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Latent growth curve modeling as an integrative approach to the  
analysis of change 

MANUEL C. VOELKLE1 

Abstract 
Latent Growth Curve Models (LGCM) are discussed as a general data-analytic approach to the 

analysis of change. Conventional, but popular, methods of analyzing change over time, such as the 
paired t-test, repeated measures ANOVA, or MANOVA, have a tradition, which is quite different from 
the more recently developed latent growth curve models. While the former originated from the idea of 
variance decomposition, the latter have a factor analytic background. Accordingly, “traditional meth-
ods”, which focus on mean changes, and “new methods”, with their emphasis on individual trajectories, 
are often treated as two entirely different ways of analyzing change. In this article, an integrative per-
spective is presented by demonstrating that the two approaches are essentially identical. More precisely, 
it will be shown that the paired t-test, repeated measures ANOVA, and MANOVA are all special cases 
of the more general latent growth curve approach. Model differences reflect the underlying assump-
tions, and differences in results are a function of the degree to which the assumptions are appropriate 
for a given set of data. Theoretical and practical implications are set forth, and advantages of recogniz-
ing latent growth curve models as a general data-analytic system for repeated measures designs are 
discussed. 
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Almost forty years ago, Cohen (1968) showed that the analysis of variance (ANOVA) 
and multiple regression analysis are essentially identical data analytic systems. His publica-
tion received so much attention among social scientists like few other articles since that time. 
This was even more surprising, given that the actual message was not new, and the underly-
ing mathematical principles were well known among statisticians. As a matter of fact, it was 
less the ”discovery” itself, but more the theoretical and practical implications that came 
along with it, which caught the attention of many researchers. A few years earlier, Cronbach 
(1957), in his presidential address at the Sixty-Fifth Annual Convention of the American 
Psychological Association, called for an integration of the “two disciplines of scientific 
psychology” (p. 671): Experimental and Correlational Psychology. Even though the distinc-
tion between the two disciplines alludes to more than the use of different statistical proce-
dures, the focus on individual differences made regression techniques particularly interesting 
to correlational psychologists. Experimental researchers, on the other hand, were typically 
more interested in group differences, thus preferring the analysis of variance. By demonstrat-
ing that ANOVA and multiple regression (MR) yield the same results if group membership 
is coded as a set of dummy variables in MR, Cohen (1968) provided the methodological 
basis for an integration of the two disciplines. Today, this is common knowledge among 
social researchers, even though some introductory statistics texts still treat multiple regres-
sion and ANOVA as if these were two completely unrelated techniques. Although not new in 
statistical content, Cohen’s work (Cohen et al., 2003; Cohen & Cohen, 1983; Cohen, 1968) 
had a tremendous impact on the statistical thinking of many researchers. On the one hand, it 
showed experimental researchers the limits of the analysis of variance and exemplified the 
strict assumptions, which are associated with these models, on the other hand it demonstrated 
the flexibility of multiple regression, while at the same time pointing correlational research-
ers to the dangers of this flexibility by comparing it to traditional ANOVA techniques. Fi-
nally, however, Cohen’s work helped integrating two different ways of statistical thinking. 
The analysis of group differences and individual differences were no longer viewed as fun-
damentally different research approaches in need of different statistical procedures, but were 
shown to be closely related. As a result, researchers not only gained a better understanding 
of the strengths and weaknesses of their preferred statistical approach, but psychological 
research in general moved towards a fusion of its two disciplines (Cronbach, 1975; Cook & 
Campbell, 1979). 

Today, we find a similar situation in the analysis of change. On the one hand, there are 
the “traditional approaches” dealing with the analysis of mean changes, on the other hand 
there are the “new methods for the analysis of change” (Collins & Sayer, 2001) focusing on 
individual changes over time. Both classes comprise an entire family of different models, 
with the repeated measures ANOVA and Latent Growth Curve Models (LGCM) being the 
two most prominent representatives of either class.  

The ANOVA for repeated measures was developed as a direct extension of the fixed-
effects techniques of the analysis of variance pioneered by Fisher in the 1920s and ‘30s (e.g., 
Fisher, 1925). As shown in Equation (1), the basic idea is to partition the total sum of 
squares (SSTotal) into one part that is caused by interindividual differences (SSBetween) and one 
part that is due to intraindividual changes over time (SSWithin). Below we will come back to 
Equation (1), for now it suffices to recall that this allows us to control for systematic but 
often unwanted between-subject variance. 
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 Total Within BetweenSS SS SS= +  (1) 
 
What is not apparent from Equation (1) is the fact that this approach depends on a num-

ber of strict assumptions. Beside the usual assumptions for the analysis of variance, such as 
multivariate normality, independence, and homogeneity of covariance matrices, it is primar-
ily the assumption of sphericity, which is often not met in practice. As a consequence, alter-
native procedures, such as the multivariate analysis of variance (MANOVA), have been 
proposed for analyzing repeated measures. Although less restrictive, MANOVA is a direct 
extension of the analysis of variance and rests upon the same underlying idea of variance 
decomposition. Central to both approaches is their focus on group changes instead of indi-
vidual changes. The separation of between and within-subject variance is merely a means to 
the end of controlling for differences between subjects in order to partition the remaining 
within-subject variance into variation due to potential covariates (SSA) and variance not 
accounted for (SSError). As shown in Equation (2), only group mean differences ( )tx x•− for 
time point t = 1…T are of interest, while all person (i = 1…n) specific deviations are treated 
as error variance. 
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As will be discussed below, this approach is often not only overly restrictive, but also ig-
nores valuable information contained in the data. 

While interindividual differences in intraindividual change are treated as error variance 
in traditional methods, they are of primary interest in latent growth curve modeling. LGC-
models have their roots in factor analysis, going back to Tucker (1958) and Rao (1958) who 
proposed the application of factor analytic techniques to the organization of individual 
growth curves (see McArdle & Nesselroade, 2002, or Bollen & Curran, 2006, for a brief 
history of LGCM). Attempts to model individual growth curves can be found even earlier 
(Wishart, 1938), a major breakthrough, however, was the publication of Meredith and Tisak 
(1990; 1984). Using a slightly different notation than the present paper, they demonstrated 
that individual change over time can be expressed as a structural equation measurement 
model (Equation (3)), while interindividual differences in intraindividual change correspond 
to the latent variable structural model (Equation (4)). In standard structural equation model-
ing (SEM), the measurement model relates the observed variables to the latent factors by 
assuming that the former can be expressed as an exclusive function of the latter. The struc-
tural model on the other hand, allows formulating and testing explicit hypothesis regarding 
the relationship among the latent variables. This distinction constitutes the basis of the com-
mon LISREL (LInear Structural RELations) notation, which is also adopted in the present 
paper. An excellent introduction is provided by Bollen (1989, p. 10-39). In case of repeated 
measures, the T points of measurement are represented by the T × 1 vector x. Accordingly, τ 
is a T × 1 vector of intercepts and ε a T × 1 vector of person and time point specific error 
terms. η is an m × 1 vector of (growth) factors with the T × m factor loadings matrix Λ. As 
illustrated in Equation (4), the latent factor(s) can be regressed on other exogenous or en-
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dogenous variables (represented by the h × 1 vector ξ, respectively the m × 1 vector η) 
weighted by the m × h matrix Γ, respectively the m × m matrix Β. Analogous to Equation 
(3), α is an m × 1 vector of intercepts and ζ an m × 1 vector containing the error terms. Equa-
tions (3) and (4) will be discussed in more detail further below. The resulting approach to the 
analysis of change is very general, and as noted by Meredith and Tisak (1990) “with imagi-
nation and careful attention to detail, given suitable identification, every form of repeated 
measures ANOVA or MANOVA can be built up as a special case” (p. 114). 

