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Modeling the multidimensional structure  
of students’ foreign language competence 
within and between classrooms 
Jana Höhler1, Johannes Hartig2 & Frank Goldhammer2 

Abstract 
Combining multilevel (ML) analysis and multidimensional item response theory (MIRT) provides 
a valuable method for analyzing data of educational assessments, where clustered data (e.g., stu-
dents in classes) and multidimensional constructs frequently occur. It allows to model multiple 
ability dimensions while simultaneously taking the hierarchical structure into account. The dimen-
sional structure of students’ foreign language competence within and between classrooms was 
investigated by applying a ML-MIRT measurement model to data of N = 9,410 students in 427 
classes who had answered three different subtests of English as a foreign language. Results were 
compared to a MIRT model not taking into account the multilevel structure. A markedly more 
differentiated correlation structure is found within classrooms compared with the between-
classroom level and compared with the model without multilevel structure. Results show that by 
modeling the latent multilevel structure, estimation and interpretation of ability profiles can be 
possible even with highly correlated ability dimensions. 
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Introduction 

The application of Item Response Theory (IRT) for modeling competencies in psycho-
logical and educational contexts is well established (Embretson & Reise, 2000; Lord & 
Novick, 1968; van der Linden & Hambleton, 1997; Wilson, 2005). If the focus lies on a 
detailed assessment of a relatively broad competence (e.g., foreign language competence) 
a common strategy is to break it down into narrower unidimensional abilities (e.g., read-
ing and listening comprehension in a foreign language). These multiple components can 
then be measured using separate unidimensional IRT models. In this approach, the simi-
larities and differences of these specific abilities are neglected, or at least, not explicitly 
modeled. Nevertheless, the interpretation of such separate unidimensional models is 
straightforward, and thus they may be advantageous especially if the objective of the 
assessment is to describe levels of performance in a relatively narrow ability like reading 
comprehension (Hartig & Höhler, 2008).  
Another approach is to apply multidimensional IRT (MIRT) models, simultaneously 
incorporating multiple latent ability dimensions representing the broader competence, a 
procedure with an “elegant simplicity” (Reckase, 1997b, p. 25). Theoretically the multi-
dimensional approach is more accurate than the unidimensional one, because in reality 
there are always nonzero correlations between latent traits (Cheng, Wang, & Ho, 2008), 
particularly regarding specific cognitive abilities. Moreover, measurement precision 
increases with the number of dimensions and their intercorrelations (Wang, Chen, & 
Cheng, 2004; Yao & Boughton, 2007). The predominantly questionable assumption of 
unidimensionality is not addressed within this paper, but one should be aware that, as 
Reckase (1997a) states, “the number of dimensions is often underestimated and that 
overestimating the number of dimensions does little harm” (p. 274).  
Another issue for modeling competencies within educational contexts is that the assessed 
data are often structured hierarchically, meaning that the sample consists for example of 
students who are clustered in classes. Because sampling schools and/or classrooms for 
educational studies is often more feasible and economic than sampling individual stu-
dents, the frequency of cluster randomized trials in education is likely to increase in the 
future (Spybrook, 2008). Multilevel modeling provides an adequate methodology for 
analyzing such hierarchically structured data (e.g., Hox, 2002; Kreft & de Leeuw, 1998). 
Combining the (M)IRT and multilevel modeling approach allows accommodating the 
dependency typically found in clustered data. Furthermore, it enables measurement of (a) 
latent traits at different levels, (b) the (co-)variance decomposition of the latent traits at 
different levels, and (c) the estimation of relationships between predictor variables and 
latent traits at different levels (Pastor, 2003).  
In the following we firstly provide a brief introduction into 1) MIRT, 2) multilevel mod-
eling, and 3) the combination of these two approaches. Then we provide an empirical 
example for modeling foreign language competencies applying this combined multilevel 
MIRT (ML-MIRT) approach. Finally, results of the empirical application and implica-
tions of ML-MIRT modeling for interpreting and reporting test scores are discussed. 
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Multidimensional Item Response Theory 

