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Abstract 
This study addresses the sample size question for multilevel latent contextual models (MLCM), 
which are commonly used in educational science to assess the effects of instructional quality. In terms 
of MLCM, only few studies have investigated whether the Bayesian toolbox helps to overcome 
small-sample issues. The main goal was to investigate the performance of maximum likelihood ver-
sus non, weakly, and highly informative Bayesian estimation techniques under small-sample condi-
tions. We assumed that incorporation of prior information derived from TIMSS data would help to 
produce reasonable results with small samples. As expected, our results showed that the Bayesian 
approaches outperformed ML estimation under all conditions when informative priors were used, as 
these yield almost unbiased and highly accurate estimates even under unfavourable conditions (small 
number of level-2 groups and small group size). The study results are discussed in the light of pub-
lished findings. Implications for applied educational research are derived.  
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Aside from ability/competence testing, the assessment of instructional features (e.g., in-
structional quality) and their effects on student outcomes represent a central challenge to 
educational researchers. Modelling instructional features (using student data) and contex-
tual effects is not only theoretically and methodologically complex (e.g., Marsh, Lüdtke, 
Robitzsch, Trautwein, Asparouhov, Muthén, & Nagengast, 2009; Lüdtke, Marsh, Robi-
tzsch, Trautwein, Asparouhov, & Muthén, 2008), but also requires a relatively large num-
ber of clusters/groups (i.e., school classes to be observed). The latter is particularly true if 
the estimation approaches used are based on asymptotic theory (e.g., full maximum like-
lihood, FML). Kreft (1996) suggested using 30 clusters (of size 30 each). Maas and Hox 
(2005) recommend at least 50. However, a review by Dedrick, Ferron, ... Lee (2009) 
showed that only 21 out of 99 multilevel studies (identified in 13 journals from the fields 
of education, psychology, and sociology) met the 30/30 Kreft guideline. According to 
McNeish and Stapleton (2016a), this finding suggests that researchers may not have the 
resources to obtain adequately large samples. Clearly, small samples not only cause biased 
estimates (Lüdtke, Marsh, Robitzsch, & Trautwein, 2011), but also lead to serious conver-
gence problems (see Zitzmann et al., 2015). Estimation approaches are therefore needed 
that allow applied researchers to overcome this unsatisfactory situation. A review by 
McNeish and Stapleton (2016a) identified growth in the body of literature on this issue in 
the last 10 years. In addition to the use of small-sample corrections to the ML estimator 
(e.g., Kenward-Roger correction), the Bayesian approach has recently been discussed 
more extensively (Depaoli & Clifton, 2015; Hox et al., 2012; McNeish, 2016; Stegmueller, 
2013; Zitzmann et al., 2015, 2016). 
While published Bayesian studies have produced promising results, providing unbiased 
estimates for relatively small sample sizes, the following deficiencies remain to be over-
come: (1) Extant studies often start with relatively large numbers of groups, for instance, 
25, 40 or 50 (Depaoli & Clifton, 2015; Zitzmann et al., 2015, 2016). Only Hox et al. (2012) 
and McNeish (2016; McNeish & Stapleton, 2016b; Gelman, 2006) carried out simulations 
with fewer clusters. (2) McNeish and Stapleton (2016a) pointed out that more studies on 
Bayesian multilevel models are needed – especially with regard to the effect of various 
priors. In a similar vein, Zitzmann et al. (2015, p. 702) argued that it would be interesting 
to “incorporate previous findings from related studies by specifying an informative prior 
for the group-level effect”. (3) Few studies advise researchers on what to do in small-
sample situations (McNeish & Stapleton, 2016b, p. 496).  
The present study seeks to address these shortcomings on the basis of a Monte Carlo sim-
ulation of the performance of ML and Bayesian estimation for very small samples (as few 
as 10 clusters). Further, historical data from Trends in Mathematics and Science Studies 
(TIMSS) was used to derive informative priors that enable researchers to obtain more sta-
ble estimates of group-level effects. Exploiting historical data to generate informative pri-
ors that facilitate Bayesian parameter estimation is an approach that has hitherto been 
rarely applied (König & Van de Schoot, 2017). Thus, in the present study we show how 
applied educational researchers can use existing knowledge to obtain reliable results in 
small-sample situations. Furthermore, a comparison of non, weakly, and highly informa-
tive priors adds important knowledge to the above-mentioned question of how different 
prior specifications influence Bayesian estimation. In summary, this study constitutes one 
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of the first examples that show how this statistical approach can be applied successfully in 
educational science. This is of practical importance, since Bayesian analysis is becoming 
(or will soon be) increasingly popular in educational research and is now available in most 
software packages (even in SPSS 25, IBM 2017).  
The structure of this paper is guided by the question “How many classes are needed to 
accurately assess instructional quality and its contextual effects on student outcomes (e.g., 
abilities)?” First, doubly latent multilevel models as state-of-the-art specifications of in-
structional quality in educational research are introduced. Second, the state of research 
regarding the sample-size question is presented. Third, in the main part, the study design 
of the Monte Carlo simulation is explained, and it is shown how prior distributions for 
Bayesian analysis are derived from historical large-scale data sets. The simulation results 
in terms of convergence rate, relative bias and relative root mean squared error (RMSE) 
are then presented. Finally, these results are discussed in the context of previous studies of 
sample-size requirements in SEM and multilevel frameworks. Implications for measuring 
educational instruction using student data are given.  