 
 = + +x τ Λη ε  (3) 
 = + + +η α Γξ Βη ζ  (4) 

 
By demonstrating how to use common methods of covariance structure analysis to ana-

lyze individual growth curves, they prepared the ground for present-day latent growth curve 
models. Even though the technique has been extended during the last decade, the mathemati-
cal basis is still the same. With some exaggeration, one could even say that there are little 
advancements that were not envisioned in the original Meredith and Tisak (1990) paper. This 
also applies to the present article, where no large claim of originality is being made. As a 
matter of fact, most of the material presented herein has already been published in some 
scattered articles or chapters. However, I am not aware of any systematic discussion of the 
conditions and consequences of integrating traditional analysis of variance techniques into a 
general LGC-modeling framework. Typically, “traditional” methods to analyze change and 
latent growth curve models are discussed separately, thereby emphasizing their differences 
instead of their commonalities. In our view, however, much can be learned about either 
approach by taking a closer look at their interrelationship. Latent growth curve modeling 
must not be viewed as just another “tool in the toolbox of methods”, but should be under-
stood as a very general data analytic system for repeated measures designs which incorpo-
rates paired t-tests, repeated measures ANOVA, and MANOVA as special cases. We hope 
that this article will help to evoke a similar “new look” (Cohen & Cohen, 1983, preface) on 
the analysis of change as Cohen’s (1968) seminal article on multiple regression/correlation 
analysis forty years ago. 

 
 

Overview of the article 
 
The article has three sections and a concluding discussion. In the first section I begin 

with the analysis of two-wave data and demonstrate how the paired samples t-test can be 
viewed as a special case of a latent growth curve model. Emphasis will be put on conceptual 
differences between change scores, residualized (true) gain scores and latent difference 
scores. In section two, I extend the discussion to multi-wave data by contrasting repeated 
measures ANOVA, MANOVA and LGCM. The underlying assumptions of each approach 
will be highlighted and advantages of LGCM to analyze change will be discussed. Section 
three deals with different ways to predict change and provides a comparison across methods. 
I conclude with a discussion of the theoretical and practical implications of latent growth 
curve modeling as a general data analytic system. 
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Two-wave data 
 
Two repeated points of measurement are the minimum requirement for the analysis of 

change. Although two time points do not constitute a real longitudinal study (Rogosa, 
Brandt, & Zimowski, 1982; Singer & Willett, 2003), the simple pre-post-test is probably one 
of the most often used research designs in experimental research. For example, one might be 
interested in the effectiveness of an intervention, or improvement on a learning task, where 
the performance of each individual has been assessed at the beginning and at the end. Table 
1 shows the scores of n = 17 female and n = 18 male participants on a hypothetical learning 
task, where performance has been assessed on four consecutive equidistant time points (x1 to 
x4). The data will be used to illustrate the main arguments throughout the remainder of this 
article. Each score might correspond to the average number of points obtained and points lost 
in a computer based complex problem-solving scenario. Typical examples of such tasks are 
TRACON or ATC (e.g., Ackerman, 1992; Ackerman & Kanfer, 1993). However, because 
the data are artificial and were chosen only for illustrative purposes, the reader is welcome to 
think of any other (learning) task. Ignoring any possible differences between men and 
women at the moment, one of the most basic questions is whether the average performance is 
significantly better at the end of the task than at the beginning. This question can be easily 
addressed by a paired samples t-test. For this purpose, one would compute the mean 

4 11/ ( )d N x x= −∑ of the difference d between x1 and x4. Under the assumption that d is 
roughly normally distributed, the ratio of d to its standard error constitutes the well-known 
t-test for repeated measures as shown in Equation (5).  

 

 0
d

dt SD
N

−
=  (5) 

 
For d = 4.660 - 1.112 = 3.549 and estimated standard deviation sdd = 1.423, the test sta-

tistic t = 14.750 is highly significant in this example (df = 34, p < .01)2. Computing the dif-
ference between pre- and post-test corresponds to a separation of between- and within-
person variance as shown in Equation (1). By subtracting initial performance from final 
performance, interindividual differences (SSBetween) are kept constant and the analysis concen-
trates on the within-subject variation (SSWithin). As illustrated in Table 2, the paired t-test is 
identical to a one factor repeated measures ANOVA, which will be discussed later on. 

 
 

                                                                                                                         
2 To minimize the problem of rounding errors, we will report all results with a precision of up to three decimal 

places. Most computations, however, will be made with a higher precision. This may result in some minor 
inconsistencies in the text, but will prevent us from carrying along rounding errors and will improve overall 
precision. 
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Table 1: 
Example data set of a hypothetical learning task with four repeated points of measurement  

(x1 - x4) and two predictors (g and sex) 
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Table 2: 
Paired samples t-test, one factor repeated measures ANOVA and LGC-model for two time points 

(x4 and x1) and no predictors. 
 

                                                     Paired samples t-test 
Mean difference (x4 - x1) t df p 

3.549 14.750 34 .000 
                                                      Repeated measures ANOVA 

Source F df p 
Time 217.568 1 .000 

                                                            LGCM 
 Estimate (α1) Standard error (SE) p 
 3.549 0.237 .000 

Note: t2 = F for dfnumerator = 1. 
 
 

A latent growth curve approach to the analysis of two-wave data 
 
The t-test can also be specified as a structural equation model as graphically illustrated 

by Figure 1A. By fixing all factor loadings, we essentially realize the assumption of classical 
test theory (CTT) that an observed score is the sum of a true score and an error component 
(Gulliksen, 1950; Lord & Novick, 1968). In Equation (6) this assumption is illustrated for 
the first point of measurement (x1), where η0 refers to the true score and ε1 to the error at 
time point one.  

 
 1 0 1x η ε= +  (6) 

 
Applying the same assumption to x4 (i.e., x4 = η4 + ε4 with η4 = η0 + η1) and solving for 

η1, Equation (7) is obtained by simple algebraic transformations.  
 

 1 4 4 1 1( ) ( )x xη ε ε= − − −  (7) 
 
Obviously, η1, as specified in this model, maps true intraindividual change from pre- to 

post-test (Steyer, Eid, & Schwenkmezger, 1997). Looking at the t-test from this perspective 
points to another crucial assumption of the conventional t-test, that is the absence of any 
unsystematic (measurement) error. As a matter of fact, setting the variances, covariances and 
means of all error terms to zero – as indicated by the dotted lines in Figure 1A – is necessary 
for the SE-model to be identified. Using the general matrix notation introduced in Equation 
(3) and (4), the t-test can be expressed as a special case of a latent growth curve (SEM) 
model with 
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Figure 1:  
Path diagram of a paired samples t-test (A) and a base-free measure of change model (B).  

The triangle represents the constant 1. Accordingly, the two regression weights α0 and α1 are  
the means of the two latent factors η0 and η1. φ represents their covariance. The dotted error 
terms (ε1 and ε2) indicate that the model does not account for measurement error (mean(ε1) = 

mean(ε2) = σ(ε1) = σ(ε2) = 0) 
 
 
Since no predictors of change are considered in this section, ξ, Γ, Β and ζ simply drop 

out of Equation (4). Allowing the covariance (φ) between η0, and η1 to be freely estimated, 
the resulting model is just identified (df = 0) and the critical ratio of α1 = 3.549 to its stan-
dard error (SE = 0.237) is asymptotically identical to the t-value of the paired samples t-test 
reported above3,4. 

 
 

Change scores, residualized gain scores and latent difference scores 
 
In case the reliability (rtt) of the measurement instrument(s) would be known, adopting 

the SEM approach allows us to take this knowledge into account by fixing the variance of 
the t = 1…T error terms to var(εt) = (1 - rtt(xt)) * var(xt). As long as E(εt) = 0, a comparison 
of means via the paired t-test or LGCM, would still yield identical results, while all higher 
moments, such as the variances and covariances of the two latent variables, will differ. Espe-
cially when analyzing predictors and correlates of change, this has some profound implica-
tions and as pointed out by Raykov (1999), modeling change on a latent dimension is often a 

                                                                                                                         
3 The structural equation modeling software Mplus (Muthén & Muthén, 1998-2007) was used for the estima-

tion of all LGC-models throughout the paper. 
4 Maximum likelihood (ML) estimation was used, thus the critical ratios follow approximately a z-distribution 

and results will be asymptotically identical. 
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better approach than modeling observed change scores. To elaborate on this point, consider 
Equation (8), which defines the reliability of change scores ρtt(d) as a function of the reliabil-
ity of the pretest ρtt(x) and the reliability of the post-test ρtt(y).  

