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Exploring rater errors and systematic 
biases using adjacent-categories Mokken 
models 
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Abstract 

Adjacent-categories formulations of polytomous Mokken Scale Analysis (ac-MSA) offer insight 
into rating quality in the context of educational performance assessments, including information 
regarding individual raters’ use of rating scale categories and the degree to which student perfor-
mances are ordered in the same way across raters. However, the degree to which ac-MSA indica-
tors of rating quality correspond to specific types of rater errors and systematic biases, such as 
severity/leniency and response sets, has not been fully explored. The purpose of this study is to 
explore the degree to which ac-MSA provides diagnostic information related to rater errors and 
systematic biases in the context of educational performance assessments. Data from a rater-
mediated writing assessment are used to explore the sensitivity of ac-MSA indices to two catego-
ries of rater errors and systematic biases: (1) rater leniency/severity; and (2) response sets (e.g., 
centrality). Implications are discussed in terms of research and practice related to large-scale educa-
tional performance assessments. 
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Concerns related to rating quality are prevalent in research on educational performance 
assessments (Hamp-Lyons, 2007; Lane & Stone, 2006; Saal, Downey, & Lahey, 1980). 
Accordingly, researchers have proposed numerous quantitative techniques that can be 
used to evaluate ratings, including indicators of rater errors and systematic biases. These 
techniques for evaluating rating quality reflect a variety of measurement frameworks, 
including methods based on observed ratings (i.e., Classical Test Theory) and methods 
based on scaled ratings (i.e., Item Response Theory; IRT). Whereas most methods based 
on observed ratings provide group-level indicators of rating quality, such as proportions 
of rater agreement or reliability coefficients, methods based on scaled ratings provide 
information about rating quality at the individual rater level (Wind & Peterson, 2017). 
When ratings are evaluated with the purpose of improving the measurement quality of an 
assessment system, such as during rater training or monitoring procedures, diagnostic 
information is needed that describes rating quality at the individual rater level. In particu-
lar, information that describes the degree to which individual raters demonstrate specific 
types of rater errors and systematic biases, such as severity/leniency and central tenden-
cy, can provide useful feedback for improving rating quality that goes beyond overall 
summaries of rater agreement or reliability (Myford & Wolfe, 2003, 2004; Wolfe & 
McVay, 2012). 

Currently, most research on quantitative rating quality indices is based on parametric 
IRT models. IRT models are classified as parametric when they involve the transfor-
mation of ordinal ratings to an interval-level scale. The practical implications of this 
transformation are that the rater response function, or the relationship between student 
achievement estimates and ratings is assumed to conform to a particular shape (usually 
the logistic ogive) that matches a specific distribution, and that the measures of student 
achievement and rater severity are estimated on an interval-level scale. It is also possible 
to examine rating quality using nonparametric IRT methods, which do not involve the 
transformation between ordinal ratings and an interval-level scale. In particular, Mokken 
Scale Analysis (MSA; Mokken, 1971) can be applied to data from rater-mediated educa-
tional assessments in order to evaluate rating quality (Snijders, 2001; Wind & Engelhard, 
2015). The MSA approach is based on less-strict underlying requirements for ordinal 
ratings compared to parametric IRT models (Meijer, Sijtsma, & Smid, 1990). Although 
they are less strict, MSA is nonetheless characterized by underlying requirements for 
ratings that can be used to evaluate the degree to which raters demonstrate basic meas-
urement properties, without the requirement of a parametric model (Wind & Engelhard, 
2015). The MSA approach to evaluating rating quality provides an exploratory approach 
to examining the psychometric properties of ratings that can be used to examine the 
measurement properties associated within individual raters, prior to the application of a 
parametric model.  

Recently, a nonparametric procedure based on Mokken Scale Analysis (MSA) was pre-
sented that can be used to explore rating quality at the individual rater level (Wind, 2016; 
Wind & Engelhard, 2015). This model is essentially an application of the Nonparametric 
Partial Credit Model (Hemker, Sijtsma, Molenaar, & Junker, 1997) to the context of 
rater-mediated assessments that also includes indices of psychometric properties based 
on MSA, such as monotonicity, double monotonicity, and scalability coefficients. Relat-
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edly, ac-MSA can be described as a special case of Mokken’s (1971) Monotone Homo-
geneity model (Van Der Ark, 2001). Because it is nonparametric, this approach can be 
used to evaluate individual raters in terms of fundamental measurement properties, in-
cluding scalability, monotonicity, and invariance in rater-mediated assessments without 
imposing potentially inappropriate transformations on the ordinal rating scale. In particu-
lar, the application of adjacent-categories MSA models (ac-MSA; Wind, 2016) to rater-
mediated assessments has been shown to offer valuable insight into rating quality, in-
cluding information regarding individual raters’ use of rating scale categories and the 
degree to which student performances are ordered in the same way across raters. Howev-
er, the degree to which rating quality indicators based on ac-MSA correspond to specific 
types of rater errors and systematic biases has not been fully explored. 

Purpose 

The purpose of this study is to explore the degree to which ac-MSA provides diagnostic 
information related to rater errors and systematic biases in the context of educational 
performance assessments. Specifically, this study focuses on the use of numeric and 
graphical indicators based on ac-MSA to identify two major categories of rater errors and 
systematic biases: (a) leniency/severity; and (b) response sets (e.g., centrality. Two re-
search questions guide the analyses: 

1. How can ac-MSA be used to detect rater leniency/severity?  
2. How can ac-MSA be used to detect rater response sets?  

 

In order to provide a frame of reference for exploring rater errors and systematic biases 
using ac-MSA, indicators of rater leniency/severity and response sets are calculated 
using the Rasch Partial Credit (PC) model (Masters, 1982). Then, indicators of rating 
quality based on ac-MSA are explored as they relate to rater classifications based on the 
Rating Scale (RS) model (described further below).  