The multilevel latent contextual model 

Theoretical assumptions and prerequisites  

Marsh et al. (2009) introduced the multilevel latent contextual model (MLCM) to accu-
rately assess instructional quality and its effects. Like all structural equation models, it 
consists of a measurement part and a structural part. In relation to the former, Marsh,  
Lüdtke, and colleagues (e.g., Marsh et al., 2009) developed doubly latent multilevel mod-
els (DLMMs) against the background of climate studies that are interested in the effects 
of classroom or teacher characteristics on students’ learning (Morin, Marsh, Nagengast, & 
Scalas, 2014, p. 144). Thus, these models are mainly referred to – and applied – in con-
nection with climate constructs (e.g., classroom climate, classroom competitiveness and 
teacher’s autonomy support). Climate constructs are of a reflective nature, where the term 
“reflective” refers to the assumption that the reports of students within a class reflect the 
same (latent) classroom climate variable and are thus aggregated at the class-level. Diver-
gences between student perceptions are considered to be a measurement error and there-
fore a source of unreliability of the assessment of the classroom climate construct via stu-
dent data (ibid., p. 146). Furthermore, students’ deviations from the class mean have “no 
substantive meaning in relation to the interpretation of the L2 climate effects” (ibid., p. 
147). The reason for this is that climate constructs refer to class-level features (e.g.: “Our 
math teacher cares about how we feel”), whereas individual constructs refer to individual 
students (e.g.: “My math teacher cares about how I feel”). Assessing the class-level refer-
ent calls for multilevel models (ibid.). With regard to the structural part, the modelling of 
contextual effects was also discussed in Marsh et al. (2009). As in Zitzmann et al. (2016), 
predicting an observed dependent variable (that is assumed to be measured without meas-
urement error) is of central interest in the present study.  
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Statistical assumptions and notation 

Ignoring the multilevel structure of the data would yield confounded effects that represent 
a mixture of class-level and student-level characteristics. Other substantive reasons for 
multilevel modelling (in particular with regard to climate constructs) relate to appropri-
ately considering measurement AND sampling error (e.g., Lüdtke et al., 2008). While 
measurement error refers to unreliability that results from sampling only a finite number 
of items, sampling error refers to unreliability that results from sampling only a finite num-
ber of persons. Considering both types of error leads to climate constructs that are doubly 
latent (with regard to both items and persons) – which gives DLMM its name. Equation 
(1) shows the algebraic notation of DLMM (Marsh et al., 2009, p. 776), the measurement 
model (see Table 1):  
 

Table 1: 
Description of Parameters in Equation 1 

Parameters Comments 
𝑌 student answer 

𝑙	 … 	𝐿 indicators of the latent construct of interest 
𝑖 student 
𝑗 school class 
𝑦 latent construct of interest 

𝜆*+,- within-factor loadings  
𝜆*+,. between-factor loadings  
𝑈+01  unobserved true score of construct y at level-1  
𝑈+0 unobserved true score of construct y at level-2 
𝑅*+01  level-1 residuals  
𝑅*+1  level-2 residuals  

 
𝑌*01 = 𝜇*+ + 𝜆*+,- ∗ 𝑈+01 + 𝑅*+01 + 𝜆*+,. ∗ 𝑈+1 + 𝑅*+1	. (1) 

 
The variance of student (i in school class j) answers (Y) to an indicator item (l) of the latent 
construct (y) is decomposed into a within and a between part as well as a factor and an 
error component (Muthén, 1991, p. 345; Equation (2)):  
 

𝜎8*019 = 𝜆*+,-9 ∗ 𝜎:+019 + 𝜎;*+019 + 𝜆*+,.9 ∗ 𝜎:+19 + 𝜎;*+19 	. (2) 
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The structural part of the multilevel latent contextual model is:  
 
Micro Model (level-1): 𝐷𝑉01 = 	𝛽- ∗ 𝑈01 + 𝜁01	; (3a) 
Macro Model (level-2): 𝐷𝑉1 = 	𝛼 +	𝛽. ∗ 𝑈1 +	𝜁1; (3b) 
Combined Model:  𝐷𝑉01 = 	𝛼 +	𝛽- ∗ 𝑈01 +	𝛽. ∗ 𝑈1 +	𝜁01 + 𝜁1	, (3c) 

 
where βw denotes the within-group (level-1) regression coefficient and βb the between-
group (level-2) regression coefficient. In this study, βb is of central interest, as it represents 
the group-level effect (i.e., climate effect). ζw and ζb refer to the dependent variable’s 
residual variances at level-1 and level-2.  
Estimation of these models requires large samples, in particular when ML estimation strat-
egies are used that are based on asymptotic theory (e.g., Stegmueller, 2013). Hence, ML 
estimates and confidence intervals may be downwardly biased; in other words, signifi-
cance testing is overstated in this case (ibid., p. 749). To address the small-sample issue, 
alternative statistics – Bayesian analysis, which is not based on the assumptions of asymp-
totic theory – are discussed in the literature (see Depaoli & Van de Schoot, 2017, for an 
application-oriented discussion).  

Bayesian analysis  

As previously mentioned, Bayesian analyses are not based on asymptotic theory, but for 
each parameter of interest, existing knowledge (prior distribution) is used, which is com-
bined with the data (likelihood distribution) to find a distribution of most likely estimates 
(the posterior distribution). In other words, Bayesian approaches combine the information 
reflected by the prior distributions with the information contained in the collected data (for 
each parameter of interest). The prior multiplied with the data likelihood yields the full 
posterior distribution (for the parameter of interest). Thus, when working with large sam-
ples, priors have little impact. In contrast, model estimates are more sensitive to priors 
when small samples are analysed. Priors are usually categorized according to the degree 
of information they incorporate into the estimation process:  

Weakly informative priors contain more information compared to diffuse, 
but use less information than is available as to exhibit some degree of 
uncertainty (Gelman, 2006). Finally, an informative prior incorporates a 
great deal of certainty about the value of the model parameter (Depaoli 
and Clifton, 2015, p. 331).  