 

 
2 2

2 2

( ) ( ) 2
( )

2
x tt y tt x y xy

tt
x y x y xy

x y
d

σ ρ σ ρ σ σ ρ
ρ

σ σ σ σ ρ
+ −

=
+ −

 (8) 

 
ρxy denotes the correlation coefficient between pre- and post-test and σ the standard de-

viation. Based on this formula, the simple difference score has been vehemently criticized 
and researchers have even been advised to avoid the gain score altogether and “frame their 
questions in other ways” (Cronbach & Furby, 1970, p. 80). The reason for this lies in the fact 
that in order to obtain reliable difference scores, the reliability of the pre-test and the reliabil-
ity of the post-test must be high, while at the same time their correlation should be low. If 
one of these conditions is not met, the reliability ρtt(d) will be low, so that “the difference 
score between two fallible measures is frequently much more fallible than either” (Lord, 
1963, p. 32). Especially the last condition of a low pre-post-test correlation has caused some 
confusion about the meaning of gain scores, known as the “reliability-validity paradox”. As 
Bereiter (1963) pointed out, a low correlation between pre- and post-test indicates that dif-
ferent constructs are being measured and as soon as we cannot be sure that we are measuring 
the same thing, there is no point in analyzing change over time. As a consequence, a number 
of different strategies have been proposed to somehow correct or improve the gain scores 
prior to investigating any correlates or predictors of change (see Cronbach & Furby, 1970). 
The most popular approaches are probably the residualized observed difference score 
(DuBois, 1957) and the base-free measurement of change (Tucker, Damarin, & Messick, 
1966), which I will come back to below (see also Raykov, 1992, 1993a, 1993b). 

Eventually, however, it was a series of papers by Rogosa et al. which heralded a reorien-
tation in the analysis of change (Rogosa et al., 1982; Rogosa & Willett, 1983, 1985; Rogosa, 
1988). By demonstrating that “many of the deficiencies that have been attributed to differ-
ences scores in the behavioral sciences literature are a result of misunderstandings” (p. 730), 
Rogosa et al. (1982) took on the defense of the difference score. Their arguments are well 
documented and shall not be repeated at this point (but see Rogosa et al., 1982, pp. 730; 
Rogosa, 1995). Based on their arguments, it is now clear that the general criticism on the 
difference score was completely unwarranted (Willett, 1997, p. 215). Rogosa et al. (1982, p. 
728) carefully distinguished between true change and observed change and refocused the 
analysis of change on the individual by employing a linear growth model as shown in Equa-
tion (9), which is essentially a simple case of Equation (3).  

 
 0 1( )i i it tω η η= +  (9) 

 
ωi(t) is the true score of person i at time point t. For just two measurements (x1 and x4), η1 

is identical to the difference between the two true scores ω4 and ω1 as demonstrated in Equa-
tion (7). As a matter of fact, if the reliability of both measures is known and accounted for, 
the variance of the latent slope factor η1 is identical to the variance of gain scores corrected 
for attenuation. Based on Lord (1956, Formula 8), McNemar (1958, Formula 3) demon-
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strated that the variance of the true difference scores can be defined as shown in Equation 
(10).  

 
 

1 4

2 2 2 2 2
1 4 14 1 4( 2 ) ( )

Diff ε εω
σ σ σ ρ σ σ σ σ= + − − +  (10) 

 
2

Diffωσ denotes the variance of the true difference (ωDiff) between x1 and x4, ρ14 is their cor-
relation, and 2

tε
σ the error variance at time point t. In the example introduced above, d was 

the difference between x4 and x1 with d = 3.549 and sdd = 1.423. Given the observed correla-
tion r14 = 0.224 (see Table 1) and assuming a reliability of rtt(x1) = .80 and rtt(x4) = .85, we 
obtain an estimate of 2

Diffωσ  = (0.500 + 1.971 - 2 * 0.224 * 0.707 * 1.404) - (((1 - .80) * 
0.500) + ((1 - .85) * 1.971)) = 1.630. This is equivalent to the variance of η1 in the general 
latent growth curve model with error terms fixed to (1 - rtt(xt)) * var(xt) as discussed above5. 

As pointed out by Tucker et al. (1966), the variance of the true difference scores can be 
further partitioned into variance of true independent (base-free) change scores and true de-
pendent change score variance. The latter depend entirely on the pre-test, while the former 
are entirely independent of it. Even though Rogosa et al. (1982) have warned researchers to 
exercise “extreme caution” (p. 741) when using and interpreting residual change measures, it 
may sometimes be important to distinguish between change which would have occurred if 
everyone started out equal, and change which is a direct function of the pre-test6. The vari-
ance of true independent gain scores 2

γσ can be computed in two steps. First, the observed 
post-test scores are regressed on the pre-test scores, divided by the reliability of the pre-test, 
to obtain the unstandardized regression coefficient a (see Tucker et al., 1966, p. 462 & tech-
nical appendix).  
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1 1( )tt

a
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ρ σ
ρ σ

=  (11) 

 
Second, given a, 2

γσ can be computed as shown in Equation (12). 
 

 4 1 4 1
2 2 2 2

4 14 1( ) 2 ( )tt x x x tt xx a a xγσ ρ σ ρ σ σ ρ σ= − +  (12) 
 

                                                                                                                         
5 As before, the equivalence holds only asymptotically because maximum likelihood estimation was used for 

the LGCM estimation. In the present case, sd(η1) = 1.254 (LGCM-ML) and the estimated 
Diffωσ = 1.277 

(Equation 10). The asymptotic equivalence can be better evaluated by using the covariance matrix provided 
in Table 1 – instead of the raw data – as input for Mplus. This allows the user to specify any number of ob-
servations, without changing the actual information contained in the data. Using a sufficiently large sample 
size (e.g., 3500) the results differ by less than three digits after the decimal point. 

6 As will be discussed in the next section, the residualized gain scores (or more generally speaking the covari-
ance between intercept and slope) are a direct function of the position of the intercept in time (Rovine & 
Molenaar, 1998; Stoel & van den Wittenboer, 2003; Biesanz et al., 2004). Especially when the time point of 
the pre-test is arbitrary (as it is often the case in multi-wave studies), this must be taken into consideration 
when interpreting residualized gain scores. 
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In our example, a = (0.224 * 1.404) / (0.80 * 0.707) = 0.556, so that an estimate of 2
γσ = 