In IRT item responses are modeled as a function of individual trait levels and item prop-
erties (e.g., difficulty). Both, individual trait levels and item difficulties, can be described 
herein on a common scale. All IRT models used in this paper are logistic models, with 
the logit function defined as 

 logit( )
1

e
e

μ

μμ ≡
+

. (1) 

In the one-parameter logistic (1PL) IRT model or Rasch model (Rasch, 1960) for di-
chotomous responses, the probability of a correct response of person p on item i (xpi = 1) 
is modeled as a function of the individual ability θp of person p and the item difficulty bi 
of item i: 

 ( ) ( )P 1 , logitpi p i p ix b b= θ = θ − . (2) 

In MIRT, the probability of a correct response does not depend on a single ability vari-
able θ, but on a vector θ  of K multiple latent ability dimensions θk. The multidimen-
sional generalization of the 1PL model can be written as 

 ( ) ( )P 1 , , logitpi i p i i p ix b b′= = −λ θ λ θ . (3) 

Here, λi is a K × 1 vector of fixed factor loadings with { }0,1ikλ ∈ , defining the influence 
of the K different abilities on the probability to solve item i, and bi again is the difficulty 
of item i. i p′λ θ  is the sum of the latent abilities relevant for item i. 

Empirical analysis of a MIRT model provides latent estimations for the variance 2
Kθσ  for 

each dimension θk as well as the covariance structure Σθ of the ability dimensions. 

Multilevel modeling within educational assessments 

In educational assessments data are often structured hierarchically, meaning that the 
sample consists for example of students (within-cluster level, L1) who are clustered in 
classes (between-cluster level, L2). Here, subjects are not sampled individually and ran-
domly from the population of interest. However, this supposition underlies most statisti-
cal analysis approaches (e.g., regression analysis). Violating the assumption of independ-
ent observations may be especially crucial for educational achievement tests, because 
students from the same classroom are likely to share strong common sources of variation 
(Muthén, 1991). Analyzing clustered data without considering the hierarchical structure 
leads to various problems which are comprehensively described in numerous textbooks 
(e.g., Hox, 2002; Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002; Skrondal & 
Rabe-Hesketh, 2004; Snijders & Bosker, 1999). Such a complex sample design can be 
regarded as complication to the statistical analysis. However, it can also provide an op-
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portunity for more informative modeling of substantive phenomena, like exploring rela-
tionships among variables located at different levels simultaneously (Muthén, 1991). 
Adequate methodology for the analysis of hierarchically structured data is particularly 
important for research questions focusing on persons embedded within a social system 
(like students in classrooms). Such research questions occur frequently within educa-
tional studies. Specific factors influencing the individual can be assumed to be poten-
tially significant on each level of such a hierarchical system. For instance, the teaching 
style of the teacher is a factor at the between-cluster level (L2 predictor variable), while 
variables related to the students’ family background are factors at the within-cluster level 
(L1 predictor variables). The individual performance can thus be regarded as affected by 
class membership itself (usually modeled as random effect) as well as by L1 and L2 
predictor variables (fixed effects).  
In multilevel modeling, an observed variable ypg for person p in group g is decomposed 
in the sum of the grand mean, the variation of the group mean from the grand mean (be-
tween-cluster variation B

gy ) and the variation of the individual values of y from the 
group mean (within-cluster variation W

pgy ): 

 B W
..pg g pgy y y y= + + , (4) 

 B
. ..g gy y y= − , (5) 

 W
.pg pg gy y y= − . (6) 

Here .gy  is the mean of group g and ..y  is the mean of y across the whole sample (grand 
mean). The variance of y is decomposed into variance between groups and variance 
within groups: 

 B W
2 2 2
y y y

σ = σ + σ . (7) 

