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Evaluating a proposed modification of the 
Guttman rule for determining the number 
of factors in an exploratory factor analysis 

Russell T. Warne1 & Ross Larsen2 

Abstract 

Exploratory factor analysis (EFA) is a widely used statistical method in which researchers attempt 
to ascertain the number and nature of latent factors that explain their observed variables. When 
conducting an EFA, researchers must choose the number of factors to retain – a critical decision 
that has drastic effects if made incorrectly. In this article, we examine a newly proposed method of 
choosing the number of factors to retain. In the new method, confidence intervals are created 
around each eigenvalue and factors are retained if the entire eigenvalue is greater than 1.0. Results 
show that this new method outperforms the traditional Guttman rule, but does not surpass the 
accuracy of Velicer’s minimum average partial (MAP) or Horn’s parallel analysis (PA). MAP was 
the most accurate method overall, although it had a tendency to underfactor in some conditions. PA 
was the second most accurate method, although it frequently overfactored. PA was also found to be 
sensitive to sample size and MAP was found to occasionally grossly overfactor; these findings had 
not previously been reported in the literature. 
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Methodologists largely agree that among the choices that a researcher makes in conduct-
ing an exploratory factor analysis (EFA) or principal components analysis (PCA), the 
decision of the number of factors to retain is among the most important (Costello & 
Osborne, 2005; Fava & Velicer, 1996; Thompson, 2004; Thompson & Daniel, 1996; 
Zwick & Velicer, 1986). Indeed, O’Connor stated, “. . . the crucial decision is that of 
determining how many factors to retain. Assorted decisions on the other issues generally 
produce similar results when the optimal number of factors is specified” (2000, p. 396; 
see also Shönemann, 1990). 

The importance of retaining the correct number of factors cannot be overstated. EFA and 
PCA, for example, are often used in the construction and evaluation of psychometric 
instruments (e.g., Dombrowski, Watkins, & Brogan, 2009; Falk, Lind, Miller, 
Piechowski, & Silverman, 1999; Zheng, Hall, Dugan, Kidd, & Levine, 2002). If a re-
searcher retains the improper number of factors when constructing an instrument, then 
the interpretation of a psychometric test could become severely distorted. Under these 
circumstances, construct validity would likely be compromised, and researchers would 
unwittingly have an incorrect understanding of the factor structure of the data produced 
by items on a psychometric instrument. This may lead researchers to have an oversimpli-
fied understanding of the construct (in the case of underfactoring) or unnecessarily com-
plex results, which would violate the scientific principle of parsimony (in the case of 
overfactoring). 

EFA and PCA are also used as a method to convert a large number of observed variables 
into a smaller number of artificial variables to make later data analysis more manageable 
(Thompson, 2004). Again, if a researcher retains the improper number of factors when 
reducing data, the later analyses could produce inaccurate results and thus lead research-
ers astray in their conclusions. 

When discussing the issue of selecting the number of articles in a previous article, we 
explained to readers how they could estimate confidence intervals (CIs) for eigenvalues 
in an exploratory factor analysis (Larsen & Warne, 2010). Using publicly available data, 
we showed readers how they could use two methods to calculate CIs: a formula based on 
the Central Limit Theorem (CLT) and bootstrapping. Both methods produce similar 
results, although the CLT method produced wider CIs in our example. 

The equation for calculating eigenvalue CIs is relatively simple: 

 

 ( )

2

1 /2

2
* i

i

l
l z

nα−

 
 ±
 
 

  

 

where li represents the observed eigenvalue, ( )1 /2z α−  represents the appropriate z-value 
for the CI width (e.g., 1.96 for a 95% CI), and n represents the sample size. To help 
researchers who wish to calculate CIs, we provided SPSS and SAS syntax to conduct the 
calculations. Similarly, we provided SPSS and SAS syntax to use bootstrapping to esti-
mate eigenvalue CIs. The SPSS syntax was based on Zientek and Thompson’s (2007) 
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work and the SAS syntax was based on Tonsor’s (2004) work. Details about the syntax 
code for both programs are available in our previous article (Larsen & Warne, 2010). 