With regard to this categorisation, two things should be noted: First, the idea of non-in-
formative priors is “more a myth than reality” (McNeish, 2016) if the information of the 
data is limited (i.e., the likelihood of the data is small) (see McNeish & Stapleton, 2016b 
for a discussion). Second, Depaoli and Clifton (2015, p. 331) pointed out that “the extent 
to which parameters are recovered accurately in a Bayesian analysis depends in large part 
on the quality and amount of information modeled in the prior.” In the same vein, scholars 
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have argued that Bayesian methods offer a promising estimation approach for group-level 
effects in small samples especially if “strong and defensible prior knowledge is available” 
(Depaoli & Van de Schoot, 2017, p. 240; Zitzmann et al., 2015, 2016).  
In conclusion, with the integration of prior knowledge via prior distributions, Bayesian 
estimation allows more complex models to be estimated with small data sets (e.g., As-
parouhov & Muthén, 2010a; Lee & Song, 2004; Stegmueller, 2013; Van de Schoot, 
Broere, Perryck, Zondervan-Zwijnenburg, & van Loey, 2015). Thus, the specification of 
priors is crucial when doing Bayesian analysis. In order to harness the potential of Bayes-
ian analysis, we therefore specify highly informative priors by means of a historical-data-
driven approach in the present study (see Section “Informative priors”). This data-driven 
approach is one of the present study’s novelty, since published studies have usually used 
either default or theoretical priors, as can be seen from the following review of existing 
research on the sample size issue. 

The performance of Bayesian and ML estimation in small samples 

McNeish and Stapleton (2016, p. 298) concluded their review of two-level models with 
small samples as follows: “The effect of the number of clusters on model estimates has 
been found to be moderated by design elements such as the [intraclass correlation] ICC, 
the sample size within clusters, the scale of the outcome measure (binary or continuous), 
and the balance of the design”. Further, the choice of estimation approach matters. While 
ML often leads to estimation problems under small-sample conditions (e.g., Hox et al., 
2012; Zitzmann et al., 2016), Bayesian estimation seems more promising: In the study by 
Depaoli and Clifton (2015, p. 336)  

parameters were recovered most accurately under Bayesian estimation 
with informative priors, followed by Bayesian estimation with weakly in-
formative priors, frequentist estimation, and Bayesian estimation with 
diffuse priors. In general, each estimator recovered the cluster-level co-
variate effect more accurately as the amount of information provided by 
the data increased (i.e., as the number of clusters, average cluster size, 
and ICC increased).  

Bias. Extant research collected by McNeish and Stapleton (2016) shows that ML estima-
tion of fixed-effects at either level are unbiased for as few as 15 clusters (Baldwin & Fel-
lingham, 2013; Maas & Hox, 2004, 2005; Stegmueller, 2013). However, Lüdtke et al. 
(2011; see also Meuleman & Billet, 2009) showed – using a doubly latent approach – that 
the contextual effect is positively biased under extreme conditions (small ICC and low 
reliability; the lowest number of groups was 50) when ML estimation is used. For this 
reason, Depaoli and Clifton (2015), Hox et al. (2012), and Zitzmann et al. (2016) investi-
gated whether (doubly) latent models and their contextual effects can be estimated without 
bias using Bayesian approaches. Hox et al. (2012) showed that, when Bayesian estimation 
with non-informative priors is used, negligibly biased group-level effects can also be esti-
mated in small samples (level-2 units = 20). In contrast, Lüdtke et al. (2011) and Zitzmann 
et al. (2015) found for the “manifest-measurement/latent aggregation model” that both ML 
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and Bayesian estimation are biased in small samples (level-2 units = 50) when ICC and 
group size are small. Under all other conditions, both estimation approaches provided al-
most unbiased estimates of the group-level effect. These results hold if a doubly latent 
model is used as predictor variable: Zitzmann et al. (2016) showed that under conditions 
with a low number of groups and low ICC, the Bayesian approach resulted in negatively 
biased group-level effects. However, if informative priors were used, context effects gave 
rise to negligible bias (Depaoli and Clifton, 2015; the lowest number of groups investi-
gated was 40). In contrast, the use of diffuse priors resulted in biased estimates.  
RMSE. In the doubly latent approach, ICC has a strong effect on the RMSE when ML 
estimation is used (Lüdtke et al. 2011). Zitzmann et al. (2016) and Depaoli and Clifton 
(2015) concluded that Bayesian estimation (in particular, informative priors) leads to more 
accurate (in terms of RMSE) estimates of the group-level effect under conditions with a 
low number of groups and a low ICC. Furthermore, Depaoli and Clifton (2015) found that 
for ML and Bayesian estimation with diffuse priors, the RMSE was negatively related to 
the number of groups, group size, and ICC. 
These findings suggest that the advantages of the Bayesian toolbox come into effect pri-
marily (a) for small sample sizes, (b) when weakly informative or informative priors are 
used, and (c) when ICC is high. The present study extends these findings to the use of 
highly informative priors and very low numbers of groups. To explore the potential bene-
fits of the Bayesian toolbox, we specified conditions typically encountered in psychologi-
cal and educational research (e.g., Zitzmann et al. 2015, 2016; McNeish, 2016), which are 
presented in the next section.  

Method 

In order to investigate how the various estimation approaches perform on small samples, 
a simulation study was set up and conducted as follows.  

Population and analysis models 

Multiple data sets were produced using a data generation model (population values also 
called true values) and then analysed based on analysis models that differed in the estima-
tion approach used. The specification of the data generation model and the analysis models 
was identical: A four-indicator doubly latent model with cross-level constraints (i.e., met-
ric invariance across school classes) was specified as independent variable. The first indi-
cator was fixed to 1. This independent variable is assumed to predict a dependent variable 
that is measured without measurement error. Thus, a group-level effect was specified as 
structural path at the between level. With regard to the population model one TIMSS 2015 
country was chosen randomly, and its empirical parameter values regarding the within and 
between factor loadings, the within variance components, and the group-level effect were 
used as population values. The level-2 variance components were varied conditional on 
the desired ICC values, which represented one factor of the simulated conditions (see 
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below). Additionally, one level-2 error variance was fixed to zero because negative resid-
ual variances are often encountered in real data analyses (see also Maas & Hox, 2005, p. 
89). Regarding the Bayesian analyses models the priors used are described in detail below.  