Rater errors and systematic biases 

As noted above, researchers have proposed numerous quantitative techniques for evalu-
ating the quality of ratings in performance assessments. Although there are some dis-
crepancies in the terminology and methods used to calculate these indices (Saal et al., 
1980), most rating quality indices reflect similar concerns. In particular, rating quality 
indicators that are used in practice generally reflect concerns related to the degree to 
which raters assign the same or similar scores to the same student performances (rater 
agreement), or the degree to which raters consistently rank-order student performances 
(rater reliability; Johnson, Penny, & Gordon, 2009; Wind & Peterson, 2017). 

In addition to rater agreement and reliability, indicators of rating quality can also be used 
to identify specific types of rater errors and systematic biases that can lead to targeted  
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Table 1: 
Definitions of Rater Errors and Systematic Biases 

Rater Errors and 
Systematic Biases 

Definition 

Rater Severity/Leniency Raters systematically assign lower-than-expected ratings 
(severity) or higher-than-expected ratings (leniency) than 
is warranted by the quality of student performances 

Response Sets Raters assign rating patterns that suggest the idiosyncratic 
interpretation and use of rating scale categories, such as 
centrality, and muted/noisy ratings. 

 

 

rater remediation or the revision of scoring materials, such as rubrics, score-level exem-
plars, and performance level descriptors (Engelhard, 2002; Wolfe & McVay, 2012). 
Although researchers have described many different types of errors and systematic bias-
es, two major categories have been particularly useful for classifying rating patterns that 
may warrant further attention in the context of educational performance assessments: (a) 
severity/leniency; and (b) response sets. Table 1 includes definitions for these two cate-
gories of rater errors and systematic biases, and these definitions are elaborated and 
illustrated below. 

Severity/Leniency 

The first major category of rater errors and systematic biases is rater severity/leniency. In 
general, raters are considered severe or lenient when they systematically assign lower-
than-expected or higher-than-expected ratings, respectively, than is warranted by the 
quality of student performances. Table 2, Panel A includes a small illustration that illus-
trates rater severity/leniency for ten student performances based on a rating scale with 
five categories (1=low, 5=high). The illustration includes a criterion rater whose ratings 
reflect “known” or “true” scores, a severe rater, and a lenient rater. In the illustration, the 
severe rater consistently assigns lower ratings than the criterion rater, and the lenient 
rater consistently assigns higher ratings than the criterion rater. 

Response sets 

The second major category of rater errors and systematic biases is response sets. Rater 
response sets include a variety of rating patterns that suggest the idiosyncratic interpreta-
tion and use of rating scale categories. Researchers have described numerous types of 
response sets that are viewed as potentially problematic in rater-mediated assessments. 
Among these response sets, a common classification includes range restriction, which is 
the tendency for raters to use only a subset of the rating categories when performances  
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Table 2: 
Illustrations of Rater Errors and Systematic Biases 

Panel A: Severity/Leniency 

Raters 
Performances 

1 2 3 4 5 6 7 8 9 10 

Criterion  5 2 1 4 3 1 4 3 1 5 

 Severe  3 1 1 2 1 1 2 1 1 3 

 Lenient  5 3 2 5 4 3 4 5 2 5 

Panel B: Response Sets 

Raters 
Performances 

1 2 3 4 5 6 7 8 9 10 

Criterion  5 2 1 4 3 1 4 3 1 5 

 Central  3 3 3 4 2 3 3 3 3 4 

 Muted  4 3 3 4 4 3 4 4 3 4 

 Noisy  2 1 4 2 5 5 1 1 4 2 
 

 

warrant ratings across the range of the scale. Although range restriction can occur any-
where along the rating scale, a common form of range restriction is rater centrality (i.e., 
central tendency), which occurs when raters use the middle categories more frequently 
than expected. Continuing the small illustration described above, Table 2, Panel B illus-
trates rater centrality using the same criterion rater from Panel A and a central rater. 
Whereas the criterion rater uses the full range of rating scale categories, the central rater 
consistently assigns scores in the central categories of the rating scale.  

When Rasch models are used to explore rating quality, idiosyncratic rating patterns are 
frequently described as muted or noisy. Specifically, rating patterns are described as 
muted when there is less variation than expected by the model (e.g., in the case of range 
restriction), and noisy when there is more variation than expected by the model. For 
example, a muted rating pattern might match the example response sets described above 
for rater centrality, another type of range restriction, such as the muted pattern illustrated 
in Table 2 Panel B. The example muted rater consistently assigns ratings in categories 3 
or 4. The illustration also includes a noisy rating pattern, where the example rater’s re-
sponses include seemingly random noise, or ratings that appear more haphazard than 
those expected based on student performances.  

Methods 

In order to explore the research questions for this study, we used ac-MSA (described 
further below) to explore data from a rater-mediated writing assessment in terms of rater 
severity/leniency and response sets. Because indicators of these rater errors and system-
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atic biases based on Rasch measurement theory are more well known in the psychomet-
ric literature (e.g., Eckes, 2015; Engelhard, 2002; Myford & Wolfe, 2003, 2004), indica-
tors based on the Rasch PC model are used as a frame of reference for interpreting 
Mokken indices within these categories. This section includes a description of the in-
strument and methods for exploring the rating data.  