To gain a measure of how similar persons within the same group are, or in other words 
how strong the effect of group membership is on y, the intraclass correlation coefficient 
(ICC) can be calculated. The ICC is a coefficient which is of interest when effects within 
social systems are analyzed, for example in research on students within classrooms. It is 
defined as the relative size of the between-cluster variance to the total variance of y: 
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If there is clustering to a certain degree, even if it may seem very small (e.g., ICC = .01, 
or ICC = .05), the actual alpha level of statistical default tests will increase dramatically, 
and the more the ICC and the sample size increase the more the alpha inflation will in-
crease too. This is because the assumption of independent observations is violated, which 
results in negatively biased standard errors. These underestimated standard errors lead to 
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overestimation of significance or alpha inflation (Cohen, Cohen, West, & Aiken, 2003). 
Thus, considering the hierarchically structured data is at least important to avoid meth-
odological artifacts and misinterpretations. This can be achieved by adjusting standard 
errors with appropriate estimation algorithms that take the ICCs of the analyzed variables 
into account (e.g., Snijders & Bosker, 1999). To additionally gain differentiated informa-
tion for the different hierarchical levels of the data structure, multilevel analysis can be 
applied. Here, the hierarchical structure is explicitly modeled and variables measured on 
different levels of the hierarchy can be simultaneously included in the analysis. 
For the multivariate case not only the variance of a single variable, but the whole vari-
ance-covariance matrix of multiple observed variables is decomposed. In multivariate 
multilevel modeling and multilevel structural equation modeling (ML-SEM), respec-
tively, a between-cluster covariance matrix ΣB and a within-cluster covariance matrix ΣW 
can be computed. These covariance matrices have the property that they are orthogonal 
and additive (cf. Hox, 2002): 

 y y y= +B WΣ Σ Σ . (9) 

Mehta and Neale (2005), for instance, provide a didactical explanation of ML-SEM and 
demonstrate the equivalence of this approach and general mixed-effects models. In Hox 
(2002) a discussion of advantages and disadvantages to the multivariate multilevel ap-
proach is given. 

Combining MIRT and multilevel models 

Typically, the hierarchical structure in clustered datasets is not considered by traditional 
measurement models, like classical test theory or IRT (Kamata, Bauer, & Miyazaki, 
2008). Combining MIRT and multilevel models for the psychometric analysis provides 
several advantages. First and most important, clustered data are analyzed appropriately 
by taking into account both within- and between-cluster variations. For example, 
Raudenbush, Rowan, and Kang (1991) showed that the well-known and established 
Cronbach’s alpha coefficient is inherently ambiguous if clustering in educational studies 
is ignored, because it measures neither the reliability of L1 measures nor the reliability of 
L2 measures (see also Kamata et al., 2008). Second, this combined approach offers the 
opportunity to incorporate covariates and interaction effects (Kamata et al., 2008; 
Muthén, 1991). Examples for embedding Rasch based multilevel IRT in general ap-
proaches are given by Kamata (2001) as well as by Kamata et al. (2008) for the hierar-
chical generalized linear model (HGLM). Limitations of these approaches concern a) the 
assumption of equal or a priori known item discriminations for all test components, and 
b) the simultaneous modeling of several latent variables, where the covariances typically 
would be left unstructured, meaning that each dimension is correlated with every other 
dimension and that there are no structural relations between the dimensions, in contrary 
to ML-SEM approaches. Kamata and Cheong (2007) generalize the HGLM approach for 
multidimensional constructs within the generalized linear mixed model and demonstrate 
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with an empirical application how to study the relationships between covariates at differ-
ent levels and the constructs of interests. 
Skrondal and Rabe-Hesketh (2004) provide a formulation and application of a four-level 
two-dimensional item response model with a logit link for dichotomous items in the 
generalized random coefficient notation (Generalized, Linear, Latent and Mixed Model; 
GLLAMM) for attitudes to abortion. Fox (2005a, b; Fox & Glas, 2001) provides an in-
depth analysis of estimation algorithms for multilevel IRT models focusing on the fully 
Bayesian procedure. Fox (2004; see also Fox & Glas, 2001; 2003) defines a multilevel 
IRT model with a latent dependent variable measured by an IRT model. Here, item re-
sponses are regarded as L1 units, and item responses are nested within the students. 
Accordingly, a three level model results with item responses on L1, students on L2, and 
groups (e.g., classes or schools) on level 3.  
In the procedure applied here we define a two-level measurement model for MIRT, with 
L1 as the ‘student’-level and L2 as the ‘group’-level (i.e., classes). In this model the 
latent ability θpgk of a person p in group g for dimension k is decomposed in the sum of 
the grand mean ( ..kθ ), in the variation ( B

gkθ ) of the group mean of dimension k from the 
respective grand mean ..kθ , and the variation of the individual ability from the group 
mean (within-variation W

pgkθ  of dimension k): 

 B W
..pgk k gk pgkθ = θ + θ + θ , (10) 

 B
. ..gk gk kθ = θ − θ , (11) 

 W
.pgk pgk gkθ = θ − θ . (12) 

Note that the grand mean ..kθ  is typically restricted to zero for identification purposes. 