Factorial design 

In order to investigate the performance of various estimation approaches, the following 
full factorial 6 x 4 x 3 x 4 design (288 conditions) was set up. The values for Factor 1 – 
number of groups (school classes) – were 10, 15, 20, 25, 30, and 100, with an equal number 
of level-1units each (balanced design). The lower limit of the range was chosen against 
the background of Snijders and Bosker’s (1999) statement “that multilevel modeling be-
comes attractive when the number of groups is larger than 10” (cited from Maas & Hox, 
2005, p. 90). Further, the values between 10 and 30 were chosen because data collection 
in 10 to 30 school classes is manageable for a single researcher, whereas a larger number 
of classes might only be possible with institutional or even national support. In addition, a 
sample size of 100 was chosen to study the asymptotic behaviour of the estimators. The 
values for Factor 2 – intraclass correlation (ICC) were .05, .10, .15, and .20. Lacking a 
systematic review of typical ICC values in instructional science, we investigated the latest 
TIMSS data set (2015, grade 8). This data shows that the ICC for the latent construct used 
in the present study varied significantly between countries in the range from 6% (Ireland, 
Korea) to 21% (Dubai). A brief glance at the literature indicates that – depending on the 
nature of the construct assessed – ICC values typically lie at the upper bound of this range, 
around 15% to 20% (Willems, 2011; Helm, 2016) or even higher (Warwas & Helm, 2017; 
Fauth, Decristan, Rieser, Klieme, & Büttner, 2014), and low values seem to be rare. For 
instance, Kunter, Baumert, and Köller (2007) found that “perceived rule clarity” as a class-
room management measure has only limited class-level variation (8%). Factor 3 represents 
the precision of the DLMM (sampling error, Lüdtke, Trautwein, Kunter, & Baumert, 2006) 
and was analysed at three different levels: Since sampling error is a function of ICC and k 
(i.e., average number of raters in the group/cluster; e.g., students in classes), k had a value 
of 5, 15, or 25 for each ICC condition. This approach resulted in data sets with increasing 
level-2 reliability (.21 to .86), and decreasing sampling error. According to Lüdtke, Tra-
utwein, Kunter, and Baumert (2006), a level-2 reliability greater than .70 is acceptable. In 
the present study, this requirement was met for conditions with either k = 25 if ICC ≥ 10% 
or k = 15 if ICC ≥ 15%. Factor 4 – estimator – refers to 4 different estimation approaches: 
ML estimation, Bayesian estimation with non-informative priors (Mplus default options 
were used), Bayesian estimation with weakly informative priors for level-2 variance com-
ponents as recommended by Depaoli and Clifton (2015) as well as Zitzmann et al. (2015) 
(low to moderate ICC >> IG (0.1, 0.1), large ICC >> IG (-1, 0)), and Bayesian estimation 
using highly informative priors based on historical TIMSS data. In the following section, 
detailed information is given on how the highly informative priors were derived.  
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Informative priors  

Since in educational research extensive information of high (and internationally accepted) 
quality is available in the form of large-scale data sets, it makes sense to use this existing 
information for Bayesian analysis. Thus, we exploited student questionnaires from TIMSS 
1999, 2003, 2007, 2011, and 2015 by estimating MSEM as described in Section “Multi-
level latent contextual model” (see also Zitzmann et al., 2016).  
In the first step, we specified an MSEM for each partaking country. The independent var-
iable was represented by a four-indicator doubly latent model2 with cross-level constraints 
(i.e., metric invariance across school classes). The indicators were items relating to math-
ematics instruction: I am interested in what my teacher says. My teacher gives me inter-
esting things to do. My teacher has clear answers to my questions. My teacher is good at 
explaining mathematics. Each item had a response pattern ranging from 1 (agree strongly) 
to 4 (disagree strongly). With regard to the structural part of the MSEM, the independent 
variable was assumed to predict a dependent variable that was measured without measure-
ment error. For some TIMSS assessments, a significant proportion of countries showed 
ill-fitting models or models that – due to very small negative residual variances of a level-
2 indicator – did not converge. In such cases the error variances of two level-1 indicators 
were allowed to co-vary and/or the negative residual variance of a level-2 indicator was 
fixed to zero. Models that still did not fit (CFI < .90) or did not converge were excluded. 
This approach led to 365 estimated models.  
In the next step, the distribution of each model parameter at level-2 across all estimated 
models was used to calculate the hyperparameters of the priors (see Table 2). Among these 
hyperparameters, those for the level-2 variances are of special interest, as variance esti-
mates are most sensitive to priors (Asparouhov & Muthén, 2010a, p. 6; Lee & Song, 2004; 
Stegmueller, 2013; Baldwin & Fellingham, 2013; Browne & Draper, 2006; Gelman, 
2006). Although for variance components the inverse gamma (IG) distribution is most 
commonly used in research practice, discussion is ongoing about which priors perform 
best under what conditions (e.g., Depaoli & Clifton, 2015; Gelman, 2006; Zitzmann et al., 
2015). Zitzmann et al. (2015) recommended using larger shape/scale values (0.1, 0.1) be-
cause they pool group-level variance estimates away from zero when group-level variance 
is small, which is often the case in DLMM. Here, we use and compare non-informative IG 
priors (Mplus default), weakly informative IG priors as recommended by Depaoli and 
Clifton (2015) as well as Zitzmann et al. (2015) – that is, IG(-1, 0) for conditions with 
large ICC and IG(0.1, 0.1) for conditions with small to moderate ICC – and the priors 
derived from TIMSS data. For the last-mentioned, Table 2 provides information about the 
prior specification for the level-2 part. R squared values in Table 2 indicate how well the 
theoretical parameter distribution (based on the hyperparameters) works as a “proxy” for 
the empirical parameter distribution (based on TIMSS data). Note the mismatch regarding 

                                                                                                                         
2The "V" parameterization (Asparouhov & Muthén, 2010a) was used where the first factor loading is fixed 

to 1 and the variance of the factor is estimated. 
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the inverse gamma distribution: Very small values of variances (near zero) are extremely 
unlikely, but they often occur with empirical data and can lead to convergence problems. 
 