In the discussion section of the article, we mentioned that eigenvalue CIs could be used 
in helping a researcher decide how many factors to retain in an exploratory factor analy-
sis. Specifically, we stated that the Guttman rule could be modified so that retained fac-
tors are those for which the entire eigenvalue CI is greater than 1.0. Moreover, we made 
the claim that using eigenvalue CIs would improve the quality of factor retention deci-
sions. The main purpose of this article is to test this claim by using simulated data in a 
Monte Carlo study to compare the accuracy of various, more traditional factor retention 
decisions with our proposed modification of the Guttman (1954) rule, in which all fac-
tors with the entire 95% CI above 1.0 are retained. The specific research questions of this 
study are as follows: 

1. Which of the five methods (Guttman, CLT modified Guttman, bootstrap modified 
Guttman, parallel analysis, minimum average partial) most frequently determines 
the correct number of factors and produces the smallest bias in an EFA? 

2. Are the modifications to the Guttman rule suggested by Larsen and Warne (2010) 
more accurate than the Guttman rule? 

3. Which data characteristics (i.e., sample size, number of observed variables, number 
of factors, correlation among factors, and strength of factor loadings) have the larg-
est impact on bias for the methods of determining the number of factors? 

Notes on terminology 

Before continuing, it is important to make some of our usage and terminology clear. 
First, we use the term “exploratory factor analysis” or “EFA” rather freely. When using 
the term, we also refer to PCA. We are aware that there is some controversy surrounding 
whether PCA is a “real” factor analysis (Fabrigar, Wegener, MacCallum, & Strahan, 
1999; Gorsuch, 2003; Velicer, Eaton, & Fava, 2000), but we do not take a position in the 
argument. However, we do want to acknowledge that those who disagree with our use of 
the phrase “exploratory factor analysis” to also refer to PCA have some strong arguments 
in their favor. Similarly, our use of the word “factors” could also be interpreted as refer-
ring to “components.” Readers should also be aware that nothing that we discuss in this 
article applies to confirmatory factor analysis (CFA) because in that method the number 
of factors is hypothesized a priori based on theory or previous data (Thompson, 2004). 

Second, we use the term “Guttman rule” to refer to the strategy of retaining all factors 
with eigenvalues greater than 1.0. This rule is also called the K1 rule (after a 1960 article 
by Kaiser) and the eigenvalues-greater-than-one rule. However, we prefer the term 
“Guttman rule” because Guttman (1954) originally proposed the method. We use the 
phrase “modified Guttman rule” or just “modified Guttman” to refer to our proposed 
modifications where factors with the entire eigenvalue CI above 1.0 are retained (Larsen 
& Warne, 2010). In this article, we also use the terms “CLT modified Guttman rule” and 
“Bootstrap modified Guttman rule” to distinguish the methods by which the CIs were 
calculated in a particular instance. 
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Methods for deciding the number of factors to retain 

Although there are many methods for deciding on the number of factors to retain, this 
paper will focus on three methods, in addition to the two modified Guttman rules that we 
examine in this article. The three methods are the original Guttman rule, parallel analysis 
(PA), and minimum average partial (MAP). 

Guttman rule 

Guttman (1954) proposed that in an EFA, all factors with eigenvalues greater than 1.0 
should be retained. His logic in proposing this rule was that EFA is a data reduction 
method, and it is reasonable to require any retained factors to explain more variance than 
is explained by a single variable – which will be 1.0 when all variables are standardized. 
The Guttman rule is probably the most popular method for determining the number of 
factors to retain in an EFA among psychological researchers, likely because the Guttman 
rule is the default method of factor retention in programs like SPSS (Fabrigar et al., 
1999; Ford, MacCallum, & Tait, 1986; Hayton, Allen, & Scarpello, 2004; Henson & 
Roberts, 2006; Thompson & Daniel, 1996; Warne, Lazo, Ramos, & Ritter, 2012). 

Since its proposal over half a century ago, the Guttman rule has been heavily criticized. 
Thompson (2004), for example, disapproves of the Guttman rule because the 1.0 thresh-
old is arbitrary. Cliff (1988) convincingly showed that the Guttman rule’s logic that 1.0 
should be the lower bound of any retained factor only applies to population data – which 
researchers rarely have – and not sample data. Simulation studies also have shown that 
strict application of the Guttman rule tends to lead researchers to retain too many factors, 
especially when there are a large number of variables and the sample size is large 
(Hakstian, Rogers, & Catell, 1982; Velicer et al., 2000; Zwick & Velicer, 1982, 1986). 