The probability of a correct answer of person p in group g on item i (xpgi = 1) depends on 
the weighted sum of the ability components (subscripts in the conditional part of this and 
the following formulas are omitted for convenience): 

 ( ) ( )( )B W B W1 , , , logitpgi i g pg iP x b b′= = + −λ θ θ λ θ θ . (13) 

Here iλ  is a K × 1 vector of fixed factor loadings defining the influence of the K differ-
ent abilities on item i for both levels. B

gθ  is a vector of deviations of group means from 
the grand mean for group g in all K ability dimensions, and W

pgθ  is the vector of L1 de-
viations of person p from the group means in all K ability dimensions. bi again is the 
difficulty of item i.  

The model in Equation (13) assumes identical dimensional structure and loading pattern 
on L1 and L2. However, theoretically the number of dimensions as well as the loading 
patterns can also vary between between-cluster level and within-cluster level, leading to 
a more general model: 
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 ( ) ( )B W B W B B W W1 , , , , logitpgi i g i pg iP x b b′ ′= = + −λ λ θ θ λ θ λ θ . (14) 

B
iλ  is here a K × 1 vector of fixed factor loadings defining the influence of the K differ-

ent abilities on item i on group level, and W
iλ  is a K × 1 vector of fixed factor loadings 

defining the influence of the K different abilities on item i within groups. In such cases 
the decomposition of θp as shown before is no longer possible, because the latent dimen-
sions represent different constructs and are measured by different items, respectively. For 
most models analyzed in this paper, we will assume that the number of dimensions K is 
identical for both levels and that the loading structure for all items also is identical for 
both levels (i.e., KB = KW, and B W

i i=λ λ ).  

In ML-MIRT based on Equation (13), variances as well as the covariances of the latent 
dimensions can be decomposed in L1 and L2 proportions. The variance 2

kθσ  of each 
ability dimension k is decomposed in within-cluster variance W

2

kθ
σ  and between-cluster 

variance B
2

kθ
σ : 

 W B
2 2 2

k k k
θ θ θ

σ = σ + σ . (15) 

The latent intraclass correlation coefficient LICCk for dimension k is defined as the pro-
portion of between-cluster variance B

2

kθ
σ  to the total variance: 

 
B

W B

2

2 2
k

k k

kLICC θ

θ θ

σ
=

σ + σ
. (16) 

In the following we will use the abbreviation ICC for the ‘manifest’ intraclass correlation 
and LICC for the ‘latent’ intraclass correlation coefficient. The covariances of the latent 
abilities Σθ are decomposed in between-cluster covariance and within-cluster covariance 
proportions: 

 = +B W
θ θ θΣ Σ Σ . (17) 

Empirical analysis of a ML-MIRT model provides latent estimates for the variance com-
ponents B

2

kθ
σ  and W

2

kθ
σ  for each dimension k as well as the covariance structures B

θΣ  and 
W
θΣ  on L1 and L2, respectively.  

For research questions in educational contexts, where students’ performance is assessed 
in hierarchical structured samples and modeled using an IRT-approach, combining these 
methods can provide valuable information (Fox, 2004; Fox, 2005a, b; Fox & Glas, 2001; 
Kamata et al., 2008). Using such a combined method allows, for instance, investigating 
how much variation of an ability dimension is determined by class membership. This 
decomposition provides a basis for calculating the LICC as the ratio of between-cluster 
variance to total variance. Furthermore, within a multidimensional model the decomposi-
tion of covariance between the dimensions for the different levels can be inspected. The 
proportion of covariance on L1 can be interpreted as the relationship between the devia-
tion values of the students from the group mean for the respective dimensions or, in other 
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words, the relations between the dimensions controlling for group membership. The L2 
covariance proportion represents the relationship between the group means in the differ-
ent dimensions.  