Table 2: 
Information on Informative Priors at Level 2 

Parameter Prior Type Source of information Hyperparameters R2:  

Mean (SD) 

Group-level effect (βb) normal informative 

TIMSS 1999 
TIMSS 2003 
TIMSS 2007_G4 
TIMSS 2007_G8 
TIMSS 2011_G4 
TIMSS 2011_G8 
TIMSS 2015_G4 
TIMSS 2015_G8 

(m = -27.076,  
sd = 189.59) .89 (.01) 

Outcome variance inverse 
gamma informative (shape = 4.771, 

scale = 8659.99) .85 (.09) 

Latent variance (Uyj) 
inverse  
gamma informative (shape = 3.889, 

scale = 0.115) .80 (.11) 

Residual variances (εB) inverse  
gamma informative (shape = 2.479, 

scale = 0.040) .90 (.06) 

Factor loadings (λB) normal informative (m = 1.211,  
 sd = 0.760) .91 (.01) 

Indicator intercepts (µB) normal informative (m = 1.814, 
 sd = 0.415) .96 (.01) 

Note. The hyperparameters for the normal priors are simply the mean (m) and standard deviation (sd) of 
the empirical distribution. The hyperparameters for the inverse gamma priors are derived by the following 
equations: shape (α) = 2 + m2/v; scale (β) = m + m3/v; where m and v denote the mean and variance of the 
empirical distribution. R2 refers to the amount of variation in the observed distribution that is explained by 
the theoretical distribution using the hyperparameters. 
 

Technical information  

TIMSS data analyses, data generation, and model estimation were carried out in Mplus 8 
(Muthén & Muthén, 1998-2017) using MplusAutomation (Hallquist & Wiley, 2016). The 
simulation results were analysed in R (R Development Core Team, 2016) using the pack-
ages ggplot2 (Wickham, 2009), MCMCpack (Martin, Quinn & Park, 2011), and stringr 
(Wickham, 2017).  
For each of the 288 conditions, 1000 data sets were generated. Additional analyses (i.e., 
cumulative averages plots) not reported here showed that 1000 sets were sufficient, since 
estimates stabilized around this value. For Bayesian analyses, Gibbs sampling with two 
chains (which is the default in Mplus 8; Asparouhov & Muthén, 2010b) for 10,000 itera-
tions (i.e., default MDITERATIONS option in Mplus 8) was used. To reduce computa-
tional time, we used a supercomputer with 2048 CPU cores and 16 terabyte memory. Since 
in the Bayesian approach parameter estimates are taken from a posterior distribution, sum-
mary statistics (mean, median, mode) represent the Bayesian parameter estimate. As rec-
ommended by Zitzmann et al. (2015, 2016), we used the mode of the posterior distribution. 
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Reported quantities 

To compare the performance of the estimators under various simulated conditions, five 
central and common quantities were evaluated: convergence rate, bias of (point) estimates, 
and accuracy in terms of the root mean squared error (RMSE). 
Convergence rate. This rate refers to the ratio of completed/converged to requested 
Monte Carlo replications. Models that did not converge were excluded from the analyses. 
In the case of the Bayesian approach, the convergence diagnostic PSR (Potential Scale 
Reduction, Gelman & Rubin, 1992; Asparouhov & Muthén, 2010b) was used to assess 
chain convergence.3 PSR is implemented in Mplus and has also been used in other simu-
lation studies (e.g., Hoofs, Van de Schoot, Jansen, & Kant, 2015). The basic idea of PSR 
is to relate the within-chain variance to the between-chain variance of a parameter over a 
certain number of iterations. Low between-chain variance – that is, a PSR below 1.05 (for 
models with one parameter) or 1.10 (for models with a large number of parameters) – 
indicates convergence (Asparouhov & Muthén, 2010b).  
Bias of (point) estimates. This central quantity reflects the deviation of the parameter 
estimates (averaged over all replications) from the true population value. The percent rel-
ative bias “is simply the difference between estimated and true value expressed as a pro-
portion of the true value” (Stegmueller, 2013, p. 752): C

DEC
C
∗ 100. According to Muthén 

and Muthén (2002), the relative bias should not be greater than 10% (see also Hoogland 
& Boomsma, 1998).  
Root mean squared error (RMSE). Zitzmann et al. (2015, p. 694) argued that “when the 
estimator is unbiased, a single estimate might still not be close to the true value.” Thus, 
this evaluation criterion indicates the overall accuracy of the average parameter estimate. 
The RMSE was calculated by the square root of the expectation of the squared deviation 
of the estimate from the population value divided by the population value (ibid.). Since 
RMSE combines relative bias and variability of estimates, they argued that a more accurate 
estimator that might produce slightly more biased estimates is preferable to a less biased 
estimator that produces estimates that are slightly more variable.   

  

                                                                                                                         
3Although Depaoli and Van de Schoot (2017) recommend visual inspection of convergence for each pa-

rameter and each model in Bayesian analysis, this is simply not possible in simulation studies with thou-
sands of estimated parameters. 