Parallel analysis 

A more empirically sound method of retaining the number of factors is PA. Originally 
developed by Horn (1965), PA requires researchers to generate a number of datasets of 
random numbers that have the same distribution properties as the actual raw data and to 
calculate the average eigenvalues from the random data for each factor. The eigenvalues 
for the real data are compared to the corresponding random data eigenvalue; all factors 
that have the observed eigenvalue higher than the random data’s eigenvalue are retained. 
It makes intuitive sense to use PA, because one could make a convincing argument that 
factors whose eigenvalues are lower than an eigenvalue from random data would be 
meaningless and likely due to mere chance correlations among variables. 

In the decades since Horn (1965) proposed PA, support has grown for the practice. 
Simulation studies showed that PA performed well under reasonable conditions, al- 
though – like the Guttman rule – it tended to retain too many factors (Zwick & Velicer, 
1986). In response, modern proponents of PA suggest that researchers compare each 
observed eigenvalue to the 95th percentile of the corresponding eigenvalue for the ran-
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dom datasets, which is a more conservative approach (Cota, Longman, Holden, Fekken, 
& Xinaris, 1993; Glorfeld, 1995; O’Connor, 2000). Although PA is still not available in 
common statistical analysis software, O’Connor (2000) has published SPSS and SAS 
syntax that makes PA easy to perform. Liu and Rijmen (2008) have produced SAS syn-
tax that permits PA to be conducted with ordinal data. For this simulation study we used 
O’Connor’s (2000) SAS syntax to make factor retention decisions using PA. 

Minimum average partial 

Velicer (1976) proposed the MAP method of deciding the number of factors to retain in 
an EFA. Unlike PA or the Guttman rule, MAP does not use observed eigenvalues to help 
researchers make the retention decision. Instead, MAP determines the number of factors 
by comparing the systematic and unsystematic variance remaining in a correlation matrix 
after each additional factor is extracted. This process continues until the average squared 
partial correlation is at a minimum. 

MAP is not commonly used, despite performing well in simulation studies (e.g., Velicer 
et al., 2000; Zwick & Velicer, 1982, 1986). As with PA, O’Connor (2000) has produced 
SPSS and SAS syntax to help researchers apply MAP to their EFAs; the SAS syntax 
from O’Connor (2000) was used for this simulation study.  

Methods 

Simulated conditions 

Five major variables were manipulated in this Monte Carlo study: (a) the number of 
observed variables in the dataset, (b) the number of factors present in the population 
matrix, (c) the sample size, (d) the correlation among population factors, and (e) the 
strength of the factor loadings. The correlation matrix was calculated by using classic 
structural equation modeling equations, specifically: 

 

xx ξ δ= Λ +  

 

where x is the observed (endogenous) variable, Λx are the factor loadings (or pattern 
matrix), ξ is the true score associated with the factor, and δ is the error component asso-
ciated with the exogenous variable. Thus the variance/covariance matrix can be defined 
as: 

 
'

xx x x ε = Λ ΦΛ +  
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where again, Λx is the factor loading and Φ is the variance/covariance matrix of the 
factors, and ε is the error term. Multiplying Λx by Φ will result in the vector of structure 
coefficients (For further details on the theory of structural equation modeling, we invite 
readers to consult Kline, 2005). Sampling variability was introduced into the simulated 
data by using the RANDNORMAL function in SAS (SAS, 2009), which produces ran-
dom samples drawn from a multivariate normally distributed population. The eigenval-
ues were calculated from the simulated data using principal components analysis using 
the SAS PROC PRINCOMP (SAS, 2009). 

We decided to use structural equation modeling instead of multidimensional item re-
sponse theory (IRT) to simulate our data because both EFA and PCA are special cases of 
SEM, and we thought that keeping the data generation and analysis within the structural 
equation modeling framework would simplify interpretation and remain faithful to the 
way that most psychometricians and quantitative psychologists think of EFA when using 
the method. Readers who prefer an IRT basis for simulated data for examinee responses 
should remember that multidimensional IRT is a special case of structural equation mod-
eling (Reckase, 1997) and that statistics and parameter estimates in IRT can be converted 
into factor analysis path estimates (Raju, Laffitte, & Byrne, 2002). 

Number of observed variables 

For this simulation, we decided that there would be three conditions for the number of 
observed variables. Each condition would have 15, 30, and 45 observed variables, re-
spectively. We chose these values because similar values had been used in previous 
simulation studies on EFA and PCA (e.g., Fava & Velicer, 1992, 1996). Moreover, Hen-
son and Roberts (2006) found that of the articles using EFA that they examined, a mean 
of 23.73 of observed variables were factor analyzed (SD = 16.70), indicating that results 
of a simulation of 15-45 observed variables would generalize to most published EFAs. 