Research aims 

In this study, the latent correlation structure and (co-)variance decomposition of tests for 
English as a foreign language are examined for a representative German sample of ninth-
graders. The first research aim is to demonstrate that the LICCs result in a higher esti-
mate than the ICCs because measurement error is taken into account. Reflecting disat-
tenuation for measurement error, the LICCs should exceed the ICCs for the specific 
ability dimensions, and the difference should decrease with increasing reliability of the 
applied test (Kamata et al., 2008; Lüdtke, Robitzsch, Asparouhov, Marsh, Trautwein, & 
Muthén, 2008; Raudenbush et al., 1991). Therefore the different reliabilities, ICCs, and 
LICCs for the three dimensions (reading comprehension, listening comprehension, and 
language awareness) are calculated. Different LICCs for the dimensions imply that class 
membership affects these specific abilities to a different extent, and thus indirectly con-
firm the assumption of substantive differences between the multiple dimensions in the 
model. For example, characteristics of class instruction could have a different impact on 
the LICCs, meaning that such characteristics influence the specific abilities to a different 
degree, and thus indicating a conceptually different meaning of the latent variables. A 
further interesting point is how much variance of the ability dimensions is determined by 
class membership. For all dimensions, a high amount of variance explained by class 
membership (between-cluster level) is expected (LICC > .50), because of the high selec-
tivity of schools based on early tracking in the German school system. High ICCs are 
frequently found for the German school system (e.g., Organisation for Economic Co-
operation and Development [OECD], 2003, 2007). In PISA 2006, for example, an ICC of 
even .80 was found for students’ performance in the reading scale (OECD, 20073).  
Another research interest concerns the correlations between the three dimensions on the 
different levels. In general, there is a strong tendency to unidimensionality of language 
assessment data (Carroll, 1993; Diakidoy, Stylianou, Kerefillidou, & Papageorgiou, 
2005; Jude et al., 2008). For the German school system the general language competence 
level is strongly dependent on class membership, because students are tracked very early 
(around the age of nine) among three different school types. We expect a high amount of 
covariance between the three ability dimensions on between-cluster level, because 
classes show a relatively homogenous performance across these specific abilities. For 
example, classes with a high competence in one of the dimensions have also a high com-
petence in the other dimensions. As class membership is controlled within the ML-MIRT 
approach it is expected that a more differentiated correlation structure between the spe-

                                                                                                                         
3 cf. Table 4.1d, available at: http://www.pisa.oecd.org/dataoecd/30/62/39704344.xls; retrieved on 10-19-
2009. 
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cific abilities can be found on L1 compared with L2 as well as compared with a MIRT 
approach without modeling the hierarchical data structure. 

Method 

Data and testing constructs 

The data for the empirical application come from a large-scale assessment of 9th-grade 
students’ language competencies named DESI4. In DESI, a number of tests were devel-
oped to assess different dimensions of students’ language competencies in German and 
English as a foreign language (EFL), primarily in Germany, but also in Austria and the 
predominantly German-speaking North-Italian province of Bolzano-Bozen. The analysis 
is based on the German data from the tests of listening comprehension, reading compre-
hension, and language awareness (grammar) in EFL. The tests of language awareness, 
reading and listening comprehension were chosen because they constitute a differentiated 
and comprehensive picture of receptive foreign language competence. 
The English listening comprehension test (Nold & Rossa, 2007a) comprises 51 multiple-
choice questions with three or four response categories referring to six texts and dia-
logues presented on audio tape. For each text or dialogue, between one and ten items 
should be answered. The questions ask for the comprehension of gist and details of the 
texts. The listening comprehension construct in EFL focuses on the real-time processing 
of spoken scripts.  
The aim of the questions for English reading comprehension (Nold & Rossa, 2007b) is to 
assess the comprehension of gist and details of texts presented in written English. The 
test contains 46 multiple-choice questions with four response categories, referring to four 
written texts. For each of the texts, ten or twelve questions are given.  
Language awareness (grammar; Nold & Rossa, 2007c) is somewhat more distinct from 
the former two testing constructs. Here, the ability to complete sentences with the aid of 
given alternatives and to identify incorrect grammatical structures is assessed. Overall, 
the testing construct language awareness (grammar) for EFL is orientated on the ability 
to correct oneself in a formal and communicative linguistic manner. The test provides 29 
item scores based on two item formats. There are usual multiple-choice items with four 
possible responses, of which one is correct. Additionally, there are tasks demanding a 
decision, whether there is a mistake in one of three defined expressions. Items in all three 
tests were scored as either correctly or incorrectly answered, thus making an IRT model 
for dichotomous responses adequate for the analysis. 
The items for listening and reading comprehension were presented in a matrix design 
(e.g., Frey, Hartig, & Rupp, 2009). On average, each student answered 15 of the 51 
listening comprehension items, and 20 of the 46 reading comprehension items. Overall, 
                                                                                                                         