0.85 * 1.971 - 2 * 0.556 * 0.224 * 0.707 * 1.404 + 0.5562 * 0.80 * 0.500 = 1.552. Asymp-
totically, the same base-free measure of change can be obtained by regressing the latent 
(true) difference factor η1 on η0. This can be easily done by extending the structural equation 
model specified above by setting 
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The unbiased variance of the disturbance term var(ζ1) is equal to the variance of the 

base-free measure of change ( 2
γσ ) as proposed by Tucker et al. (1966). Figure 1B shows a 

path diagram of the model. 
To summarize, it has been shown that the paired samples t-test is a special case of the 

general latent growth curve model. If the reliabilities of the pre- and post-test are known, 
LGCM allows the computation of latent difference scores, equivalent to gain scores cor-
rected for attenuation as proposed by Lord (1956) and McNemar (1958). In addition, it is 
possible to distinguish between true dependent and true independent (base-free) gain scores 
as originally suggested by Tucker et al. (1966). Usually, however, reliabilities are not simply 
known, but must be estimated and a good theory is imperative for doing so. Traditionally, 
reliability estimates were obtained based on the principles of classical test theory (Gulliksen, 
1950; Lord & Novick, 1968) by using retests, parallel tests, or various estimates of internal 
consistency. The often inadequate adoption of CTT to the analysis of change was probably 
one of the main reasons for difference scores to fall into disgrace in the early seventies 
(Cronbach & Furby, 1970). Clearly, a measurement instrument which exhibits high retest 
reliability cannot be suitable for assessing change over time, and it is problematic to define 
reliability of change indirectly via a lack of stability as done in the traditional Formula (8) 
(see also Wittmann, 1997, 1988). Naturally, this also applies to the analysis of change via 
latent growth curve models. However, other than the use of observed difference scores, 
LGCM provides the flexibility to specify a model of change, which best fits the underlying 
theory of change. Basically, there are two ways to incorporate theory into our model in order 
to obtain true change scores (Raykov, 1999). Either multiple indicators must be employed at 
each time point and theory dictates the specification of the construct in question, or more 
than two time points must be observed and theory dictates the nature of change over time. In 
the first case, at least two indicators are required for model identification, in the second case 
at least three time points must be available. For a more detailed discussion of the former 
approach see Raykov (1992). Especially the latter approach, however, opens up a variety of 
different models of change, which will be discussed in the next section. 
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Multi-wave data 
 
A latent growth curve approach to repeated measures ANOVA 

 
Having at least three time points, the repeated measures ANOVA is probably one of the 

most often employed statistical procedures for the analysis of change. It is implemented in 
all major statistical packages and its basic idea is comparatively easy to understand. Espe-
cially applied researchers, however, are often unaware of the strict (and oftentimes unrealis-
tic) assumptions the repeated measures ANOVA rests on. Conceiving repeated measures 
ANOVA as a special case of a more general latent growth curve model not only helps to gain 
a better understanding of the assumptions underlying ANOVA, but also points to (new) ways 
how to test and cope with violations of standard assumptions.  

As introduced in Formula (1), the repeated measures ANOVA decomposes the total vari-
ance additively into variation due to interindividual differences between subjects (SSBetween) 
and individual differences within the same subject (SSWithin). On a conceptual level it is im-
portant to realize that repeated measures ANOVA assumes a single variable with a single 
total variance (i.e., SSTotal) which is decomposed instead of multiple variables, which is the 
idea underlying MANOVA. The univariate conceptualization of change implies that a poten-
tial covariance between average interindividual differences and interindividual differences in 
intraindividual change are not part of the model. Analogous to the paired t-test (see the com-
parison of simple gain scores versus residualized gain scores), this is not to say that such a 
covariance may not exist, it is just not part of the analysis, because of the assumption of a 
single variable. However, it is precisely this covariance which often not only exists, but is 
the cause for several logical, statistical and conceptual confusions (Lohman, 1999).  

As shown in Equation (2), the SSWithin can be further partitioned into variation due to sys-
tematic change over time (SSA) and remaining error variance (SSError)7. Returning to our 
example data set of Table 1 with four time points (x1 to x4), a repeated measures ANOVA 
yields SSTotal = SSWithin + SSBetween = 288.858 + 85.356 = 374.214. Table 3 shows the results of 
the full analysis. The same analysis can be carried out as a special version of a latent growth 
curve model. For this purpose, the (measurement) error variance-covariance matrix Θε is 
again assumed to be zero, and the original variables are transformed by a contrast matrix Λ. 
The last three columns of Λ correspond to (T - 1) polynomial contrasts. For the simple case 
of equally spaced time points, orthogonal polynomials are usually the default in most statis-
tics programs (such as SPSS). The weights (i.e., factor loadings) of each orthogonal polyno-
mial sum to zero and they are mutually independent. The specific weights of polynomial 
contrasts depend on the number of time points. Note, however, that polynomial contrasts are 
just a special case of more general contrast codes, which could be imposed via Λ. Choosing 
the correct contrast matrix would also permit the analysis of unequally spaced points of 
measurement. An excellent introduction to power polynomials in general and orthogonal 
polynomials in specific is provided by Cohen et al. (Cohen et al., 2003, pp. 196). As appar-
ent from the τ-vector, the intercepts of the original variables are freely estimated, while the 
means of the transformed (latent) variables are all constrained to zero ( ; )= =εΘ 0 α 0 . For the 

                                                                                                                         
7 Other, and maybe more useful, decompositions are possible but shall not be discussed in this paper (but see 

Cattell, 1966; Wittmann, 1988). 
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present example with four repeated measures, the model is defined as shown below and as 
graphically depicted in Figure 2. 
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Table 3: 

Repeated measures ANOVA 
 

Source SS df MS    F      p G-G H-F 
Within(Time) 236.514 3 78.838 153.625 .000 .000 .000 
Within(Error) 52.345 102 0.513   
Within Subjects 288.858 105 2.751   
Between Subjects 85.356 34 2.510   
Total 374.214 139 2.692   
Polynomial Contrasts (Within) 
Linear 235.735 1 235.735 215.300 .000   
Error(linear) 37.227 34 1.095   
Quadratic 0.000 1 0.000 0.000 .990   
Error(quadratic) 8.916 34 0.262   
Cubic 0.778 1 0.778 4.267 .047   
Error(cubic) 6.201 34 0.182   
Note: SS = Sum of Squares; MS = Mean Squares; df = degrees of freedom; G-G = Greenhouse-Geisser; H-F = 
Huynh-Feldt. 

 
 

Figure 2: 
Path diagram and parameter estimates of a 

repeated measures ANOVA/MANOVA 
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For the moment, let us ignore the unconstrained matrix Φ with variance 2
ησ and covari-

ance φ between the latent variables, but I will come back to this important point further be-
low. The transformation (factor-loading) matrix Λ is chosen in a way that places the first 
factor η0 at the “center” of the observed time period (Wainer, 2000). The unbiased variance 
of η0 corresponds to the interindividual differences at the time point where the factor load-
ings of all other factors are zero. In standard latent growth curve modeling this is usually the 
first point of measurement, but it can be easily changed as illustrated by the present example 
(see also Rovine & Molenaar, 1998; Stoel & van den Wittenboer, 2003; Biesanz et al., 
2004). After centering the first factor, it maps interindividual differences in average per-
formance, thus it is equivalent to the between-subject variance of the repeated measures 
ANOVA. As a matter of fact, multiplying the variance of η0 = 2.439 by 35 (the number of 
participants) we obtain the SSBetween = 85.36 reported in Table 3. Because the intercepts of the 
manifest variables match their observed means, the group mean differences due to time (SSA) 
can be computed as shown in Equation (2). Unfortunately, standard SEM software does not 
automatically provide this computation, but it can be easily done by hand. The estimated 
variance of the four means is 2.253, so that SSA = n * (T - 1) * 2.253 = 35 * 3 * 2.253 = 
236.514, which corresponds to the SSA contained in Table 3. Analogous to 35 times the vari-
ance of the first factor, which corresponds to the SSBetween, the sum of the (35 times) the vari-
ance of the remaining three latent variables corresponds asymptotically to the SSError (35 * 
1.063 + 35 * 0.255 + 35 * 0.177 = 52.325) as shown in Table 3 and Figure 2. The sum of 
squares within subjects is now readily computed by adding SSA and SSError (SSWithin = 236.514 
+ 52.325 = 288.84). Another way to compute the sum of squares within is to constrain the 
intercepts of the observed variables to zero (τ = 0, see Figure 3). Now, the sum of (35 times) 
the variance of the three last latent variables corresponds no longer to the SSError, but the 
SSWithin (35 * 7.792 + 35 * 0.255 + 35 * 0.200 = 288.65). Finally, the total variance is ob-
tained by adding SSBetween and SSWithin (85.36 + 288.84 = 374.20). 