Number of factors 

There were also three conditions for the number of factors in our Monte Carlo simula-
tion. We decided that the population matrices would consist of 1, 3, or 5 factors. The 
number of observed variables per factor was always equal within each condition, which 
is consistent with previous simulation studies (e.g., Fava & Velicer, 1992, 1996) and 
Henson and Roberts’s (2006) review of published EFAs. 

Sample size 

We decided to define sample sizes as a ratio between research participants and observed 
variables. There were seven conditions for this variable: 2:1, 5:1, 8:1, 11:1, 14:1, 17:1, 
and 20:1. Therefore actual sample sizes ranged from 30 to 900. We wanted this diverse 
range of sample size so that we could observe the various factor retention decision meth-
ods under a wide variety of realistic data conditions (Henson & Roberts, 2006). 
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Factor correlations 

We decided to simulate the degree of intercorrelation among factors with three condi-
tions: perfectly orthogonal factors (i.e., r = 0), factors that are modestly correlated (r = 
.25), and distinctly correlated factors (r = .50). We believed that the correlation among 
factors was an important condition to simulate for two reasons. First, many factors de-
rived from psychological data are at least modestly correlated (Thompson, 2004). Sec-
ond, correlated factors are likely to merge together when a researcher extracts fewer 
factors than he or she should (Fava & Velicer, 1992). All factors within a population 
condition had the same intercorrelation. When only one factor is present in the popula-
tion matrix, there cannot be any correlation with other factors, so this variable was not 
simulated in the one-factor case. 

Factor loading strength 

The magnitude of the factor loadings were varied, ranging from relatively weak (.3), to 
moderate (.5), to relatively strong (.7). We believe that these levels of factor loading 
strength represent an adequate range of the ratio between signal and noise in latent varia-
bles that is often found in simulated (e.g., Fava & Velicer, 1992) and empirical research. 

Simulation conditions and statistical analysis 

One thousand replications were run for all 441 combinations of conditions of the five 
independent variables. For each replication, all five methods of choosing the number of 
factors (i.e., the original Guttman rule, the CLT modified Guttman rule, the bootstrap 
Guttman rule using 100 iterations, PA, and MAP) were all used to produce an estimate of 
the number of factors ( θ̂ ). 

The dependent variable in this study is bias, which we defined as the difference between 
the suggested number of factors ( θ̂ ) and the actual number of factors (θ ). This value 
was calculated for each method in each condition. The results were compared across the 
various conditions: number of observed variables, ratio of subjects to observed variables, 
number of factors, factor intercorrelation, and factor loading strength. The resulting 
replications were analyzed with basic descriptive statistics to examine the amount and 
consistency of bias in each method. Regression analysis was then used to examine the 
relative impact that the sample conditions had on each decision method. 

Results 

Descriptive statistics 

Table 1 shows the descriptive statistics for the bias of the five methods averaged across 
all levels of observed variables, sample size, number of factors, and correlations of the 
factors. As can be seen, the MAP technique generally outperforms the other techniques 
across all conditions in the study with a mean bias of -.47 and a median bias of 0. The 
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next least biased method of determining the number of factors is PA, which had in this 
study a mean bias of +3.22 and a median bias of +2. The bootstrap and CLT methods 
performed almost equally well in the study, with means of +4.35 and +4.06 respectively; 
both of these modified Guttman methods had a median bias of +4. The worst method of 
the five we examined was the original Guttman rule, which had a mean bias of +5.47 and 
a median bias of +5. 

The mode bias for all methods was 0, indicating that every method produced the correct 
number of factors more often than any other number. However, the percentage of sam-
ples that had the correct number of factors identified varied widely. The Guttman method 
only identified the correct number of factors in 13.5% of replications; the bootstrap 
method was slightly more accurate, with the correct number of factors being identified 
16.1% of the time. The CLT method only identified the correct number of factors in 
18.7% of samples. PA was accurate in 26.2% of replications. The only method that was 
correct for approximately half of all conditions was MAP, which correctly identified the 
number of factors 48.5% of the time. 