Instrument 

Data were collected during a recent administration of the Alaska High School Writing 
(AHSW) test. The subset of ratings included in the current sample includes 40 raters who 
scored essays composed by 410 students using a five-category rating scale. All of the 
raters scored all 410 students, such that the rating design was fully crossed (Engelhard, 
1997). For illustrative purposes, we focus on ratings of student responses to one of the 
essay prompts in the current analysis. 

Procedures 

Our data analysis procedures included two major steps. First, rating quality indicators 
based on the PC model were calculated and used to classify each of the 40 raters in terms 
of severity/leniency and response sets. Second, indicators of measurement quality based 
on ac-MSA were explored within the rater classifications based on the PC model. We 
conducted the PC model analyses using Facets (Linacre, 2015), and we conducted the ac-
MSA analyses using R (R Core Team, 2015); code for both approaches is available from 
the first author upon request. 

Rasch rating quality indicators 

As noted above, numerous scholars have explored rating quality in performance assess-
ments using indicators of measurement quality based on Rasch models for polytomous 
ratings, including the Rasch rating scale (RS) model (Andrich, 1978), the Rasch partial 
credit (PC) model (Masters, 1982), and RS and PC formulations of the Many-Facet 
Rasch (MFR) model (Linacre, 1989). The PC formulation of the polytomous Rasch 
model was selected for this study because it facilitates examination of rating scale cate-
gory use more explicitly than does the RS version of the model. This model is stated 
mathematically as follows: 

 
1

ln nik
n i ik

nik

P
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θ λ τ

−

 
= − − 

 
, (1) 

where  

Pnik = the probability of Student n receiving a rating in category k from Rater i, 

Pnik−1 = the probability of Student n receiving a rating in category k−1 from Rater i, 
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 θn = the location of Student n on the construct (i.e., ability),  

λi = the location of Rater i on the construct (i.e., severity), and 

τik = the location on the construct where the probability for a rating in  

Category k and k−1 is equally probable for Rater i. 

 

When the PC model is applied to rating data, several indices can be calculated that pro-
vide diagnostic information related to the three categories of rater errors and systematic 
biases described above. First, rater locations on the logit scale (λ) are used as indicators 
of rater severity/leniency. Specifically, when the PC model in Equation 1 is estimated, 
the rater facet is centered at (i.e., fixed to) zero logits, such that more-severe raters have 
positive logit scale calibrations, and more-lenient raters have negative logit scale calibra-
tions. Following Wolfe and McVay (2012), the critical value of +/- 0.50 logits is used to 
identify severe and lenient raters, such that raters with locations higher or lower than 
0.50 logits from the mean rater location are considered severe or lenient, respectively. 

Second, model-data fit statistics for the rater facet are used as indicators of rater response 
sets. Following Engelhard and Wind (in press), values of the unstandardized Outfit sta-
tistic (Outfit MSE) were considered for each rater. Values of Outfit MSE greater than 
+1.50 were used to identify noisy raters, and values of Outfit MSE less than 0.50 were 
used to identify muted raters.  

Mokken Scale Analysis 

Mokken Scale Analysis (MSA; Mokken, 1971) is a nonparametric approach to item 
response theory that is theoretically aligned with Rasch measurement theory. Mokken 
proposed an approach to evaluating the psychometric properties of social science 
measures that allows researchers to evaluate the requirements for invariant measurement 
while maintaining the ordinal level of measurement that characterizes the raw scores. 
Specifically, MSA provides an exploratory approach to evaluating the degree to which 
persons are ordered consistently across items, and items are ordered consistently across 
persons. As a result, researchers can use this nonparametric approach to explore funda-
mental measurement properties without potentially inappropriate parametric transfor-
mations or assumptions. 

Dichotomous Mokken models 

In the original presentation of MSA, Mokken proposed two models: (1) the Monotone 
Homogeneity (MH) model; and (2) the Double Monotonicity (DM) model. The MH 
model is based on three requirements: (1) Monotonicity: As student locations on the 
latent variable increase, the probability for correct response (X=1) does not decrease; (2) 
Unidimensionality: Students’ responses reflect one latent variable; and (3) Local Inde-
pendence: Students’ responses to each item are not dependent on their responses to any 
other item, after controlling for the latent variable. In practice, adherence to the MH 
model is evaluated using graphical and numeric analyses, where evidence of non-
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decreasing item response functions (IRFs) across increasing levels of the latent variable 
suggest that monotonicity is observed. Scalability coefficients are also used to evaluate 
the MH model. These coefficients provide an index of the degree to which individual 
items, pairs of items, or sets of items are associated with Guttman errors, or the combi-
nation of a correct response to a more-difficult item in combination with an incorrect 
response to an easier item. Evidence of adherence to the MH model suggests that person 
ordering on the latent variable is invariant across items. 

The DM model shares the three MH model requirements and includes a fourth require-
ment: (4) Invariant item ordering: item response functions for any given item do not 
intersect with response functions for any other item. In practice, adherence to the DM 
model is evaluated using graphical and numeric analyses, where evidence of non-
intersecting IRFs suggests that double monotonicity is observed. Evidence of adherence 
to the DM model suggests that item ordering on the latent variable is invariant across 
persons.  