 
 

 

Figure 3:  
The same ANOVA/MANOVA model 
as shown in Figure 2 with all means of 
the latent variables constrained to zero 
versus (//) freely estimated. Intercepts 
(τ) of all manifest variables are fixed to 
zero. 
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Trend analysis 
 
Knowing that there are significant changes in means across time is often just a first step 

towards a more detailed analysis of this change. Thus, the analysis of variance is usually 
complemented by a trend analysis using single degree of freedom polynomial contrasts (e.g., 
Cohen et al., 2003, p. 219 & 575). The goal is thereby to examine which function (i.e., lin-
ear, quadratic, cubic, etc.) provides the best description of the changes in means. For this 
purpose, the person (i) and time point (t) specific scores (xit) are regressed on the predictor 
time (t = 1…T). To obtain orthogonal contrasts, t is transformed into t* so that the condition 

1
( * *)T

tt
t t

=
−∑ = 0 is met, with *t  being the mean of t*. The transformation is done via the 

matrix Λ as introduced above. A more detailed introduction to trend analysis is provided by 
Maxwell and Delaney (2000, pp. 207). The lower part of Table 3 contains the T-1 polyno-
mial contrasts for the repeated measures analysis using any conventional statistical software 
package. Figure 3 shows the according LGCM path diagram. The factor loadings of each of 
the three last latent variables (η1-η3) correspond to the three orthogonally transformed pre-
dictors “time” (λt), with λ0 = 1 as shown in Equation (13). Setting λ0 = 1 does not change the 
interpretation of the polynomial contrasts, but only the variance and covariances of η0 as 
apparent when comparing Figure 2 and Figure 3. This choice was made in order to stay 
consistent with the output of most statistics programs, where α0 is treated as a normal inter-
cept (weighted by one). Note, however, that now the variance of η0 no longer corresponds 
directly to the between-subject variance.  

 
 0 1 1 2 2 3 31* * * *it itx α α λ α λ α λ ε= + + + +  (13) 

 
As for all LGC-models, this requires a reconsideration of researchers familiar with tradi-

tional confirmatory factor analysis, since factor loadings are not regression weights but cor-
respond to the predictors, weighted by the means (i.e., fixed regression coefficients) of the 
latent variables. Readers only familiar with hierarchical linear modeling HLM (e.g., Bryk & 
Raudenbush, 1992) may find this notion far less confusing. In the same way the means of the 
latent factors in Figure 3 correspond to the regression weights of a polynomial function, the 
according sum of squares can be computed by comparing the variance of the latent factors in 
a model where all means have been constrained to zero to a model where all means have 
been freely estimated. As discussed above and illustrated by Figure 3, the sum of squares 
within (SSWithin) which can be explained by a linear mean trajectory (SSLinear) is 35 * 

1
varη (constrained) – 35 * 

1
varη (unconstrained) = 35 * 7.792 - 35 * 1.063 = 235.515 = SSLin-

ear, where constrained refers to the model with α = 0 and unconstrained to the model where 
all means are freely estimated. The same is true for the quadratic (SSQuadratic = 35 * 0.255 - 35 
* 0.255 = 0.000) and cubic (SSCubic = 35 * 0.200 - 35 * 0.177 = 0.805) polynomial contrasts. 
Naturally, the sum of squares of the three orthogonal polynomial factors add up to the total 
sum of squares within subjects explained by time (SSWithin(time) = 235.515 + 0.000 + 0.805 = 
236.32, which corresponds to the SSWithin(time) = 236.514 reported in Table 3. As before, minor 
differences between the LGCM results and the repeated measures ANOVA are in part due to 
the different estimation procedures and in part due to rounding errors. Knowing all sum of 
squares and the according degrees of freedom, F-tests can be computed as shown in Table 3. 
Given the usual assumptions (primarily normal distribution of the observed variables), this 
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test is asymptotically equivalent to the squared critical ratio (c.r.) of the means provided by 
standard SEM software. The critical ratio is computed by dividing the parameter estimate (in 
this case the mean) by its standard error. In our example c.r.(α1) = 2.594 / 0.174 = 14.887, 
c.r.(α2) = 0.013, and c.r.(α3) = 2.112. Asymptotically, the critical ratios follow a z-
distribution, so we find that p(α1) < .01, p(α2) > .05 and p(α3) < .05. Apparently, a straight 
line describes the changes in means very well but there also appears to be a slightly cubic 
trend. Squaring the critical ratios, we get close to the F-ratios obtained by computing stan-
dard polynomial contrasts as shown in Table 3.  

An alternative (new) approach to significance testing of the polynomial contrasts would 
be to compare the unconstrained model as shown in Figure 3 to a restricted model where the 
mean of a single latent variable has been constrained to zero (e.g., α1 = 0). If the observed 
data are normally distributed, (n-1) times the maximum likelihood fitting function (e.g., 
Bollen, 1989, pp. 107) approximates a χ2 distribution with degrees of freedom equal to the 
degrees of freedom of the model in question. The difference of two χ2 values follows again a 
χ2 distribution with degrees of freedom equal to the difference of the degrees of freedom of 
the two models. Because the unconstrained model shown in Figure 2 and Figure 3 is just 
identified, it fits the data perfectly, thus χ2(unconstrained) = 0 and df(unconstrained) = 0. In 
order to test for a linear mean trajectory, α1 would have to be constrained to zero, resulting 
in a χ2(constrained) of 69.729 with df(constrained) = 1. The difference χ2(constrained) - 
χ2(unconstrained) = 69.729 - 0 = 69.729, with df = 1 - 0 = 1, is highly significant (p < .01). 
The same significance tests can be conducted for a quadratic and cubic trajectory 
(χ2(quadratic) = 0.000, p > .05, and χ2(cubic) = 4.199, p < .05). Despite the fact that the 
results are very similar in this example, it must be emphasized – once again – that the likeli-
hood-ratio (i.e., χ2-difference) approach is a large-sample method as compared to the finite-
sample method of comparing the sum of squares (Raykov, 2001). Although the likelihood-
ratio approach may offer some advantages over traditional tests, it is unclear whether (and 
under which conditions) it is appropriate for small samples. Future research is needed to 
address this issue.  

 
 

Overall significance tests and underlying assumptions 
 
In the same way significance tests are conducted for the T-1 polynomial contrasts, the 

changes in means over time can be tested for significance. In standard repeated measures 
ANOVA this is readily done by computing F = (SSWithin(time) / (T - 1)) / (SSWithin(Error) / (T - 1) * 
(n - 1)) as shown in Table 3. This (univariate) test is identical to a comparison between the 
abridged (i.e., (T - 1) × (T - 1)) covariance matrix Φ, with all means being constrained to 
zero and the unconstrained matrix. Equation (14) shows the computation of the univariate F-
test, with ΦR denoting the mean-constrained covariance matrix and ΦF denoting the uncon-
strained (free) matrix as shown in Figure 3 (separated by // in Figure 3). The trace (tr()) of a 
matrix is the sum of all elements in the main diagonal (i.e., the sum of squares within).  
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In our example, tr(ΦR) = 8.246 and tr(ΦF) = 1.494, so that F = 153.63, which corre-
sponds to the univariate F-ratio provided in Table 3, which was obtained using any major 
statistical software package. 

A more detailed discussion of Equation (14) will be provided below. At this point, how-
ever, it is important to have a closer look at the within-subject variance-covariance matrix Φ, 
which I have deliberately ignored so far. In order to be a meaningful statistic (i.e., to follow 
an F-distribution), the computation of F depends on the assumption of homogeneity of 
treatment difference variances, which is identical to the assumption of sphericity. Sphericity 
implies the equality of the variances of the differences between all pairs of repeated meas-
ures. If this assumption is not met, the mean differences over time (i.e., SSWithin(time)) would 
have to be qualified based on the changes in variance and thus would not be a reasonable 
estimate of the overall time effect. As a result, the p-values would be biased, leading to an 
inflated type I error. In practice, the assumption of sphericity is often equated with the as-
sumption of compound symmetry. Compound symmetry exists if the variance-covariance 
matrix of the repeated measures contains the same elements on its main diagonal (equal 
variances) and the same elements off the main diagonal (equal covariances). If all variances 
are equal and all covariances are equal (possibly different from the variances), the variances 
of the differences between all possible pairs of repeated measures must be equal too. As a 
matter of fact, compound symmetry is a special case of sphericity, that is if the assumption 
of compound symmetry is met, the assumption of sphericity is also met and the F-ratio fol-
lows an exact F-distribution. However, there are cases where the observed measures do not 
exhibit compound symmetry, but the sphericity assumption is still met, and the repeated 
measures ANOVA F-test remains correct8. 