Despite the low average bias among results using the MAP technique, the method none-
theless occasionally produced the highest levels of bias that we encountered in the simu-
lation. As can be seen in Table 1, MAP found as many as 43 factors more than actually 
existed in the data. Indeed, a small number of replications (0.00067%) using MAP had a 
greater bias than the maximum amount of bias for any of the other methods. All of these 
cases occurred in samples that contained 30 or 45 observed variables, with the largest 
number of variables accounting for almost ¾ of these cases. No other sample characteris-
tic demonstrated a clear relationship with the presence of this drastic overfactoring in 
MAP. Perhaps the overfactoring can be attributed to the lack of a local minimum in the 
MAP criterion in these samples (see Velicer et al. 2000, p. 54). However, we could find 
no pattern to the conditions in which MAP greatly overfactored. Thus, results that indi-
cate an unexpectedly large number of factors from the MAP technique should be inter-
preted with caution. 

 

Table 1: 
Descriptive Statistics of Bias of the Five Methods 

Statistic Guttman Bias CLT Bias Bootstrap Bias MAP Bias PA Bias 

Mean 5.47 4.06 4.35 -0.47 3.22 

Median 5.00 4.00 4.00 0.00 2.00 

Std. Deviation 4.29 3.91 3.88 2.10 3.61 

Minimum -3.00 -4.00 -4.00 -5.00 -4.00 

Maximum 17.00 15.00 16.00 43.00 15.00 

Mode 0.00 0.00 0.00 0.00 0.00 

% with 0 Bias 13.5% 18.7% 16.1% 48.5% 26.2% 

Note. 95% confidence intervals were used in the two modified Guttman rules. 
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Table 2: 
Regression Effect Sizes and Selected Interaction 

 Partial η2 

Variable Guttman CLT Bootstrap MAP PA 

Factor Loading Strength .68 .60 .63 .09 .57 

Correlation .00 .01 .01 .01 .01 

Number of Factors .50 .43 .51 .33 .18 

Sample Size .01 .04 .06 .00 .12 

Number of Observed Variables .72 .66 .68 .04 .30 

Correlation*Number of Factors .00 .01 .01 .01 .01 

Note. 95% confidence intervals were used in the two modified Guttman rules. 

 

 

 
Figure 1: 

Mean bias across number of observed variables for the five methods 
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Regression analysis 

Table 2 shows the selected results from the multiple regression analyses. Although all 
possible two-way interactions were examined in the analysis, only the statistically signif-
icant interaction between factor intercorrelation and number of factors is shown. All 
other interactions are omitted for parsimony. Unsurprisingly, the partial η2 values for the 
Guttman rule and its two variants are very similar – indicating that they are susceptible to 
the same sources of bias – factor loading strength, number of factors, and number of 
items. The other eigenvalue-based factor retention method, PA, is also highly influenced 
by the factor loading strength and the number of items, but is relatively robust to changes 
in the number of factors. However, PA has the greatest sensitivity to changes in sample 
size (partial η2 = .12), which is important to consider because EFA is a large n method. 
MAP is the most robust of the five methods considered in this article, with only the 
number of factors having a large impact on bias (partial η2 = .33). The remaining poten-
tial sources of bias all have a very small impact on bias (partial η2 < .10). This includes 
the only statistically significant interaction, which was the interaction between factor 
intercorrelation and the number of factors. All partial η2 values for this interaction were < 
.01. This indicates that the influences of the independent variables are relatively inde-
pendent of one another in our simulation study. 

Number of observed variables 

As stated in the methods section, the number of observed variables varied was 15, 30, 
and 45. The average biases across these settings are shown in Table 3 and Figure 2. The 
Guttman, CLT, Bootstrap, and PA methods all show a tendency to overfactor the data as 
the number of observed variables increases. The Guttman rule is the worst offender in 
this regard, followed by the two modified Guttman methods – which had similar results – 
and, finally, the PA method. The MAP method almost had the opposite pattern (with a 
slight tendency to underfactor when the number of observed variables was small) and 
approaches an unbiased condition as the number of observed variables increases.  

