to derive sound explanations of why these items exhibit DIF when looking at indi-
vidual DIF estimates. Alternatively, we can use the results to check if any DFF-like patterns 
existed for these DIF effects. Table 5 and Table 6 show the breakdown by the domain and 
the direction of estimated values for the two contexts. 

The tables show that for some categories of a domain, the DIF effects are consistently in 
favor of one country. According to Equation 6, a positive estimate for the DIF parameter 
means the probability for the reference group to get the item correct is lower. For example, 
among the 14 DIF items found from the U.S.-Spain comparison, 4 belong to the content of 
quantity, and they are all in favor of Spanish students. Thus, in the next step, the LLTM and 
DFF models were fit to the two data groups to see if they can help model the patterns. 

In the LLTM and DFF analyses, the design matrix is the Q matrix in Equation 3 and 
Equation 7. Each domain is considered as one facet. As there are 3 facets with multiple cate-
gories in each facet in the PISA data, a coding scheme similar to the one for categorical 
variables in linear regression analysis is used. For each facet with m categories, m-1 indicator 
variables are needed. The interpretation of each indicator variable is always in reference to  
 

Table 5:  
Distribution of DIF items for the Canada-Japan comparison 

 
Content + - Process + - Situation + - 
Space and 
shape 

2  Reproduction 3 2 Personal 1 2 

Change and 
relationship 

1 2 Connections 2 7 Educational or 
occupational 

3 1 

Quantity 2 3 Reflection 1 3 Public 2 5 
         
Uncertainty 1 7    Scientific  4 

 
Table 6:  

Distribution of DIF items for the U.S.-Spain comparison 
 

Content + - Process + - Situation + - 
Space and 
shape 

2  Reproduction 5 1 Personal 3  

Change and 
relationship 

1 2 Connections 5 1 Educational or 
occupational 

1 1 

Quantity 4  Reflection 1 1 Public 6 1 
         
Uncertainty 4 1    Scientific 1 1 
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the base category. In theory, any category can be chosen as a base category. The aim is to 
find a relationship among the categories so as to make the interpretation easier. For the facet 
of content, space and shape, change and relationship, quantity and uncertainty are closely 
related to geometry, algebra, arithmetic and statistics and probability, respectively, which are 
four common curricular branches of mathematics. For the facet of process, the categories 
were built to have an association with each other. The reproduction process is needed in 
those items that require the reproduction of practiced knowledge. The connection process 
builds on reproduction to solve problems that still involve or develop beyond the familiar 
settings. The reflection process builds further on the connection process. It requires some 
insight and creativity from the student. For the facet situation, the categories from personal 
to scientific show an increasing distance between the student and the situation. The personal 
situations are those that have the most direct impact on the students whereas the scientific 
situations are the most abstract ones. One factor is also called into play in the decision of 
choosing the base category. Given the information from Table 5 and Table 6, it is better to 
choose a base category that we would expect to exhibit only a small DFF effect. Thus, dif-
ferent base categories were set for the two data sets. For the Canada-Japan comparison, 
quantity, reproduction process and personal situations were set as the reference categories 
for the three facets. For the U.S.-Spain comparison, change and relationship, reflection 
process and scientific situations were set as the base categories. Thus, combined with an 
intercept variable, there are a total of 9 columns in the Q matrix. 

Table 3 and Table 4 also list the fit statistics of the LLTM and DFF models for the two 
data groups. Compared with the model fit results from the Rasch model, the LLTM produces 
larger deviance, AIC and BIC values. The goodness of fit of the LLTM is always lower than 
the Rasch model, this is because the number of predictors that account for item effects are 
reduced from 84 to just 9, and the LLTM does not use an error term for fitting the item pa-
rameter (Fischer, 1973). Nevertheless, the estimates from the LLTM are worth checking to 
see how they conform to the intention of the test constructers. Table 7 and Table 8 present 
the parameter estimates from the LLTM and DFF models for the two groups. Once again, a 
country effect was added to the DFF model. 

According to Equation 3, a positive estimate in the LLTM means the probability of get-
ting the correct answer on the item belonging to the specified category of a facet is lower 
compared to that of the reference category. Even though the base categories of the facets are 
different for the two data, the estimates tell essentially the same story. For the content areas, 
both space and shape, and uncertainty appear to be more difficult than quantity, whereas 
change and relationship is easier. For the Canada-Japan group, uncertainty is the most diffi-
cult content among the four, while for the U.S.-Spain group, space and shape is the most 
difficult one. As expected, both the connection process and the reflection process are harder 
than the reproduction process with the reflection process being the most difficult. For the 
situations facet, the estimates for the Canada-Japan group show an increasing difficulty from 
the personal to the scientific situations, though the educational/occupational situation is not 
statistically different from the personal situation. For the U.S.-Spain group, the estimates for 
the three situations, educational/occupational, public and scientific, are quite close together. 
Therefore, the classification of the situations does not add to our understanding for the U.S.-
Spain data. 
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Table 7:  
Parameter estimates for the Canada-Japan comparison 

 
 LLTM DFF 
         η SE(η)         γ SE(γ) 
Intercept -1.584* 0.057   
Content (Quantity) 