As demonstrated by Raykov (2001), both assumptions can be tested via structural equa-
tion modeling and as will be shown below, even the – usually more complicated – test of 
sphericity is quite easily conducted within the general LGCM framework. Let Σ be the T × T 
covariance matrix of the repeated measures and let ρ denote a correlation coefficient, then Σ 
should equal 
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if the assumption (H0) of compound symmetry is met. The alternative hypothesis (H1) is 
readily formulated by removing the restriction of equal variances and covariances. In order 
to test whether the assumption of compound symmetry holds in the present example (Table 
1), we would maintain the model as shown in Figure 2, but set  
 

                                                                                                                         
8 Huynh and Feldt (1970) speak of Type S and Type H matrices and provide an example of a matrix meeting 

the assumption of sphericity but not the assumption of compound symmetry. 



M. C. Voelkle 392 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 =  
  
 

Λ    and compare   

2

2

2

2

σ
φ σ

φ φ σ
φ φ φ σ

 
 
 =  
 
 
 

Φ  

 
against Φ (i.e., Σ) as defined above. In other words, it is tested whether the assumption holds 
that the repeated measures have the same variance and equal covariances across time. This 
results in a χ2(-difference) of 66.014 with 8 degrees of freedom, which is highly significant 
(p < .01), suggesting that the assumption of compound symmetry is not met. As a conse-
quence, the F-test of a standard repeated measures ANOVA would not be correct. However, 
because compound symmetry is only a sufficient but not necessary assumption of the re-
peated measures ANOVA F-test, researchers are better advised to test directly for violations 
of sphericity, even though some authors argue that this distinction is hardly ever relevant in 
applied research (Maxwell & Delaney, 2000, p. 473). The same way we can test for devia-
tions from compound symmetry, we can test for deviations from sphericity (see Raykov, 
2001). The only difference is that this test refers to the orthogonally transformed variables, 
instead of the untransformed variables. As introduced above, the orthogonal transformation 
(actually orthonormal transformation with respect to η1 - η3) is implemented by the choice of 
Λ. Sphericity exists if the variance-covariance matrix of the T-1 transformed variables con-
tains no off-diagonal elements and only equal variances on the main diagonal (i.e., H0: Φ = 
σ2 * I, with I being a (T - 1) × (T - 1) identity matrix). In the present case, we would maintain 
Λ as shown below,  
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against Φ with all elements being freely estimated (see Figure 3). Note that the (T - 1) or-
thonormally transformed variables must meet the assumption of sphericity, while a different 
variance (σ2

BS) and covariance (φBS) is permitted for the between-subject factor. In the pre-
sent example this results in a χ2(-difference) of 45.664 with 5 degrees of freedom, which is 
again highly significant (p < .01), suggesting that the assumption of sphericity is not met. 
Having worked out the transformation matrix (Λ), which is provided by most statistic pro-
grams or can be looked up in any standard statistics text book, the above test is as easily 
implemented as the test of compound symmetry. Therefore I see no reason why one should 
settle for second best (i.e., testing the assumption of compound symmetry), but recommend 
testing directly for sphericity. As mentioned above, this test is a large sample test, and its 
performance is not very well known in finite samples such as the present one. Especially for 
large samples, however, the test may constitute an interesting alternative to Mauchly’s crite-
rion W (Mauchly, 1940; see also Mendoza, 1980), which tests the assumption of independ-
ence and homoscedasticity of the transformed repeated measures. Mauchly’s criterion W is 
defined as shown in Equation (15), with Σ being the sample covariance matrix of the un-
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transformed variables with df = n - 1, and T - 1 being again the number of orthogonal con-
trasts.  
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For f = ((T2 - T) / 2) - 1 and d = 1 - (2 * T2 - 3 * T + 3) / (6 * (T - 1) * (n - 1)), the product 

-(n - 1) * d * ln(W) follows approximately a central χ2 distribution with f degrees of freedom 
if Φ meets the assumption of sphericity (e.g., see Huynh & Feldt, 1970, p. 1588). In the 
present case, W = 0.271 and the according χ2 = 42.706 with f = 5 degrees of freedom for  
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and Σ as shown in Table 1 (covariance matrix). Again the assumption of sphericity must be 
rejected (p < .01). Although the results are fairly similar, future research is necessary to 
provide a better comparison of the traditional Mauchly’s test (Mauchly, 1940) and the 
LGCM likelihood ratio-approach introduced above. 

Regardless of which test is being used, it is obvious that the data do not meet the assump-
tion of sphericity and the F-test must not be trusted. As a matter of fact, the repeated meas-
ures ANOVA F-test is quite sensitive against violations of the sphericity assumption (e.g., 
Vasey & Thayer, 1987; Keselman & Rogan, 1980) and it is important to take appropriate 
action (e.g., see the three step approach of Greenhouse & Geisser, 1959; Keselman et al., 
1980). For this purpose, a number of adjusted univariate tests have been developed. The 
three most prominent approaches are probably the Geisser-Greenhouse lower bound correc-
tion, Box’s ε̂  adjustment, and the Huynh-Feldt ε adjustment. All three of them are based on 
a correction of the degrees of freedom for the critical F value. A more detailed description is 
beyond the scope of this article, a good overview, however, is provided by Maxwell and 
Delaney (2000, pp. 475). 

 
 

A latent growth curve approach to multivariate analysis of variance 
 
Even though the adjustments are a simple and effective way to deal with violations of the 

sphericity assumption, the principle problem of how to interpret any effects in the presence 
of variance and covariance changes over time remains. The multivariate approach to the 
analysis of variance (MANOVA) offers a solution to this problem. As mentioned above, 
MANOVA assumes several different variables (instead of a single variable whose variance is 
decomposed in within- and between-subject variance), which may very well exhibit different 
correlations among each other. As a matter of fact, all models introduced so far (see Figure 2 
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and Figure 3) are actually MANOVA models because all elements in Φ were freely esti-
mated. Other than the test statistics computed in repeated measures ANOVA, the multivari-
ate approach explicitly accounts for these variances. Returning to Equation (14), which 
shows the computation of the univariate F-test, we find that by taking the trace of Φ, all off-
diagonal elements have been ignored in the ANOVA approach (i.e., all covariances were 
assumed to be irrelevant). The multivariate analog of Equation (14) simply replaces the trace 
by the determinant, thus taking into account all elements of Φ. Equation (16) shows the 
multivariate test statistic based on the same constrained and unconstrained matrices as de-
scribed above (e.g., Maxwell & Delaney, 2000, p. 589). 
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In our present example (see Table 1), |ΦR| = 0.259 and |ΦF| = 0.034, so that F = 71.560 

(dfnumerator = 3, dfdenominator = 32), indicating that there are indeed significant mean changes 
over time (p < .01). By considering all variances and covariances among the (transformed) 
measures, the F-ratio no longer depends on the assumption of sphericity9. This is a major 
advantage, because the assumption of sphericity is not only very restrictive, but often unreal-
istic and hardly ever met in the behavioral sciences. Other than the corrections, which are 
only approximate, the multivariate approach offers an exact test of differences in means over 
time. Accordingly, the type I error rates are correct even if the assumption of sphericity is 
violated. On the downside, the traditional repeated measures approach has greater power to 
detect any potential effects if the assumption of sphericity is met. A more comprehensive 
comparison of the two approaches to the analysis of change is provided by Maxwell and 
Delaney (2000, chapter 13). 