Ratio of sample size to variables 

The mean bias of the techniques as averaged across the ratio of subjects to observed varia-
bles is shown in Table 4. As can be seen in the table, there is a positive relationship be-
tween the sample size-to-variables ratio and the mean bias for all the methods, except MAP 
(for which the trend is reversed). This relationship also appears to be asymptotic. In other 
words, as the ratio of subjects to observed variables increases, the change in bias for each 
method becomes smaller and smaller, seeming to settle on an end amount of bias. 
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Table 3: 
Mean Bias across Number of Observed Variables for the Five Methods 

Number of 
Observed 
Variables 

Guttman 
(SD) 

CLT (SD) Bootstrap 
(SD) 

MAP (SD) PA (SD) 

15 0.94 (1.21) 0.12 (1.15) 0.39 (1.17) -1.26 (2.15) -0.09 (1.10) 

30 5.21 (2.01) 3.70 (1.99) 4.03 (1.98) -0.23 (1.70) 2.83 (2.23) 

45 10.28 (2.37) 8.37 (2.51) 8.62 (2.42) 0.08 (2.16) 6.73 (3.28) 

Note. 95% confidence intervals were used in the two modified Guttman rules. 

 

Table: 4: 
Mean Bias of the Ratio of Sample Size to Number of Observed Variables by Technique 

Ratio Guttman (SD) CLT (SD) Bootstrap (SD) MAP (SD) PA (SD) 

2:1 4.20 (3.99) 2.61 (3.31) 3.32 (3.10) -0.02 (2.37) 1.18 (2.37) 

5:1 5.42 (4.21) 3.68 (3.67) 4.15 (3.69) -0.37 (2.13) 2.61 (3.16) 

8:1 5.48 (4.28) 4.09 (3.84) 4.40 (3.87) -0.50 (2.06) 3.22 (3.47) 

11:1 5.52 (4.33) 4.33 (3.94) 4.53 (3.97) -0.55 (2.06) 3.57 (3.64) 

14:1 5.55 (4.35) 4.48 (4.00) 4.62 (4.03) -0.59 (2.01) 3.83 (3.77) 

17:1 5.56 (4.37) 4.59 (4.05) 4.68 (4.09) -0.62 (1.98) 3.99 (3.84) 

20:1 5.57 (4.38) 4.68 (4.09) 4.74 (4.12) -0.63 (2.02) 4.13 (3.90) 

Note. 95% confidence intervals were used in the two modified Guttman rules. 

 

 

 
Figure 2: 

Interaction between number of factors and amount of correlation between factors for the PA 
method 
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Number of factors 

Table 5 reveals that all the methods showed a tendency to have lower bias as the number 
of factors increased. For the MAP technique, this manifests itself in a tendency to under-
factor as the number of population factors increases as displayed in Figure 3. As shown 
previously, the number of observed variables has a tendency to overinflate the number of 
factors estimated for the majority of the methods. Therefore, as the number of population 
factors increases, the eigenvalue-based estimation techniques are more likely to retain 
the proper number of factors, assuming that the number of observed variables remains 
constant. 

Factor correlation  

The correlation among the factors had very little impact on the amount of bias generated 
by each of the methods, as seen in Table 6. There was a slight interaction between num-
ber of factors and correlation for the CLT, Bootstrap, and PA methods as illustrated by 
Table 2 and Figures 3 and 4. As the number of factors and correlation among factors 
increased, there was a tendency in these methods to have lower bias. This same pattern 
was also true for the MAP method, but the tendency was to underfactor as the number of 
factors and the correlation increased. 

 

 

Table 5: 
Mean Bias across the True Number of Factors 

Number of 
Factors 

Guttman 
(SD) 

CLT (SD) Bootstrap 
(SD) 

MAP (SD) PA (SD) 

1 6.61 (4.41) 5.10 (4.05) 5.55 (4.04) 0.54 (1.31) 3.88 (1.84) 

3 5.52 (4.17) 4.16 (3.75) 4.34 (3.74) 0.06 (1.44) 3.37 (3.50) 

5 4.29 (3.91) 2.99 (3.60) 3.15 (3.46) -2.01 (2.40) 2.40 (3.33) 

Note. 95% confidence intervals were used in the two modified Guttman rules. 

 

Table 6: 
Mean Bias across the Intercorrelations among Factors 

Inter- 
correlation 

Guttman 
(SD) 

CLT (SD) Bootstrap 
(SD) 

MAP (SD) PA (SD) 

0.00 5.51 (4.26) 4.13 (3.85) 4.42 (3.84) -0.39 (2.18) 3.31 (3.55) 

0.25 5.41 (4.26) 4.09 (3.89) 4.38 (3.86) -0.35 (2.03) 3.26 (3.59) 

0.50 5.42 (4.30) 3.97 (3.98) 4.24 (3.94) -0.68 (2.06) 3.08 (3.70) 

Note. 95% confidence intervals were used in the two modified Guttman rules. 
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Figure 3: 