Space and shape 0.259* 0.045 0.157* 0.045 
Change and relationship -0.383* 0.047 0.124* 0.047 
Uncertainty 0.374* 0.044 -0.162* 0.044 

Process (Reproduction)     
Connection 0.874* 0.038 -0.053 0.038 
Reflection 1.548* 0.046 0.135* 0.046 

Situation (Personal)     
Educational/Occupational 0.011 0.049 0.223* 0.049 
Public 0.194* 0.044 0.063 0.044 
Scientific 0.590* 0.054 -0.148* 0.054 

* significant at α=0.05 level 
 

Table 8: 
Parameter estimates for the U.S.-Spain comparison 

 
 LLTM DFF 
         η SE(η)         γ SE(γ) 
Intercept 0.523* 0.056   
Content (Change and relationship) 

Space and shape 0.637* 0.050 0.123* 0.050 
Quantity 0.232* 0.046 0.125* 0.046 
Uncertainty 0.485* 0.048 0.023 0.048 

Process (Reflection)     
Reproduction -1.670* 0.046 0.130* 0.046 
Connection -0.875* 0.042 0.037 0.042 

Situation (Scientific)     
Personal -0.370* 0.053 -0.105 0.053 
Educational/Occupational -0.040 0.054 -0.173* 0.054 
Public -0.015 0.048 -0.015 0.048 

* significant at α=0.05 level 
 
Table 3 shows that the DFF model has better fit than the LLTM for the Canada-Japan 

group as the DFF model has lower AIC and BIC values, and a statistically significant im-
provement in the deviance (χ2=158, df=9, p<0.001). Table 4 shows that the LR test (χ2=58, 
df=9, p<0.001) and AIC indicate that the DFF model fits the U.S.-Spain data better whereas 
the BIC indicates that the DFF is no better than the LLTM. The estimated country effects for 
the two data sets are -0.129 (SE=0.056) and -0.107 (SE=0.055), respectively. There is no 
significant country effect at the α=0.01 level for the two data sets. All these results are con-
sistent with those from the comparisons between the Rasch and DIF models.  
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The DFF estimates presented in Table 7 and Table 8 point out that some DFF terms are 
statistically significantly different from 0 for each data set. When the results in these Tables 
are compared with the results from Table 5 and Table 6, the significant DFF parameters 
reflect the patterns of the significant DIF parameters to some extent. For reporting purposes, 
it is more meaningful to conclude that Japanese students have higher probabilities to get 
correct answers on the items that belong to the space and shape, change and relationship 
content areas, or those using the reflection process, or those that have educa-
tional/occupational situations in the stimulus materials. On the other hand, items that belong 
to the content area of uncertainty, or those involving the scientific situations are in favor of 
Canadians. Compared to American students, the Spanish have higher probabilities to get 
correct answers on the items that belong to the space and shape, and quantity content areas, 
or those using the reproduction process. Items that have the educational/occupational situa-
tions in the stimulus materials are in favor of American students. Since contrast coding was 
used, the effect size of the DFF parameter equals (2 )exp γ , according to Equation 8. The 
interpretation of the effect size is that, for example, the odds ratio of getting the items requir-
ing the reflection process correct for Japanese versus Canadian students after correcting for 
differences in mean performance between the two countries is 1.3. 

The DFF effect is more prominent in the Canada-Japan data, since the DFF estimates and 
consequently the effect sizes are relatively larger than those in the U.S.-Spain data. In addi-
tion, all fit statistics, -2*log-likelihood, AIC and BIC, show that DIF or DFF need to be 
modeled for the Canada-Japan data. Therefore, further investigation was carried out for this 
data group only. 

 
Multidimensional DFF 

 
As the PISA mathematics data has three domains and the DFF effects are found in each 

domain, one natural extension of the DFF model is to make the model multidimensional if 
each DFF facet is considered as a dimension. This is also analogous to the multidimensional 
DIF model. The multidimensional DIF model extends the unidimensional DIF model speci-
fied in Equation 4 to be 

 
 log n id n idit ZΘ δ γ= − + , (9) 

 
where 1 2( , , , )n DΘ θ θ θ ′= , a vector of proficiency parameters for person n on D dimensions. 
The item difficulty parameter δid and the DIF parameters γid are all dimension dependent. 
The DIF term in Equation 9 can be replaced by a DFF term so that the DFF parameters can 
be dimensional as well. The logit expression of the multidimensional DFF model turns into 
 
 log n id n kdit ZΘ δ γ= − + . (10) 

 
Note, the items are analyzed at the item level as the multidimensional Rasch model does, 
whereas the interaction effect is modeled at the facet level to yield a more substantively 
sound explanation. Figure 1 can be used to illustrate the relation between the multidimen-
sional DIF (MDIF) and multidimensional DFF (MDFF) models. Suppose there are 6 items  
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Item D1 D2 

1 √  
2 √  
3  √ 
4 √  
5 √  
6  √ 

 
Figure 1: 

Diagram of a between-item multidimensionality case. 
 
 
and 2 dimensions. Item 3 and item 6 are the ones that exhibit DIF effects. Since the DIF 
effects both appear on the second dimension, a DFF parameter can be modeled instead of 
two individual DIF parameters. This is equivalent to constraining the DIF parameters for 
item 3 and 6 to be equal. Loading the two items on an additional dimension allows the model 
to examine the individual differences of the performance on the facet, whereas the unidimen-
sional model only captures the group difference. Adams, Wilson and Wang (1997) distin-
guished two types of multidimensionalities. When each item in a test measures only one 
underlying dimension of the person proficiency, this is called between-item multidimension-
ality. If an item measures more than one dimension, it is called within-item multidimension-
ality. Figure 1 illustrates an example of between-item multidimensionality. 