4 DESI (Beck & Klieme, 2007; Klieme et al., 2008) is a German acronym for “German English Student 
Assessment International” [Deutsch Englisch Schülerleistung International]. 
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N = 9,410 students within M = 427 classes with at least two valid responses in each of 
the three tests were included in the analysis. For all analyses sample weights to adjust for 
unequal selection probabilities were used. 

Model description 

The specified model contains three correlated dimensions on two levels, one for each 
testing construct (listening comprehension, reading comprehension, and language aware-
ness). The first level is the within-cluster level for student responses (L1) and the second 
level is the between-cluster level (L2). A schematic illustration of the model is given in  
Figure 1. 
 
 

 
 

Figure 1:  
Schematic illustration of the specified ML-MIRT model (RC = reading comprehension; 

LC = listening comprehension; LA = language awareness, grammar) 
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Additionally, a model with three correlated dimensions was calculated without explicitly 
considering the multilevel structure. Here, the Mplus sandwich estimator to adjust for 
underestimated standard errors was applied (Muthén & Muthén, 1998-2007b). 
The ICCs were calculated on the base of weighted likelihood estimates (WLEs; Warm, 
1989) obtained from unidimensional scaling of each test with ConQuest (Wu, Adams, & 
Wilson, 1998). All (ML-)MIRT models were analyzed with Mplus Version 5.1 (Muthén 
& Muthén, 1998-2007a) using maximum likelihood estimation with robust standard 
errors and for the ML-MIRT models using Montecarlo-Integration with 1000 nodes per 
dimension. The LICCs were calculated according to Equation (16) on the base of the 
estimated variance components obtained from the ML-MIRT analysis.  

Results 

Latent intraclass correlations and variance decomposition 

The first research aim is to demonstrate that the calculated LICCs for the different di-
mensions exceed the ICCs, reflecting disattenuation for measurement error. Thus, the 
difference between the ICCs and LICCs should decrease with increasing reliability of the 
applied test. As expected, results show that the LICCs exceed the respective ICCs for the 
three dimensions listening comprehension, reading comprehension, and language aware-
ness (see Table 1).  
Furthermore, this difference becomes more pronounced with increasing measurement 
error. For example, listening comprehension was assessed with a relatively low reliability 
and shows the largest difference between LICC and ICC. However, there is also a quite 
large discrepancy in the L/ICC-difference between reading comprehension and language 
awareness, although these dimensions do not differ much in their test reliability.  
Table 1 shows also the variance components, by which the LICCs were calculated (see 
Equation 16). As expected, the calculated LICCs indicate that more than 50% of the 
variance is explained by class membership for each dimension. For listening comprehen-
sion the highest LICC results with 77% explained variance by class membership. 
 