C. Helm 276 

Results 

Convergence 

Under all conditions, the convergence rate was high (at least 99%). Only under conditions 
with small numbers of groups (< 15) and small k (= 5) values the Mplus default priors 
yielded convergence rates that were slightly lower. Although the average convergence 
rates of the ML approach seem acceptably high at first glance, all ML models for which 
the number of groups was smaller than the number of parameters (i.e., 21) resulted in 
warning messages. These warning messages indicated that, due to the low number of clus-
ters, the models might not be identified. Moreover, for 2.8% of all ML models, warnings 
indicated that a saddle point was reached. Other warning messages involved less than 1% 
of all replications. Non-converged solutions were not included in the final analyses. At 
this point, we want to refer to the valuable comment of one of our blind reviewers, who 
argued that the reported differences between ML and Bayesian estimations might not re-
flect a problem of the ML method per se, but might rather be a result of the unconstrained 
variance estimation that is implemented in Mplus.4 

Relative bias  

In this section, the evaluation criteria are inspected for the group-level effect only (see 
Table 3), since this parameter is of principal interest to applied researchers. For all other 
parameters, information is available from the author. Columns 3-6 of Table 3 show the 
relative bias for the group-level estimate. If informative priors or weakly informative pri-
ors are used, Bayesian estimation clearly outperforms ML estimation. Interestingly, the 
two Bayesian approaches performed equally well and provided almost unbiased estimates 
even under the most unfavourable conditions (small number of groups, low ICC, low 
group size). In contrast, the bias for the ML parameters can be considered acceptable only 
under favourable conditions (ICC ≥ 20% and number of groups > 20), as otherwise esti-
mates are positively biased. Mplus default priors, however, lead to negatively biased av-
erage estimates when the ICC is low (≤ 10%) and the number of groups is small (≤ 15). 
With a number of groups as large as 100 (and ICC ≥ 10%) only the uninformative (Mplus 
default) priors produced downwardly biased estimates that are slightly outside the 10% 
limit.  
In terms of accuracy of the average group-level parameter estimate, the two informative 
Bayesian approaches, again, clearly performed better than the non-informative Bayesian 
and the ML estimation approach. Columns 7-10 of Table 3 show very low values for the 
weakly informative and informative Bayesian approaches under all conditions, whereas 

                                                                                                                         
4Note that in our simulation study we do not evaluate the ML estimator per se but the way in which it is 

implemented in Mplus. 
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for the other approaches comparably high RMSE values are found, especially when ICC 
and the number of groups are low. With 100 groups and an ICC ≥ 10% all four estimation 
approaches yielded RMSE values ≤ 10.  
 

Table 3: 
Relative Bias and RMSE for the Group-level Effect of the Latent Predictor Variable with Var-

ious Estimation Approaches – Conditional on ICC 
  Relative Bias RMSE 
N ICC ML B(non.) B(weak) B(inf.) ML B(non.) B(weak) B(inf.) 
10 5 79.43 -22.37 1.53 -0.33 24.1 40.92 0.96 0.46 

 10 67.54 -38.92 -3.93 0.34 16.26 30.31 0.96 0.46 
 15 49.09 -7.03 -1.98 -1.00 12.04 33.15 0.95 0.46 
 20 44.59 235.48 -1.01 -0.64 9.84 26.94 0.95 0.46 

15 5 51.72 -68.18 -3.77 -2.21 18.52 20.65 0.90 0.45 
 10 55.45 -40.03 -2.94 -1.13 11.62 24.67 0.89 0.44 
 15 43.09 -11.84 -4.57 -0.14 8.3 19.65 0.92 0.46 
 20 31.30 -10.17 -3.38 -0.06 6.2 11.06 0.89 0.44 

20 5 64.73 -37.02 -2.84 1.36 17.36 10.68 0.88 0.44 
 10 45.67 -2.94 -2.81 -1.59 10.24 9.76 0.85 0.44 
 15 24.27 -2.40 -0.67 0.39 6.68 5.97 0.87 0.43 
 20 10.73 -11.47 -4.34 0.24 5.16 4.88 0.85 0.43 

25 5 61.14 -21.62 -2.94 -0.37 14.3 9.69 0.83 0.44 
 10 25.10 -7.82 -4.02 -0.42 8.74 6.59 0.84 0.43 
 15 18.47 -14.56 -2.55 -1.86 5.74 4.59 0.81 0.42 
 20 15.91 -12.55 -4.64 -1.53 4.28 4.07 0.83 0.42 

30 5 46.03 -35.39 -4.8 0.34 12.93 8.55 0.79 0.43 
 10 36.26 -20.62 -6.97 -1.69 7.66 5.76 0.83 0.42 
 15 15.08 -5.08 -3.29 -0.42 4.62 4.06 0.81 0.41 
 20 5.27 -11.64 -3.81 -0.83 3.53 2.93 0.78 0.41 

100 5 20.18 -77.65 -7.10 -1.42 6.16 18.07 0.69 0.36 
 10 -1.89 -16.94 -7.19 -1.53 2.76 3.27 0.73 0.37 
 15 -8.06 -13.95 -7.50 -2.03 1.67 1.81 0.71 0.36 
 20 -9.60 -15.31 -9.25 -2.18 1.28 1.41 0.71 0.37 

Note. N = number of groups, ICC = intraclass correlation, RMSE = root mean squared error, ML = maxi-
mum likelihood, B = Bayes, non. = non-informative, inf. = informative, weak = priors for variance compo-
nents as recommended by Depaoli and Clifton (2015) and Zitzmann et al. (2015) 
 
All analyses presented were also carried out conditional on k (group size) instead of ICC 
(see Table 4). With regard to the relative bias, group size (k) has an effect only if k ≤ 15 
and ML or Bayesian non-informative estimation is used. Under all other conditions (except 
for some non-informative Bayesian conditions) the relative bias of the group-level effect 
is within acceptable limits. Similar to the findings above, the RMSE is comparably higher 
for ML and non-informative Bayesian estimation under all conditions – especially if k is 
low (= 5).  
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Table 4: 
Relative Bias and RMSE for the Group-level Effect of the Latent Predictor Variable with Var-

ious Estimation Approaches – Conditional on Group Size 
  Relative Bias RMSE 
N k ML B(non.) B(weak) B(inf.) ML B(non.) B(weak) B(inf.) 
10 5 170.09 149.62 -0.61 0.51 20.48 79.02 0.96 0.46 