Polytomous Mokken models 

Following the original presentation of MSA, Molenaar (1982) presented polytomous ver-
sions of Mokken’s original nonparametric models. Similar to polytomous extensions of 
other IRT models, the polytomous formulations of MSA models are based on the same 
requirements as the dichotomous formulations, but the requirements are evaluated at the 
level of rating scale categories, rather than for the overall item. Specifically, for each poly-
tomous item with k rating scale categories, k – 1 Item Step Response Functions (ISRFs; τ) 
are calculated that reflect the difficulty associated with a rating in a particular category. In 
their original formulation, ISRFs for polytomous MSA models are calculated using cumu-
lative probabilities, where each τ reflects the difficulty associated with receiving a rating in 
category k or any higher category, as defined based on the ordinal rating scale. 

In order to extend the use of MSA to the context of educational performance 
assessments, Wind (2016) proposed an adaptation of polytomous MSA models, where 
the ISRFs are calculated using adjacent-categories probabilities. Specifically, adjacent-
categories MSA (ac-MSA) models are defined such that each τ reflects the difficulty 
associated with receiving a rating in category k, rather than k–1. This approach is more 
conceptually aligned with performance assessments, where the difficulty associated with 
each category in the rating scale is of more interest than the difficulty associated with a 
cumulative set of categories (Andrich, 2015). Furthermore, the adjacent-categories 
formulation matches the threshold formulation that is used in polytomous Rasch models 
– leading to a closer theoretical alignment with polytomous Rasch models. 

Mokken rating quality indices 

In this study, ac-MSA models are used to explore rater errors and systematic biases. 
Similar to the Rasch approach to evaluating rating quality, data from rater-mediated 
assessments can be evaluated using ac-MSA by treating raters as a type of “item” or 
“assessment opportunity.” Then, indices of adherence to the model requirements can be 
examined as evidence of rating quality. 
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Following the procedures that are typically used to evaluate psychometric properties 
based on MSA (e.g., Meijer, Tendeiro, & Wanders, 2015; Sijtsma, Meijer, & van der 
Ark, 2011), we focus on three indicators of rating quality. The first two indicators are 
based on the adjacent-categories formulation of the polytomous MH model: (A) Rater 
monotonicity; and (B) Rater scalability. The third indicator is based on the adjacent-
categories formulation of the DM model: (C) Invariant rater ordering. 

A. Rater monotonicity. Rater monotonicity refers to the degree to which the probability 
associated with receiving a rating in rating scale category k, rather than category  
k–1 increases over increasing levels of student achievement. Rater monotonicity can be 
evaluated for each ISRF using graphical and numeric indices. Figure 1 illustrates a 
graphical procedure for evaluating rater monotonicity for an example rater using a four-
category rating scale. The y-axis shows the probability for a rating in the higher of each 
pair of adjacent categories [P(X=k)/P(X=k – 1)]. The x-axis shows student restscores (R), 
which are the nonparametric analogue to person (theta) estimates in Rasch models. Rest-
scores are calculated by subtracting the rating each student receives from the rater of 
interest from their total score across the rest of the raters. Then, students with the same or 
adjacent restscores are combined into restscore groups in order to evaluate model as-
sumptions. The y-axis shows the probability for a rating in each category, rather than the 
category just below it. The three lines show the probability for a rating in category 1, 
rather than category 0 (highest line), the probability for a rating in category 2, rather than 
in category 1 (middle line), and the probability for a rating in category 3 rather than in 
category 2 (lowest line). The example monotonicity plot in Figure 1 illustrates adherence 
to rater monotonicity because the probability for a rating in a higher category is non-
decreasing across increasing restscores.  

 

 

 
Figure 1: 

Example Monotonicity Plot 
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Rater monotonicity can also be evaluated using statistical hypothesis tests. Specifically, 
for each pair of adjacent restscore groups, the following null hypothesis is evaluated: the 
adjacent-categories probability for a rating in a particular rating scale category is higher 
for the group with higher restscores than the group with lower restscores. Rejections of 
this null hypothesis constitute violations of rater monotonicity.  

B. Rater scalability. In traditional applications of MSA, scalability coefficients are used 
as indicators of the degree to which individual items, pairs of items, and overall sets of 
items are associated with Guttman errors. Specifically, scalability coefficients are calcu-
lated using one minus the ratio of the observed and expected frequency of Guttman er-
rors within every possible pairwise combination of items. For item pairs, the formula for 
the scalability coefficient is as follows:  

 1 ij
ij

ij

F
H

E
= −  (2) 

A value of Hij = 1.00 indicates that there are no Guttman errors associated with a particu-
lar item pair. Scalability coefficients can also be calculated for individual items (Hi) and 
item sets (H). For individual items, scalability coefficients (Hi) are calculated using each 
item pair that includes the item of interest. Scalability coefficients for item sets (H) are 
calculated using all of the item pairs. 

Polytomous scalability coefficients can also be calculated for individual raters, pairs of 
raters, and a group of raters. Specifically, polytomous scalability coefficients are calcu-
lated using Guttman errors that are observed at the level of rating scale categories. 
Guttman errors for polytomous items are observed when the probability for a rating in a 
higher category is greater than the probability for a rating in a lower category. When the 
ac-MSA formulation is applied, Guttman errors are identified by first establishing the 
overall difficulty ordering of the ISRFs across items (or raters), and then identifying 
deviations from this ordering. When the adjacent-categories formulation is used, the 
difficulty ordering of ISRFs is calculated using adjacent-categories probabilities, rather 
than the cumulative probabilities that are usually used to calculate MSA scalability coef-
ficients. Additional details about ac-MSA scalability coefficients can be found in Wind 
(2016) and Wind (under review).  