Interaction between number of factors and amount of correlation between factors for the MAP 
method 

 

 

 
Figure 4: 

Line plot of mean bias averaged across levels of factor loading strength 
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Factor loading strength 

Table 7 and Figure 5 show the results from varying the factor loading strength at three 
levels: .3, .5, and .7. The results show that all methods converged closer to an average 
bias of 0 as the factor loading strength increases. Interestingly, the figure shows that 
MAP underfactors when the factor loadings are relatively weak (mean bias = -1.19), 
while the eigenvalue-based methods all overfactor. PA is the only eigenvalue-based 
method that exhibited low bias when factor loadings were .7 (mean bias = .060). 

 

Table 7: 
Mean Bias across Factor Loading Strength 

Loading 
Strength 

Guttman 
(SD) 

CLT (SD) Bootstrap 
(SD) 

MAP (SD) PA (SD) 

.3 7.23 (4.62) 5.67 (4.41) 6.03 (4.25) -1.19 (2.23) 5.29 (4.19) 

.5 5.06 (3.93) 3.67 (3.52) 3.86 (3.52) -0.19 (1.97) 2.62 (2.95) 

.7 2.89 (2.80) 1.76 (2.24) 2.22 (2.53) 0.11 (1.78) 0.60 (1.29) 

Note. 95% confidence intervals were used in the two modified Guttman rules. 

 

 

 
Figure 5: 

Line plot of mean bias averaged across the ratios of sample size to observed variables 
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Discussion 

In this Monte Carlo study we studied the bias produced from five different methods of 
choosing the number of factors in an EFA. In the simulation, we varied the number of 
observed variables, sample size, true number of factors, factor loading strength, and 
correlation among factors in order to examine which methods impacted each decision 
method most strongly. In this section, we will discuss the most important aspects of the 
study results and the implications for researchers that perform EFAs. 

One striking aspect of our results is the consistently poor performance of the Guttman 
rule across all conditions. Indeed, the Guttman rule was almost always the worst per-
forming method. This poor performance of the Guttman rule is consistent with prior 
simulation studies on factor decision methods (e.g., Hakstian et al., 1982; Velicer et al., 
2000; Zwick & Velicer, 1982, 1986). We believe our study joins the corpus of work that 
Fabrigar and his colleagues referred to when they stated, “. . . we know of no study of 
this [Guttman] rule that shows it to work well” (1999, p. 278). The consistent negative 
findings on the performance of the Guttman rule are particularly distressing when one 
considers that the Guttman rule remains the most popular method for determining the 
number of factors in a dataset (Fabrigar et al., 1999; Ford et al., 1986; Hayton et al. 
2004; Thompson & Daniel, 1996; Warne et al., 2012). Based on our findings and those 
from other studies, we recommend that researchers not use the Guttman rule under con-
ditions that resemble those in our simulation. 

As for CLT and bootstrap modifications of the Guttman rule, we believe that our previ-
ous suggestion to use confidence intervals to help researchers decide the number of fac-
tors to retain is an improvement over the prevalent practice in the published research – 
the original Guttman rule. However, we cannot endorse these modifications above PA or 
MAP because the modified versions of the Guttman rule suffer from the same weakness-
es and shortcomings as the tradition Guttman rule, likely because the modified Guttman 
methods are minor modifications to the basic flawed premise behind the Guttman rule. 
The slightly greater robustness that the modified methods demonstrate to the factor load-
ing strength, the number of factors, and the number of observed variables (see Table 2) 
do not compensate for the problems inherent in the original Guttman rule. 

Although the modified Guttman rule is not more accurate than PA or MAP, we still stand 
by our prior recommendation that researchers report the CIs for their eigenvalues, no 
matter what factor retention decisions are used. As we stated previously (Larsen & 
Warne, 2010), we believe that this practice is in accordance with current reporting stand-
ards that advocate the use of confidence intervals (e.g., American Psychological Associa-
tion, 2010; Wilkinson & the Task Force on Statistical Inference, 1999) and also gives 
readers additional information that permits an informed evaluation of EFA research. 