The LGCM likelihood-ratio test for polynomial contrasts proposed above can be easily 
generalized to a test of any changes in means over time and constitutes a (new) alternative to 
the multivariate F-test of Equation (16). The according test statistic corresponds to the χ2-fit 
of a LGC-model as shown in Figure 3, where the means of all three growth factors (η1 - η3) 
have been constrained to zero (α1 = α2 = α3 = 0). In our example χ2 = 71.483 with df = 3, 
which is again highly significant (p < .01), indicating that there are significant mean changes 
over time. As before, the likelihood-ratio test may be an interesting alternative in large sam-
ples, given its ease of implementation, and its independence of the sphericity assumption. 

While the relative advantages and disadvantages regarding type I and type II error rates 
of the repeated measures ANOVA and MANOVA are comparatively well known, future 
research is necessary to evaluate the performance of the likelihood-ratio test. Especially for 
many time points the new approach appears to be promising, since it allows the specification 
of any within-subject covariance structure. For example, it would be possible to implement 
the assumption of what we might term “partial sphericity”, that is the assumption of spheric-
ity for a part of Φ but not the entire matrix as required by the multivariate approach. In other 
words, the LGCM approach offers all advantages of MANOVA regarding potential viola-
                                                                                                                         
9 While the multivariate approach does not depend on sphericity, it assumes multivariate normality which is – 

strictly speaking – more restrictive than the assumption of univariate normality underlying the standard re-
peated measures ANOVA. However, for practical purposes – and other than the assumption of sphericity – 
this difference is typically negligible. 
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tions of sphericity, while being more flexible by offering the option to impose specific con-
straints on the within-subject matrix. This should result in a decrease of type II errors, while 
type I error rates and the correctness of parameter estimates should remain unchanged. 

 
 

The latent growth curve modeling perspective 
 
Putting the within-subject covariance matrix into the center of interest is probably the 

biggest difference – and at the same time the greatest advancement – of LGCM over tradi-
tional techniques. In repeated measures ANOVA the focus lies only on mean changes, while 
the remaining within-subject variance is viewed as error variance and is assumed to have a 
very restrictive form. The MANOVA approach is more flexible with respect to the nature of 
the within-subject covariance matrix (Φ), but the matrix is still treated as pure error 
(co)variance. In LGCM, however, this matrix is of central interest, because it maps individ-
ual changes over time as well as interindividual differences in individual changes. In other 
words, the focus is shifted away from mean changes towards changes of individual units 
(i.e., persons). To illustrate this point, consider a factor loading matrix Λ as defined below. 

 
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

 
 
 =  
  
 

Λ  

 
This factor loading matrix corresponds to the standard LGCM setup, where η0 maps true 

interindividual differences at the first point of measurement (i.e., the latent intercept is posi-
tioned at the first point of measurement). The mean of the second latent variable (η1) corre-
sponds to the average linear increase from one time point to the next, the mean of η2 maps 
the average quadratic increase and η3 the average cubic increase. The changes in means can 
be described as shown in Equation (13)), with estimated α0 = 1.112, α1 = 1.681, α3 = -0.500, 
and α4 = 0.111. For instance, the mean of the last point of measurement t = 4, would be 
predicted to be τ4 = 1.112 + 3 * 1.681 + 9 * -0.500 + 27 * 0.111 = 4.66. Because the model 
is saturated, the predicted mean is identical to the sample mean as shown in Table 1. In con-
trast to Equation (13)) where any interindividual differences are contained in the error term 
(εit), the interindividual differences in intraindividual change over time are now mapped by 
the variance of the three growth factors. Figure 4A illustrates this variation. While we see a 
significant increase in mean performance over time, the increase is also characterized by 
large interindividual differences. As demonstrated above, this within-subject variance is 
simply treated as error variance in traditional approaches. However, from Figure 4A it 
should also be apparent that the within-subject variance is unlikely to be unsystematic as 
assumed by the repeated measures ANOVA. As a matter of fact, the fan-spread pattern of 
increasing variance observed in Figure 4A is quite typical for learning data in the behavioral 
sciences (Kenny, 1974; Campbell & Erlebacher, 1970). While the fan-spread effect does not 
present a problem for the multivariate approach to the analysis of changes, MANOVA still 
focuses on changes in means instead of providing a closer investigation of the within-subject 
covariance matrix. 
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Figure 4:  

Performance on a hypothetical learning task as introduced in Table 1. The points along the dotted 
line indicate mean performance, as well as the corresponding standard error, at each time point. 
The two solid lines represent the trajectories of the best and worst individual at the last point of 

measurement. (A) Saturated (descriptive) model (B) estimated linear model 
 
 
This, however, is readily accomplished by latent growth curve modeling. As described 

above, the LGC approach can be used to test the assumption of compound symmetry or 
sphericity (for additional tests see Raykov, 2001), but it is also possible to test much more 
refined hypotheses. For example, one might be interested in testing the degree to which the 
data follow a specific trajectory over time and to what extent individuals deviate from the 
average trajectory. In other words, LGCM offers great flexibility in testing very specific 
hypotheses regarding change. While this can result in quite complex models, the most basic 
latent growth curve models are actually very parsimonious, requiring much fewer parameters 
to be estimated than standard MANOVA models. Especially applied researchers are often 
not aware of this fact. Other than traditional techniques, however, LGCM buys its advan-
tages from the existence of a good theory. If no prior theory of mean changes and/or individ-
ual changes can be formulated, LGCM might indeed have little value over traditional meth-
ods. If, however, some prior theory exists, rival hypotheses can be formulated and explicitly 
tested against each other. As an example, we might suspect that the learning “curves” of the 
35 individuals contained in Table 1 and depicted in Figure 4A can be sufficiently well de-
scribed by a straight line. A standard latent growth curve model as shown in Figure 5, and as 
defined below, constitutes such a test.  
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Figure 5: 
Linear latent growth curve model 

 
 
 

The most obvious difference to all previous models is that the variances of the error 
terms are no longer constrained to zero but are freely estimated. By imposing a theory of 
change on the data, the within-subject variance-covariance matrix Φ could be further parti-
tioned into mean changes over time, systematic individual deviations from the average (lin-
ear) trajectory, and time point specific residual variances represented by Θε. It is important to 
note that the partitioning of the within-subject variance into “systematic” variance contained 
in Φ and “error” variance (Θε) is contingent on the underlying theory of change. In that 
sense it is difficult to distinguish between systematic time point specific variance and pure 
measurement error, or more generally to distinguish between reliability and validity of 
change. Figure 4B shows the estimated individual trajectories using a linear LGC-model. If 
the usual assumptions of structural equation models are met (primarily multivariate normal-
ity) and sample size is large enough, the resulting model fit provides a test of the goodness of 
approximation of the estimated trajectories to the observed trajectories shown in Figure 4A. 
The evaluation and interpretation of fit indices works as usual and will not be reviewed in 
this paper (but see Bollen & Long, 1993; Schermelleh-Engel, Moosbrugger, & Müller, 
2003). Note, that it is also possible to compare competing models of change (nested and non-
nested, see Levy & Hancock, 2007). For example, by adding a quadratic growth component, 
it could be easily tested whether a quadratic growth curve model fits the data significantly 
better than a linear one. In the present example, the linear model as shown in Figure 5 results 
in χ2 = 6.180 with 5 degrees of freedom (p > .05), indicating a good model fit. After intro-
ducing an additional quadratic growth factor the fit improves slightly (χ2