Table 1: 
Variance components on the within- and between-cluster level  

and intraclass correlations for the three dimensions 

 W
2
θK

σ B
2
θK

σ LICC ICC Reliability*

Reading Comprehension 0.51 1.05 .68 .52 .74 
Listening Comprehension 0.26 0.86 .77 .54 .66 
Language Awareness 0.51 1.29 .72 .66 .77 

Notes: W
2

kθ
σ = within-cluster variance, B

2

kθ
σ  = between-cluster variance, *ratio 

of average posterior variance to estimated population variance. 
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Correlations between the ability dimensions 

For the correlations between the latent variables it is expected that controlling class 
membership within the ML-MIRT approach provides a more differentiated ability struc-
ture. Accordingly, the correlations in a MIRT model and the correlations on between-
cluster level should exceed the respective correlations on L1 of the ML-MIRT model. 
Considering the two-level structure within this ML-MIRT approach results indeed in a 
different latent correlation pattern between the three testing constructs for L1 and L2. As 
expected, a more differentiated structure is found on the L1 compared with the between-
cluster level (see Table 2). 
 

Table 2: 
Latent correlations (standard errors) between reading comprehension (RC), listening 

comprehension (LC), and language awareness (LA). Correlations for the between-cluster 
level are printed above, for the within-cluster level below the main diagonal 

 RC LC LA 
RC  .971 (.030) .995 (.033) 
LC .773 (.079)  .964 (.020) 
LA .533 (.032) .612 (.040)  

 
 
The difference between the latent correlations on the different levels for reading compre-
hension and language awareness is notably high. Since the language awareness tasks to 
some extent also require reading comprehension a high correlation would be expected; 
however, the degree of correlation on L1 clearly justifies a separate assessment and in-
terpretation of these two constructs. Interestingly, the highest correlation on the within-
cluster level is found between reading and listening comprehension. These two tests 
require relatively similar cognitive processes like the decoding and understanding of 
English, the ability to process and integrate the information retrieved, as well as the 
comprehension of the gist and details of the presented text. 
As all intercorrelations on L2 are quite high, an alternative model with one common 
dimension on the between-cluster level was analyzed and compared regarding model fit 
(see Table 3). The four-dimensional model fits worse than the six-dimensional model 
( 2

Diffχ  = 5,346.875; dfDiff = 5; p ≤ .001), so the analyses are based on the model with three 
dimensions on each level. 

 

                                                                                                                         
5 The 2

Diffχ -value is calculated according to the procedure suggested by Satorra and Bentler (1999; see 

also htttp://www.statmodel.com/chidiff.shtml) and takes into account the scaling correction factor. The 
scaling correction factors are c0 = 2.096 for the model with 133 free parameters and c1 = 2.03 for the 
model with 138 free parameters, respectively. 
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Table 3: 
Number of free parameters and fit indices for the four- and six-dimensional model 

 Free parameters LL AIC BIC 
1 Between-, 3 Within-Dimensions 133 -332,318 664,902 665,430 
3 Between-, 3 Within-Dimensions 138 -331,585 663,445 663,993 

Notes: LL = Log-likelihood; AIC = Akaike’s information criterion; BIC = sample-size adjusted Bayesian 
information criterion. 
 

In a MIRT-model with adjusted standard errors the correlations between the three dimen-
sions are also quite high (see Table 4). The ranking of the correlations in this model is 
the same as for the correlations on the within-cluster level for the ML-MIRT model. The 
coefficients exceed the respective values for the within-cluster level, but fall below the 
correlations on L2. So the ML-MIRT approach reveals a more differentiated correlation 
structure for the within-cluster level in comparison with the between-cluster level as well 
as in comparison with the MIRT-approach not considering the two-level data structure. 
 

Table 4: 
Latent correlations (standard errors) between reading comprehension (RC), listening 

comprehension (LC), and language awareness (LA) 

 RC LC 
LC .903 (.019)  
LA .835 (.015) .859 (.023) 

 

Discussion 

Within ML-MIRT it is possible to gain LICCs which are corrected for measurement error 
and hence comparable among each other, even when the test reliability differs for the 
different testing constructs. This is particularly valuable for comparing the impact of 
class membership on different ability dimensions when a relatively broad competence is 
assessed via multiple specific abilities.  
For our empirical application results show, as expected, that class membership has a 
huge impact on test performance, as it explains between 68% and 77% of the total vari-
ance. Different values result for the LICCs regarding the different dimensions. This find-
ing indicates a conceptually distinct meaning of the three latent variables in the model 
and indirectly confirms the assumption of substantive differences between these specific 
abilities, because class membership influences them to a different degree. In such cases, 
the conceptual and psychometric separation of specific abilities seems reasonable, de-
spite of given high empirical correlations. Hence, the variance decomposition of vari-
ables can provide another cue -besides the empirical correlations- when deciding about 
the dimensional structure of a competence construct assessed with multilevel data. A 