In the context of rater-mediated assessments, scalability coefficients for individual raters 
(Hi) are diagnostically useful because they provide an index of the degree to which indi-
vidual raters are associated with Guttman errors. For raters, Guttman errors suggest 
idiosyncratic rating patterns that warrant further investigation. Mokken (1971) suggested 
a minimum critical value of Hi = 0.30 for item selection purposes, where values between 
0.30 ≤ Hi < 0.40 suggest weak scalability, values in the range of 0.40 ≤ Hi < 0.50 suggest 
moderate scalability, and values greater than Hi = 0.50 suggest strong scalability.  
Although these critical values are widely applied in practice (e.g., Meijer et al., 2015; 
Sijtsma et al., 2011), they have not been thoroughly examined in the context of poly-
tomous items in general, as well as in the context of rater-mediated assessments more 
specifically. 



Exploring rater errors and systematic biases using adjacent-categories Mokken models 503

C. Invariant rater ordering. Finally, invariant rater ordering (IRO) refers to the degree 
to which rater ordering in terms of severity is invariant across students. Although it is 
possible to evaluate invariant ordering at the level of ISRFs by examining the degree to 
which rating scale categories for individual raters are ordered consistently across stu-
dents, most MSA researchers investigate invariant ordering at the overall item level 
(Ligtvoet, Van der Ark, Marvelde, & Sijtsma, 2010; Sijtsma et al., 2011). Likewise, in 
this study, we investigate IRO at the overall rater level using graphical displays and 
statistical hypothesis tests.  

Figure 2 illustrates a graphical procedure for evaluating IRO for a pair of example raters 
using a four-category rating scale. Similar to Figure 1, the x-axis shows restscores (R). 
Because the plot in Figure 1 includes two raters, restscores are calculated for each stu-
dent by subtracting their ratings from the two raters of interest from their total ratings 
across the remaining raters. Because IRO is evaluated for overall raters, rather than with-
in rating scale categories, the y-axis shows average ratings. The solid line shows the 
average rating assigned by Rater i within each restscore group, and the dashed line shows 
the average rating assigned by Rater j within each restscore group. The example raters in 
Figure 2 illustrate adherence to IRO because the raters are ordered consistently across all 
of the restscore groups, such that Rater j is consistently more severe than Rater i regard-
less of students’ achievement level.  

Similar to rater monotonicity, IRO can also be evaluated using statistical hypothesis 
tests. Specifically, given raters i and j who are ordered in terms of severity such that rater 
i is more lenient than rater j (i < j), the following null hypothesis is evaluated within each 
restscore group: the average rating from rater i is greater than or equal to the average 
rating from rater j. Rejections of this null hypothesis constitute violations of IRO.  

 

 

 
Figure 2: 

Example Invariant Rater Ordering Plot 
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In order to explore the degree to which indicators of rating quality based on rater mono-
tonicity, scalability, and invariant ordering can detect specific types of rater errors and 
systematic biases, the three categories of ac-MSA indices discussed above are applied to 
the entire set of ratings. Then, the prevalence of violations of monotonicity, scalability, 
and invariant ordering is considered within each group of raters (fair, lenient, severe, 
muted, and noisy).  

Results 

Rater classifications 

Table 3 includes PC model results for each of the 40 raters, along with corresponding 
classifications related to rater severity/leniency and muted/noisy response sets. Overall, 
these results suggest that several raters who scored the AHSW test demonstrated rater 
errors and systematic biases that may warrant further investigation. Specifically, 11 
raters were lenient (λ ≤- 0.50), eight raters were severe (λ≤+0.50), two raters were muted 
(Outfit MSE ≤ 0.50), and four raters were noisy (Outfit MSE ≥ +1.50). There were 20 
raters who were not classified as severe, lenient, noisy, or muted; these raters are de-
scribed as “fair” in the remainder of the manuscript. 

Mokken rating quality indices 

Table 3 also includes results from the ac-MSA analysis for each rater; and the ac-MSA 
results are summarized within each of the Rasch classifications in Table 4. In this sec-
tion, the ac-MSA results are described as they relate to rater monotonicity, rater scalabil-
ity, and IRO. 

A. Rater monotonicity 

The results in Table 3 suggest that there were very few significant violations of rater 
monotonicity among the 40 raters who scored the AHSW test. This finding suggests that, 
in general, the students were ordered consistently across raters, such that the interpreta-
tion of individual students’ writing achievement was invariant across raters. 

Table 4 summarizes the monotonicity results within the rater groups based on the Rasch 
model classifications. Specifically, within each group of raters, the average number of 
significant violations of rater monotonicity is presented. Across these rater classifica-
tions, it is interesting to note that violations of monotonicity were observed most fre-
quently among raters who were classified as noisy (M=0.25, SD=0.50), and least fre-
quently within the severe and muted rater groups (M=0.00, SD=0.00). This finding sug-
gests that Rasch model-data fit statistics and monotonicity analyses may detect similar 
idiosyncratic rating patterns. It is also interesting to note that Rater 35 was identified for 
a violation of monotonicity, but this rater was classified as fair based on the Rasch model 
indices – suggesting that monotonicity analyses based on ac-MSA may be sensitive to 
rating patterns beyond what is detected by the Rasch model. 