 15 -3.06 -21.84 -2.14 -0.53 13.49 11.13 0.96 0.47 
 25 13.46 -2.41 -1.30 -1.20 12.71 8.34 0.95 0.45 

15 5 117.70 -79.99 -3.33 -1.33 14.76 43.2 0.91 0.45 
 15 11.70 -9.07 -3.25 -1.56 10.09 7.32 0.88 0.45 
 25 6.77 -8.61 -4.42 0.23 8.64 6.50 0.90 0.44 

20 5 106.82 -24.18 -1.32 0.75 13.7 11.74 0.86 0.44 
 15 -2.52 -15.65 -3.61 -0.48 9.48 6.29 0.88 0.43 
 25 4.75 -0.55 -3.06 0.04 6.39 5.44 0.85 0.43 

25 5 89.78 -31.62 -4.84 -0.97 12.31 8.43 0.81 0.43 
 15 -6.95 3.10 -2.43 -1.21 7.08 5.74 0.84 0.43 
 25 7.64 -13.90 -3.36 -0.96 5.4 4.54 0.84 0.42 

30 5 86.28 -23.50 -5.98 -0.38 10.98 7.24 0.80 0.42 
 15 -9.38 -11.46 -2.79 -0.71 5.86 4.80 0.81 0.42 
 25 0.09 -19.58 -5.39 -0.86 4.71 3.94 0.80 0.41 

100 5 16.39 -57.14 -7.35 -1.85 4.83 14.41 0.70 0.36 
 15 -12.31 -25.37 -9.84 -2.30 2.32 2.08 0.70 0.36 
 25 -3.60 -10.39 -6.09 -1.22 1.75 1.93 0.73 0.37 

Note. N = number of groups, k = group size, RMSE = root mean squared error, ML = maximum likelihood, 
B = Bayes, non. = non-informative, inf. = informative, weak = priors for variance components as recom-
mended by Depaoli and Clifton (2015) and Zitzmann et al. (2015) 
 
Furthermore, all analyses were conducted using the mean as summary statistic of the pos-
terior distribution. The results in terms of group-level effect are only different for the non-
informative (Mplus) priors with regard to relative bias and RMSE. Both are substantially 
higher than the values based on the mode statistics. However, these differences do not 
affect the general conclusions. 

Sensitivity analysis of prior specifications 

In Bayesian analysis, a central question is to what extent the specification of the hyperpa-
rameters of the priors influences the study results. Hence, usually robustness is checked 
by varying the choice of hyperparameters systematically. Since the behaviours of non, 
weakly, and highly informative priors were investigated in the results, a robustness check 
was already done. As can be seen from the results, the choice of hyperparameters for the 
level-2 priors strongly influences the results in terms of relative bias and RMSE. In partic-
ular, using default options can lead to biased and inaccurate average Bayesian parameter 
estimates.  
In summary, we regressed the evaluation criteria on the simulated conditions. The condi-
tions were dummy coded. To facilitate interpretation, the most favourable conditions (N 
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groups = 100, ICC = 25%, k = 25) and informative Bayesian estimation were chosen as 
reference categories, since they led to the least biased and most accurate parameter esti-
mates. Table 5 confirms the results presented above: The relative bias of parameter esti-
mates significantly increases with ML estimation, low number of groups (= 10) and low 
group size (= 5). The same is true for the accuracy of the estimates of the group-level 
effects. Furthermore, using Mplus default priors increases the RMSE significantly. Note 
that, as can be seen in Tables 2 and 3, each of the reported main effects is likely to be 
moderated by the other conditions (especially by low ICC and k values).  
 

Table 5: 
Effects of the Simulated Conditions on Relative Bias and RMSE for the Group-level Effect of 

the Latent Predictor Variable 
 Relative Bias  RMSE 
 b p  b p 
Intercept -15.82 .181  -7.57 .000 
N groups = 10 35.14 .001  9.91 .000 
N groups = 15 12.16 .267  5.33 .004 
N groups = 20 15.17 .166  2.20 .237 
N groups = 25 12.95 .237  1.39 .453 
N groups = 30 10.62 .332  0.89 .633 
ML 33.76 .000  8.74 .000 
Bayesian (non.) -10.47 .241  12.47 .000 
Bayesian (weak) -3.17 .723  0.42 .783 
ICC = 5 -8.44 .345  5.02 .001 
ICC = 10 -7.26 .417  2.34 .123 
ICC = 15 -7.48 .402  1.12 .462 
k = 5 22.81 .003  7.12 .000 
k = 15 -3.32 .667  0.64 .625 
adj. R2 0.13 .000  0.38 .000 

Note. Statistically significant coefficients are printed in bold, b = unstandardized regression coefficient, p = p 
value, N = number of groups, ICC = intraclass correlation, k = group size, RMSE = root mean squared error, ML 
= maximum likelihood, non. = non-informative, weak = priors for variance components as recommended by De-
paoli and Clifton (2015) and Zitzmann et al. (2015), adj. R2 = adjusted R squared 
 