J. Höhler, J. Hartig & F. Goldhammer 336 

further inspection of the variance components shows different values for all three dimen-
sions on between-cluster level, but not for reading comprehension and language aware-
ness on L1. However, the inverse conclusion that similar variance components confirm 
non-separability of dimensions cannot be drawn. 
Within a multidimensional model, the decomposition of covariance between the dimen-
sions for the different levels can also provide valuable information. The correlations on 
within-cluster level can be interpreted as the relations between the specific ability dimen-
sions reading comprehension, listening comprehension, and language awareness control-
ling for class membership. The between-cluster covariance proportion represents the 
relationship between the class means in these three dimensions. Correlations on between-
cluster level should not be taken as evidence to confirm or reject a structural competence 
model on an individual level. Therefore, the findings on within-cluster level or of initial 
non-multilevel (M)IRT scaling approaches should be scrutinized. However, the correla-
tional structure on between-cluster level should be taken into account if test scores are 
interpreted and reported on an aggregated level (i.e., when comparing classes or schools). 
For our empirical application the resulting high correlations on between-cluster level 
signify a low reliability of ability profile information concerning differences between 
classes. In such a case only the level of competence in the broader domain (i.e., English 
as a foreign language) should be reported when comparing performance of whole classes 
or schools, although the multidimensional IRT scaling may be preferable nevertheless. 
On within-cluster level, on the other hand, a differentiated feedback of students’ ability 
profiles, with their individual strengths and weaknesses in reading comprehension, listen-
ing comprehension, and language awareness for improving students performance in EFL 
could be given with a satisfying reliability. 
Furthermore, for individual feedback the ML-MIRT model provides the opportunity to 
communicate ability profiles with the position of the student relative to the group mean 
as well as the position of the group mean in relation to the grand mean. For a differenti-
ated individual feedback both options should be used. In addition, it is possible to depict 
the relative position of a specific student not only to his/her own group mean, but also to 
other group means. That could be interesting, for example, if a different school type or 
class for this student is considered. 
The structural equivalence of constructs at different levels of aggregation should be 
tested to avoid (dis)aggregation fallacies and ensure a stable psychological meaning of 
the traits at the different levels; although in multilevel applications for students’ perform-
ance data the similarity of meaning across aggregation levels can often be taken for 
granted (van de Vijver & Poortinga, 2002). According to Muthén (1991, 1994) a con-
struct is equivalent across aggregation levels if a model that postulates the same number 
of factors at each level, and imposes the same relationship to all variables at both levels, 
shows a good fit. However, if the dimensional structure and/or loading pattern differs 
across levels, interpretation of the theoretical and conceptual meaning of the assessed 
construct for the different levels becomes quite complex. 
To summarize, analyzing multidimensional clustered data with a ML-MIRT measure-
ment model seems to be a quite promising procedure. First, it is possible to analyze mul-
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tiple abilities simultaneously. Of course, this holds true for all MIRT models. But second, 
in comparison with a MIRT model, it has the advantage that L1 and/or L2 predictor 
variables could be directly included and investigated (see e.g., Fox, 2004; Fox & Glas, 
2001; 2003; Kamata et al., 2008; Muthén, 1991). Third, compared with a manifest vari-
able approach, it yields more accurate estimates, as demonstrated by Lüdtke et al. (2008) 
for contextual studies. Besides these more technical advantages, a ML-MIRT analysis 
enables a more differentiated individual feedback of ability profiles. Moreover, it allows 
to test the structural equivalence of a construct across different levels of aggregation and 
thus, to investigate how differentiated a feedback on a specific level should be given. For 
determining sufficient sample and cluster sizes and number of clusters to yield reliable 
estimates more simulation studies in this research field are required. 
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