Exploring rater errors and systematic biases using adjacent-categories Mokken models 505

Table 3: Rating Quality Results 

Rater Rasch Rating Quality Indices  ac-MSA Rating Quality Indices 

Measure S.E. Outfit MSE  Significant 
Violations of 
Monotonicity 

Scalability Significant 
Violations of 

IRO 

1 0.37 0.37 1.81N  1 0.12 27 

2 0.02 0.02 0.92  0 0.34 6 

3 -0.02 -0.02 1.10  0 0.31 8 

4 0.26 0.26 0.71  0 0.30 17 

5 0.61 0.61 1.02  0 0.32 6 

6 0.35 0.35 1.12  0 0.29 11 

7 -0.57L -0.57 1.09  0 0.22 6 

8 0.09 0.09 1.11  0 0.29 10 

9 0.31 0.31 1.09  0 0.31 10 

10 -0.65L -0.65 1.53N  1 0.30 5 

11 0.45 0.45 1.37  0 0.23 15 

12 0.63S 0.63 0.70  0 0.29 11 

13 0.25 0.25 0.78  0 0.27 16 

14 1.05S 1.05 0.67  0 0.28 5 

15 -0.71L -0.71 0.94  0 0.32 4 

16 -1.50L -1.50 0.70  0 0.22 1 

17 -0.86L -0.86 1.51N  0 0.20 10 

18 -0.44 -0.44 0.74  0 0.23 7 

19 -0.64L -0.64 0.55  0 0.19 7 

20 0.20 0.20 0.95  0 0.18 21 

21 0.75S 0.75 1.50N  0 0.17 20 

22 0.13 0.13 1.16  0 0.28 11 

23 0.31 0.31 1.01  0 0.28 7 

24 1.14S 1.14 0.80  0 0.30 2 

25 -0.18 -0.18 0.87  0 0.26 5 

26 0.71S 0.71 1.02  0 0.32 6 

27 -0.77L -0.77 1.37  0 0.21 9 

28 -0.96L -0.96 0.49M  0 0.21 2 

29 0.18 0.18 0.83  0 0.31 11 

30 0.10 0.10 1.04  0 0.28 5 

31 0.06 0.06 0.71  1 0.26 12 

32 0.39 0.39 0.92  0 0.36 6 

33 0.89S 0.89 1.17  0 0.28 6 

34 -0.41 -0.41 0.68  0 0.23 8 

35 -0.24 -0.24 0.74  1 0.37 4 

36 0.62S 0.62 0.79  0 0.36 10 

37 -0.86L -0.86 0.91  0 0.16 2 

38 0.67S 0.67 0.71  0 0.38 10 

39 -1.14L -1.14 0.39M  0 0.18 1 

40 -0.60L -0.60 1.41  0 0.20 10 

Note. Superscripts are used to identify raters as follows: L = Lenient; S = Severe; M= Muted; N = Noisy 
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Table 4: 
Average ac-MSA results within Rasch classifications 

Rater Group A-C 
Scalability 

 Significant 
Violations of Rater 

Monotonicity 

 Significant 
Violations of IRO 

M SD  M SD  M SD 

Severe (n=8) 0.30 0.06  0.00 0.00  8.44 5.20 

Lenient (n=11) 0.22 0.05  0.09 0.30  5.18 3.49 

Noisy (n=4) 0.17 0.03  0.25 0.50  19.50 7.05 

Muted (n=2) 0.20 0.02  0.00 0.00  1.50 0.71 

Fair (n=20) 0.29 0.04  0.11 0.32  9.38 3.87 
 

 

In addition to statistical tests for monotonicity, we also examined rater monotonicity 
plots within each of the rater error groups based on the Rasch model. Figure 3 includes 
the monotonicity plot for two randomly selected raters in each category. In these plots, 
student restscores are listed along the x-axis, where Restscore Group 1 has the lowest 
restscores, and Restscore Group 4 has the highest restscores. Examination of the mono-
tonicity plots indicates differences in rating patterns across the groups. As may be ex-
pected, response functions for raters in the lenient group tend to have higher overall 
locations on the y-axis – indicating higher average ratings across all rest-score groups. 
Similarly, raters in the severe group tend to have lower overall response functions – 
indicating lower average ratings.  

The response functions for raters in the noisy group indicate idiosyncratic use of the 
rating scale categories across levels of student achievement. In particular, these response 
functions are characterized by “dips” and “jumps” in the category probabilities across 
restscore groups that reflect violations of monotonicity. For example, Rater 1 displays 
haphazard rating patterns related to the second restscore group, and Rater 10 displays 
haphazard rating patterns related to the third restscore group. The plots for these raters 
also reveal category disordering within one or more restscore groups (i.e., the category 
probabilities are not ordered as expected based on the ordinal rating scale). The some-
what haphazard patterns suggest that these raters’ interpretations of student achievement 
were inconsistent with the other raters in the sample, whose ratings were used to classify 
students within rest-score groups. On the other hand, the response functions for raters in 
the muted group are generally steep and the distance between rating scale categories is 
less haphazard than the raters in the noisy group. Finally, the response functions for 
raters in the fair group are moderately steep, and are generally parallel and equidistant 
across the range of student rest-scores. 
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 Figure 3: 

Rater Monotonicity Plots within Rater Groups 
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B. Rater scalability 

Table 3 includes rater scalability coefficients (Hi) for each of the 40 raters who scored 
the AHSW test. The coefficients range from 0.12 for Rater 1 to 0.38 for Rater 38, sug-
gesting that Guttman errors were observed for each of the raters, and that there was some 
variation in the extent to which Guttman errors were observed across the group of raters. 