Discussion 

This study contributes to the debate around the sample-size question for multilevel struc-
tural equation models (MSEMs). The present simulations were based on doubly latent 
models with cross-level constraints, and allowed investigation of the performance of ML 
versus non, weakly, and highly informative Bayesian estimation techniques. With regard 
to the highly informative Bayesian approach, this study extends the knowledge on how 
existing information can be used to obtain more accurate parameter estimates for small 
samples. More specifically, from a large set of international large-scale student surveys, 
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hyperparameters for priors were derived that can be used in further studies. Only few stud-
ies have investigated whether the Bayesian toolbox helps to overcome small-sample issues 
in the case of MSEMs (e.g., Hox et al., 2012; Zitzmann et al., 2016, 2015). Of these, most 
focus either on multilevel models with manifest variables or on latent variable models 
without multiple levels. Nonetheless, these studies illustrate the potential of Bayesian es-
timation. Thus, we assumed that incorporation of prior information using Bayesian analy-
sis would help to produce reasonable results with small samples. Additionally, we assumed 
that intraclass correlation and group-level reliability of the independent variable affect es-
timation of the group-level effect. Using Monte Carlo simulation, we compared the per-
formance of the various estimation techniques under several conditions typically encoun-
tered in educational research (e.g., small samples). As expected, the Bayesian approach 
outperformed ML estimation under all simulated conditions if weakly informative or in-
formative priors were used. Weakly informative and informative priors yielded almost un-
biased and highly accurate estimates even under unfavourable conditions (small number 
of level-2 groups and small group size).  
The reported findings are in line with those of previous studies. Depaoli and Clifton (2015) 
found that group-level effects are most accurate when informative priors are used (fol-
lowed by weakly informative priors, ML estimation, and diffuse priors). The present study 
revealed the same ranking of the performance of the various estimation approaches (see 
Column 4 in Table 5 for the additional RMSE in comparison to B(inf.): ∆B(weak): .42, 
ML: 8.47, ∆B(non.): 12.47). Further, our findings show – in line with Zitzmann et al. 
(2016) and Depaoli and Clifton (2015) – that group-level effects of MSEMs with DLMM 
can be estimated more accurately with Bayesian approaches when weakly informative or 
informative priors are used. Summarizing published studies, McNeish and Stapleton 
(2016) argued that the effect of the number of groups is moderated by ICC and the group 
size. This corresponds to the findings of this study, especially for ML estimation and non-
informative Bayesian estimation results (see Table 3). Scholars often argue that small sam-
ple sizes lead to biased estimates. However, several studies – including this one – have 
shown that the impact of the number of groups on various evaluation criteria (such as 
relative bias) is (a) relatively low when compared to the effect of estimation approaches 
and (b) is substantial only when ICC and group size are also low. Even in these unfavour-
able situations, Bayesian estimation with weakly informative or informative priors could 
help to accurately estimate MSEM group-level effects. Thus, careful choice of priors may 
help to save data collection resources and to limit perceived burdens of external evalua-
tions in schools.  
From the findings of this study, recommendations can be derived for assessing instruc-
tional quality and its effects in situations where only a small number of school classes is 
available:  

1. When designing a study of the effects of instructional features, one should reflect 
upon the expected intraclass correlation of the climate construct to be assessed. 
Some constructs may vary more substantially at the class level than others. Low 
ICC is supposed to lead to greater bias of class-level effects.  
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2. When collecting data, one should keep in mind that, the higher the number of 
students within each school class, the less biased the group-level effects. The 
total number of school classes seems less relevant, since even a number of 100 
could lead to bias; however, Bayesian estimation using weakly informative or 
informative priors works well even for very small samples.  

3. When using Bayesian estimation with informative priors, one should carefully 
choose the hyperparameters. For instance, Zitzmann et al. (2015) showed that 
the choice of shape and scale parameters of the inverse gamma prior also affects 
the magnitude of group-level effect. Thus, sensitivity analyses should be per-
formed. Depaoli and Van de Schoot (2017) provided comprehensive guidance 
for selecting priors and investigating their effects on study results. For applied 
instructional research, one might use the hyperparameters presented in Table 2 
or those suggested by Depaoli and Clifton (2015). Both sets of hyperparameters 
led to similarly unbiased estimates. However, note that the priors in Table 2 are 
based on specific TIMSS items relating to cognitive activation in mathematics 
instruction. Further research is necessary to determine how they perform in other 
domains and in the context of other climate constructs.  

4. Finally, when specifying the MSEM cross-level, constraints as recommended by 
Jak and Jorgensen (2017) should be used. Firstly, this ensures that the “same” 
construct is measured in each school class (i.e., metric invariance). Secondly, the 
present study is also based on DLMM with cross-level constraints, so it is unclear 
how ML and Bayesian estimation perform for small samples when factor load-
ings are not constrained across levels.  

Additionally, applied researchers should keep in mind that Monte Carlo studies are per-
formed under optimal conditions; this means that several assumptions required by MLM 
hold true in simulation studies, but may not be fulfilled in studies using empirical data (see 
also McNeish & Stapleton, 2016b). For instance, data was generated under the normality 
assumption, which produced real numbers. However, in practice, categorical data is col-
lected by means of questionnaires with a 1 to 5 response pattern that violates the normality 
assumption by definition. Thus, convergence and bias are likely to be worse for empirical 
data (Stegmueller, 2013). 
Furthermore, more solutions to the small-sample problem exist than we have presented. 
Other simulation studies showed that  

• other estimation approaches, such as the restricted maximum likelihood or the 
ML with Kenward-Roger adjustment, also work well under unfavourable condi-
tions (McNeish & Stapleton, 2016b);  

• the doubly manifest approach leads to more accurate group-level effects with 
small groups and low ICC than the doubly latent approach (Lüdtke et al., 2011), 
although the doubly manifest approach is more biased; this counterintuitive find-
ing is known as bias-accuracy trade-off (ibid.);  
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• other priors (not implemented in Mplus, such as the half-Cauchy prior) for group-
level variances might work even better than those used in this study (McNeish & 
Stapleton, 2016b); 

• “the number of items and the size of the loadings had a strong effect on the mag-
nitude of the estimated relative percentage bias” (Lüdtke et al., 2011, p. 454).  

These and other conceivable conditions fell outside the scope of the investigations pre-
sented here. Nonetheless, this simulation study demonstrates once more the potential of 
the Bayesian toolbox.  
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