One particularly interesting finding was the impact of sample size on bias. Unsurprising-
ly, the modified Guttman rules were both susceptible to changes in sample size because 
larger sample sizes lead to smaller confidence intervals, which in the modified Guttman 
methods will likely lead to more factors being retained. However, we were surprised to 
find that PA was a more sensitive method to sample size (η2 = .12) than any other meth-
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od. Indeed, Table 4 shows that as sample size increases, PA tends to overfactor almost as 
much as the modified Guttman rules. This result has not been previously reported in the 
simulation literature, likely because previous Monte Carlo studies that investigated the 
issue had fewer possible simulated sample sizes and thus less ability to detect the sensi-
tivity of PA to variations in sample size. We suggest that future simulation studies be 
conducted in order to examine the conditions under which PA is sensitive to sample size. 

We were also interested in the somewhat contradictory nature of MAP; with a smaller 
number of observed variables, a larger number of factors in the population, and a strong-
er correlation among factors, MAP tended to underfactor. MAP’s positive performance is 
due to the fact that it is based on statistical theory, rather than mechanical rules of thumb. 
Yet, MAP also – for reasons that are unclear to us – can on rare occasions produce a far 
greater number of factors than exist in a real dataset. Although we encourage readers to 
use MAP more often than is usually seen in the literature today, we also caution them to 
keep these caveats in mind, especially because MAP underfactored more than any other 
method considered. As they use MAP, researchers should be aware that the consequenc-
es of underfactoring are generally recognized as being more severe than the consequenc-
es of overfactoring (Fava & Velicer, 1992, 1996; Gorsuch, 1983). 

There are limitations to this study that the reader should be aware of. First, all factors in 
the simulation had equal numbers of observed variables. However, it has been shown in 
previous Monte Carlo simulations that factors that consist of relatively few observed 
variables compared to the other factors in the population may be difficult to detect (e.g., 
de Winter, Dodou, & Wieringa, 2009). Second, it is also possible that factors for which 
all observed variables have the exact same loading is highly unrealistic, although other 
research has been performed with simulation datasets that have equal factor loadings for 
each observed variable (e.g., de Winter et al., 2009; Fava & Velicer, 1992, 1996; Zwick 
& Velicer, 1982). Perhaps a future simulation study could vary the loadings by choosing 
a mean and standard deviation of loadings to simulate a more realistic set of factor load-
ings. A third limitation to this study is that there were a fixed number of known true 
factors, whereas in reality there is sometimes no “true” number of factors. Moreover, 
researchers may wish to use other criteria – such as the magnitude of factor loadings or 
the interpretability of the groups of observed variables – to decide how many factors to 
retain.  

Another limitation to our study is the fact that we only investigated the modified 
Guttman rules with 95% confidence intervals. As the results in the tables show, this 
confidence interval is not conservative enough to prevent overfactoring. In future re-
search, we hope researchers will examine the viability of other confidence interval 
widths, such as a 99% interval. 

Finally, we urge caution for our readers in applying these results to studies with different 
conditions than we investigated; there are likely circumstances under which the findings 
in this article do not hold. We encourage readers to examine other simulation studies 
about this issue to inform themselves of the factor retention methods that will most likely 
lead to correct decisions. Also, we hope that readers remember that it is generally recog-
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nized as best practice to use multiple methods to determine the appropriate number of 
factors to retain (Gorsuch, 1983).  

Overall, the results of this simulation study show the relationship between the factors 
varied and the amount of bias produced for each method was fairly predictable. The 
amount of bias is decreased by: a higher number of factors present in the population data, 
fewer observed variables, a larger sample size, stronger factor loadings, and a higher 
correlation among population factors. Also, eigenvalue-based methods are best when 
there are a relatively small number of observed variables and when the number of factors 
is large. Moreover, using MAP is a more defensible decision than using eigenvalue-
based methods, as MAP is more robust across all conditions in this study. However, 
MAP does very rarely grossly overfactor, and researchers should be aware of this possi-
bility when using the technique in their analyses. 

We believe that this study provides valuable information for future data analysts as they 
select the appropriate factor retention method(s). The study may also help researchers 
understand the conflicting results that different factor retention methods can produce 
when used in conjunction with one another. We hope this study aids in the understanding 
of factor retention methods and the causes of potential bias among them. Finally, we join 
with previous researchers on factor retention (e.g., Fabrigar et al., 1999; Velicer et al., 
2000) in calling for manufacturers and programmers to remove the Guttman rule from 
the default factor retention setting in their statistical packages and to replace it with a 
more accurate method. We believe that the decades of consistent findings are doing little 
to lessen the prominence of the Guttman rule in the published research and that only 
changes in the default settings of software will spawn a majority of researchers to make 
better factor retention decisions. 
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