When rater scalability is considered in terms of the Rasch classifications (Table 4), the 
lowest average scalability coefficients are observed within the noisy rater group 
(M=0.17, SD=0.03), followed by the muted rater group (M=0.20, SD=0.02). This finding 
suggests that Rasch model-data fit statistics and rater scalability coefficients based on ac-
MSA may detect similar idiosyncratic rating patterns. It is interesting to note that the 
highest average rater scalability coefficients are observed within the severe rater group 
(M=0.20, SD=0.02) – suggesting that rater errors related to severity may not be associat-
ed with Guttman errors, as defined based on adjacent-categories probabilities.  

C. Invariant rater ordering 

Table 3 includes the frequency of significant violations of IRO for each of the 40 raters 
who scored the AHSW test. These results indicate at least one significant violation for 
each of the raters. The highest number of significant violations (n=27) was observed for 
Rater 1, followed by Rater 20 (n=21). 

When IRO is considered in terms of the Rasch classifications (Table 4), it is interesting 
to note that violations occurred most frequently within the noisy rater group (M=19.50, 
SD=7.05), and least frequently within the muted rater group (M=1.50, SD=0.71). This 
finding suggests that IRO analyses based on ac-MSA may be sensitive to unexpected 
ratings that are also captured by Rasch fit statistics.  

In addition to statistical tests for IRO, we also examined graphical displays of IRO using 
plots similar to the example shown in Figure 2. Overall, the graphical displays provided 
insight into not only whether a violation of IRO occurred, but also the nature of the vio-
lation. Of particular interest are the IRO plots for the raters who were most frequently 
associated with violations of IRO: Rater 1, who was classified as noisy and Rater 20, 
who was classified as fair. Selected IRO plots that represent the general patterns ob-
served for these two raters are presented in Figure 4. 

Across the IRO plots for Rater 1, who was classified as noisy, it was interesting to note 
that most of the significant violations of invariant ordering that involved Rater 1 oc-
curred in conjunction with raters classified as fair. Inspection of the IRO plots in Figure 
4 highlights the nature of these discrepancies in rater ordering across student achieve-
ment levels. Specifically, these plots reveal that the response function for Rater 1 (dashed 
line) is somewhat flat across student achievement levels, suggesting low discrimination. 
When Rater 1 was paired with raters who more clearly distinguished among levels of 
student achievement, Rater 1 was relatively more lenient for the lower achievement 
levels and relatively more severe for the higher achievement levels – resulting in a viola-
tion of invariant ordering. 
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Figure 4:  

Selected Invariant Rater Ordering (IRO) plots for the raters with the most frequent significant 
violations of IRO 
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Figure 4 also includes plots for Rater 20. Although Rater 20 was classified as fair based 
on the Rasch model, many violations of IRO were observed in association with this rater. 
Interestingly, inspection of the IRO plots for Rater 20 reveal a similar pattern as was 
observed for Rater 1. Specifically, the response function for Rater 20 (dashed line) is 
relatively flat across the restscore groups – suggesting low discrimination of student 
writing achievement compared to the other raters. As a result, combinations of this rater 
with raters with steeper slopes (higher discrimination) resulted in inconsistencies in the 
relative ordering of Rater 20 with other raters. Similar to Rater 1, most of the significant 
violations of IRO associated with Rater 20 involved other raters who were classified as 
fair.  

Summary and Discussion 

In this study, we explored a nonparametric method for examining the psychometric 
quality of rater-mediated assessments in terms of specific types of rater errors and sys-
tematic biases. Specifically, we used an adaptation of MSA, which is a nonparametric 
approach to IRT. MSA is a useful method for evaluating the psychometric properties of 
rater-mediated educational performance assessments because it allows researchers to 
explore the degree to which individual raters adhere to important measurement properties 
without parametric transformations. Accordingly, MSA can be used to explore the de-
gree to which individual raters adhere to fundamental measurement properties, such as 
invariance, without the need for strict parametric model requirements. 

In the current analysis, we used an adaptation of ac-MSA to explore the degree to which 
differences in rating quality indices based on MSA were observed within groups of raters 
who were identified as demonstrating specific types of rater errors and systematic biases 
using indicators from Rasch measurement theory. Overall, the results provided an over-
view of the correspondence between indicators of leniency/severity and response sets 
based on Rasch measurement theory and indicators of rater scalability, monotonicity, and 
invariant ordering based on ac-MSA. 

We observed very few violations of rater monotonicity among the AHSW assessment 
raters in any of the rater groups. However, inspection of monotonicity plots for the 
groups of raters indicated differences in the application of rating scale categories across 
each of the rater groups. In particular, we observed that patterns in ISRFs not only re-
vealed differences related to rater leniency/severity based on their overall locations, but 
also provided diagnostic information related to the application of rating scale categories 
across various levels of student achievement that reflected response sets. As noted by 
Wind (2016) and Wind and Engelhard (2015), one of the major benefits of the use of 
MSA is the utility of the graphical displays for providing diagnostic information related 
to the underlying measurement properties in a set of ratings.  

In terms of scalability, the results suggest that violations of Guttman ordering were ob-
served most frequently among raters who were classified as noisy. This finding is some-
what unsurprising, given the shared underlying theoretical relationship to Guttman scal-
ing for both MSA and Rasch measurement theory (Engelhard, 2008; van Schuur, 2003). 
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The alignment illustrated in this study between rating patterns classified as “misfitting” 
for both MSA and Rasch measurement theory reflect this shared focus on the basic re-
quirements for invariant measurement that also characterize Guttman scaling (Guttman, 
1950). 