In the case of the Canada-Japan data, each significant DFF effect from the unidimen-
sional DFF model can be considered as a dimension. However, high dimensionality data are 
hard to estimate. Here, the reflection process is selected to be one underlying dimension to 
illustrate the MDFF model. Furthermore, one dimension of the overall underlying dimension 
θ is needed. Thus, it is a within-item multidimensional model. A two-dimensional DFF 
model was fit to the data with ( , )overall γΘ θ θ= . This time, the means of the two countries are 
modeled through the multivariate regression of Θ, with country as the regressor. The model 
is constrained on the item side, so the group means on each dimension are free to be esti-
mated. This multidimensional latent regression analysis was performed using the ConQuest 
software (Wu, Adams & Wilson, 1997). Table 9 and Table 10 present results from the 
MDFF analysis. 

In Table 9, the estimates for the constant are the mean performance of the reference 
country, which is Canada. The mean performance for Canadians on the second dimension is 
lower than that on the first one. That is to say, Canadian students’ performance on the items 
requiring the reflection process is lower than that on the overall mathematics scale. The 
estimates for the country regression coefficient show that Japan has higher performance than 
Canadians on both dimensions. To better interpret the regression coefficient estimates, it is 
helpful to calculate the effect sizes of the country regression coefficient by dividing the 
estimates of the regression coefficients by the unconditional standard deviation of the latent 
dimensions.6 The unconditional model was also fit to the data without the regressor. Table  
 
                                                                                                                         
6 The procedure to compute the effect size is described in ConQuest manual on multidimensional latent re-
gression. 
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Table 9:  
Regression coefficient estimates from the MDFF 

 
 Dimension 
Regression Variable 1 2 
Constant 0.551 -0.211 
Country 0.283 0.203 

 
 

Table 10:  
Variance-covariance matrix from the MDFF 

 
 Dimension 

Dimension 1 2 
1 1.241 0.026 
2 0.026 0.197 

 
 

10 shows that the variances of the two latent dimensions from the conditional model are very 
different. The variances obtained from the model without the regressor do not differ much 
from the above results. The effect sizes of the country regression coefficient are 0.254 and 
0.454. Therefore, on the overall dimension, the country difference is 25.4% of a standard 
deviation whereas it is 45.4% on the second dimension. This indicates that the country dif-
ference is more prominent on the second dimension. Table 10 also shows that the facet (re-
flection) effect between the two countries is almost orthogonal to the overall ability dimen-
sion, and that the variance of the reflection effects is about 16 percent of the size of the vari-
ance of the overall ability. 
 
 
Conclusion 

 
This study demonstrates the use of the LLTM, DFF and MDFF models in this interna-

tional assessment data set. The LLTM is useful in testing how the response data conform to 
the structure of the test design. The DFF model helps to explain the DIF effects more sub-
stantively (see discussion of specific effects above). An important next step in this research 
agenda will be to see how well the findings about country differences above relate to cur-
riculum and other differences between the countries. Modeling the DFF effect through an 
interaction of the group-by-facet parameter rather than DIF effect on the individual item 
level can be handled easily with the NLMIXED procedure of SAS. However, it is always 
recommended to check the individual DIF estimates and do a substantive analysis first. The 
multidimensional extension of the DFF model allows individual difference to be modeled on 
the dimension that exhibits the DFF effect. Again, relating these findings to curricular and 
other educational differences between the countries is an important next step. The finding 
that there are relatively large country differences on the secondary reflection dimension 
seems particularly interesting here. 
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There are many possible extensions of the aforementioned models. For example, in the 
LLTM, parameters can be added to test interactions between the item properties. It is also 
quite straightforward to model DFF and MDFF for polytomous data. The type of data that 
suits all these models the most is skills diagnosis assessment data. Tatsuoka (1983, 1990, 
1995)’s Rule Space used a skill Q matrix defining the mastery and nonmastery of a prede-
termined list of skills. When the methodology of detecting DIF is combined with the pattern 
recognition approach from Tatsuoka’s Q matrix, the DFF model can become a valuable 
model to compare group performances at the skills-level. Following Stout’s (2002) assertion 
in his presidential address that “formative assessment skills diagnosis is the new test para-
digm”, we can predict that a blended summative assessment and formative assessment trend 
can be expected to be a fruitful direction for international assessment as well. It would be 
informative, to researchers and the general public as well, to acquire results from 
DFF/MDFF models that address these three important aspects of psychometrics, test fair-
ness, skill diagnosis, and dimensionality. 
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