When IRO was considered in terms of the Rasch classifications, it was interesting to note 
that similar patterns were observed for the noisiest rater in the sample and a rater who 
was classified as fair based on the Rasch model. This result suggests that indicators of 
rating quality based on ac-MSA provide insight into rating patterns that is not captured 
by Rasch model-data fit statistics. Furthermore, examination of the graphical displays for 
IRO revealed that significant violations of the invariant ordering requirement were fre-
quently observed for raters whose response functions were relatively flat, regardless of 
their classification based on the Rasch model. This finding suggests that raters’ overall 
level of discrimination across achievement level groups contributes to the degree to 
which they contribute to an invariant ordering of rater severity across students. 

Next, we return to the two guiding research questions for this study and discuss the ma-
jor findings from our analysis related to each question. A discussion of the implications 
follows. 

Research question One:  
How can MSA be used to detect rater leniency/severity? 

Because MSA is nonparametric, it is not possible to calibrate raters on an interval-level 
scale, as in parametric models for raters. Instead, differences in rater severity are identi-
fied using average ratings across the range of student achievement (rest-scores). In this 
study we observed that rater monotonicity plots, which show nonparametric response 
functions for raters, revealed differences in overall rater severity. Results from the anal-
yses also highlighted the diagnostic value of monotonicity plots for identifying specific 
ranges of student achievement within which differences in rater severity were most prev-
alent. Together, the current findings suggest that nonparametric indices of monotonicity 
can also be used to identify and explore differences in rater leniency/severity that go 
beyond overall calibrations and provide diagnostic information about differences in 
rating quality across the range of student achievement levels.  

Research question Two:  
How can MSA be used to detect rater response sets? 

Indicators of model-data fit to the Rasch model were used to identify raters whose use of 
the AHSW rating scale resulted in unexpected response patterns that were classified as 
either “noisy” or “muted.” Similar to the findings for rater leniency/severity, results from 
monotonicity analyses suggested that graphical indices of rater monotonicity can also be 
used to detect ranges of student achievement within which idiosyncratic application of 
rating scale categories are observed for individual raters. Further, results from rater 
scalability analyses revealed lower overall scalability coefficients among the group of 
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“noisy” raters. This finding suggests that MSA indices of scalability for individual raters 
correspond to Rasch-based indicators of rater response sets, such that low values of rater 
scalability can be used to identify raters with idiosyncratic application of a rating scale. 

Results from IRO analyses were also informative regarding rater response sets. In partic-
ular, our findings of large departures from the assumption of IRO among raters in the 
response set groups as well as raters who were classified as fair indicate that there was 
not a meaningful relationship between violations of IRO and raters’ classification within 
the response set subgroups. Accordingly, these results suggest that ac-MSA highlights 
characteristics of rater judgment that is not captured by Rasch fit statistics.  

Conclusions 

Taken together, the results from this study suggest that differences in rater scalability, 
monotonicity, and invariant rater ordering reflect related but not equivalent characteris-
tics of rating patterns as the rater errors and systematic biases that can be identified using 
indices based on the Rasch model. The shared theoretical and empirical underpinnings 
between Rasch measurement theory and ac-MSA related to invariant measurement are 
reflected in the correspondence between indices of rating quality between the two ap-
proaches (Engelhard, 2008; Meijer et al., 1990; van Schuur, 2003). On the other hand, 
the finding that the two approaches were not completely congruent suggests that ac-MSA 
can provide additional insight into the psychometric quality of ratings that is not captured 
by the more commonly used parametric approaches. 

In terms of implications for practice, the results from this study suggest that rating quali-
ty indices based on ac-MSA can be used to identify rater severity/leniency and idiosyn-
cratic rating patterns that warrant further investigation. These indices should be viewed 
as an additional set of methodological tools for exploring rating quality from the perspec-
tive of invariant measurement that complement the more-frequently used parametric 
indices based on Rasch measurement theory. 

In terms of research, these findings have implications regarding the use of nonparametric 
methods for evaluating rating quality. The analyses in the current study build upon the 
initial explorations of MSA in general (Wind & Engelhard, 2015; Wind, 2017), as well 
as the use of ac-MSA models (Wind, 2016; Wind & Patil, 2016) in particular, as an 
approach for evaluating rating quality. In particular, the current findings provide a con-
nection between ac-MSA indicators of monotonicity, scalability, and IRO and the rater 
errors and systematic biases that are frequently discussed in the literature on rating quali-
ty (e.g., Wind & Engelhard, 2012). 

Language assessments are used around the world for various educational and occupa-
tional decisions. These assessments are typically scored by raters, and it is essential to 
evaluate the reliability, validity and fairness of the ratings based on their intended uses 
(AERA, APA, & NCME, 2014). This study illustrates a suite of indices based on a prob-
abilistic-nonparametric approach that can be used to identify and diagnose potential rater 
errors and systematic biases without the application of a parametric model. As noted in 
other applications of nonparametric IRT, the nonparametric statistics and displays based 
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on ac-MSA provide an exploratory approach to exploring data quality that highlight 
departures from important measurement properties, such as monotonicity, scalability and 
invariance. The current study highlighted the additional diagnostic benefit of statistics 
and displays based on ac-MSA for exploring leniency/severity and response sets within 
the context of rater-mediated assessments. Additional research is needed that explores 
the use of the ac-MSA indices of rater scalability, monotonicity, and invariant ordering 
to communicate information about rating quality to practitioners and raters during train-
ing and operational scoring. 
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