quadratic = 4.138) but 
the improvement is not significant (χ2

Diff = χ2
linear - χ2

quadratic = 6.180 - 4.138 = 2.042 with 
dflinear - dfquadratic = 5 - 1 = 4, p > .05) so that the more parsimonious linear model would be 
retained. In the linear model, the means of the latent intercept and the latent slope are both 
significant (α0 = 1.207, p < .01, α1 = 1.153, p < .01) indicating that average performance in 
the learning task is significantly different from zero at the first point of measurement and that 
people exhibit a significant mean improvement of about 1.153 units from one time point to 
the next. In this regard, LGCM is similar to repeated measures ANOVA, in that it shows that 
the means differ over time. By imposing a linear trajectory, however, we also test the shape 
of the overall curve, which can be well described by a straight line as suggested by the good 
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model fit. In addition to mean changes, there are significant interindividual differences in 
true initial performance indicated by the significant variance of the latent intercept (var(η0 ) 
= 0.284, p < .01). Finally, people show significant interindividual differences in their im-
provement over time. This was already suggested by the strong fan-spread pattern in Figure 
4A and is mapped by the significant variance of the linear latent growth curve factor (var(η1) 
= 0.149, p < .01). As illustrated by Figure 4A and B, the mean changes, as well as the inter-
individual differences in initial performance and change over time, are well described by a 
linear latent growth curve model. As an alternative, it is also possible to permit (some of) the 
factor loadings to be freely estimated. This gets close to traditional factor analysis, where no 
predefined growth curves are imposed on the data. In the present example we could modify 
the linear LGCM by allowing the last two factor loadings of η1 to be freely estimated and let 
the data “tell us” the best shape of the trajectory. This would fit a “linear spine” to the data 
(see Meredith & Tisak, 1990), resulting in the two loadings λ31 = 1.772 and λ41 = 2.767 and a 
model fit of χ2 = 1.558 with 3 degrees of freedom. However, because the improvement in 
model fit over the more restrictive linear model is not significant (χ2

Diff = 6.180 - 1.558 = 
4.622, dfDiff = 2, p > .05), the more parsimonious linear LGCM should be retained. Regard-
less of whether the factor loadings are freely estimated or fixed based on an existing theory, 
the present example pointed out that LGCM combines the analysis of mean changes, as 
provided by traditional analysis of variance techniques, with a more detailed analysis of the 
within-subject covariance matrix. It is this shift in focus – away from group changes towards 
individual changes – which makes LGCM such a versatile and promising technique. 

To summarize, it has been shown that repeated measures ANOVA and MANOVA are 
essentially special cases of the more general latent growth curve modeling approach. That 
being said, differences exist with respect to the underlying estimation procedure. LGC-
models are typically based on (large-sample) ML estimation, while least square estimation is 
employed for (finite-sample) ANOVA and MANOVA type models. Different estimation 
techniques are based on different assumptions (e.g., multivariate normality and/or a suffi-
ciently large sample) and will produce different results based on the degree to which the 
assumptions are met in a given sample. A more detailed comparison of different estimation 
techniques is beyond the scope of this article, and I settle for a comparison on the model 
level in the present paper. Regarding model specification, however, it has been shown that 
the standard repeated measures ANOVA is identical to a LGC-model with the assumption of 
a spherical covariance matrix among the latent growth factors. Based on research by Raykov 
(2001) it was demonstrated that the assumption of compound symmetry and sphericity can 
be easily tested within the LGCM framework and a likelihood-ratio based alternative to 
Mauchly’s criterion W has been proposed. Likewise, alternative likelihood-ratio tests were 
proposed for polynomial contrasts, which have been demonstrated to be easily incorporated 
into the general latent growth curve approach. Other than repeated measures ANOVA, nei-
ther the multivariate analysis of variance, nor LGCM rests on the assumption of sphericity. 
As a matter of fact, the saturated LGC-model is equivalent to MANOVA, but other than 
MANOVA, latent growth curve modeling allows the researcher to impose specific con-
straints on the covariance matrix of the latent variables. Again, a likelihood-ratio test has 
been proposed as an alternative to the multivariate F-test employed in MANOVA but future 
research is necessary to evaluate the validity of such a test. Finally, it has been argued that 
LGCM is characterized by a shift in focus, away from the analysis of mean changes, towards 
the analysis of individual trajectories. This change in perspective is characterized by (A) the 
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possibility to formulate and test much more sophisticated hypotheses regarding the within-
subject covariance matrix than possible with traditional methods. (B) The need to have a 
good theory underlying one’s model specification, and (C) great flexibility of incorporating 
predictors of change, which will be the topic of the next section.  

 
 

Predicting change 
 
The biggest advantage of being able to better describe (individual) changes over time is 

the possibility to better predict these changes. In this last section I will demonstrate how to 
use categorical and continuous variables to explain interindividual differences in change. 
Traditional methods will be compared to the more general LGCM approach. As before, I 
will proceed in three steps by first considering two-wave data before moving to more com-
plex multi-wave designs. Finally, some more recent developments will be outlined.  

 
 

Predicting change in two-wave data 
 
The prediction of pre- to post-test change is very straightforward. As demonstrated in the 

first section, a paired samples t-test corresponds to a latent growth curve model as shown in 
Figure 1. This model can be easily extended by regressing η0 and/or η1 on potential predic-
tors as illustrated by Figure 6A. As also discussed above, the paired samples t-test is identi-
cal to an independent t-test on the difference scores (i.e., x4 - x1). Thus, a regression of η1 on 
group membership is identical to the regression of the difference scores on group member-
ship, as long as the error variances of x4 and x1 are constrained to zero. Likewise, a regres-
sion of the observed difference scores on one or more categorical and/or continuous vari-  
 

 

 
Figure 6:  

Path diagram of a paired samples t-test (A) and a base-free measure of change model (B) using 
either “sex” or “g” as predictor for individual difference in pre- to post-test (x1 to x4) changes (sex 

// g). The predictor g is z-standardized. Men are coded as 1 and women as 0. 

A B
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ables is identical to the prediction of η1 by the same predictors. Figure 6A illustrates this fact 
for either sex or g as predictor of initial performance (η0) and change over time (η1). If the 
independent variable is in deviation form (i.e., its mean is zero), the intercept of the depend-
ent variable corresponds to its mean (e.g., Aiken & West, 1991). For this purpose, g was z-
standardized prior to including it as a predictor. Now, the mean of the latent growth factor 
(α1 = 3.549) is equal to the mean difference between pre- and post-test. As demonstrated in 
the first section (see Equation 5), this difference is highly significant (p < .01). By regressing 
η1 on g, a regression coefficient (γ1g = 0.539) is obtained, which maps the difference in im-
provement from pre- to post-test between people with an average intelligence (i.e., 
g(standardized) = 0) and people one standard deviation above average (g(standardized) = 1). 
Dividing the coefficient by its standard error (SE = 0.223), we find that the difference in 
mean performance is significant (p < .05). The same is true for the prediction of η0, where 
the estimated regression coefficient (γ0g = -0.031) indicates that people one standard devia-
tion above average on g, start off somewhat worse at the beginning of the learning task as 
compared to people with an average intelligence. The difference, however, is small and not 
significant (SE = 0.119, p > .05). The same interpretation holds for using the categorical 
variable gender instead of g as a predictor (see again Figure 6A). In our example women are 
coded as zero, so the mean of η0 corresponds to the average performance of women at the 
first point of measurement. The regression coefficient (γ0sex = 0.573) indicates that men are 
slightly better than women in their initial performance and dividing γ0sex by its standard error 
reveals that this difference is indeed significant (SE = 0.215, p < .05). Likewise, men show a 
larger improvement from pre- to post-test than women. On average, women improve about 
α1 = 2.984 units as compared to an increase of α1 + γ1sex = 2.984 + 1.099 = 4.083 units of 
men. The difference is again significant (γ1sex = 1.099, SE = 0.437, p < .05). The test is  
asymptotically equivalent to the independent samples t-test (using the pre-post difference 
scores (x4 - x1) as dependent variable) and the repeated measures ANOVA for two time 
points and one (categorical) between-subject factor. Table 4 compares the LGCM estimate 
(γ1sex) with the results of a t-test and repeated measures ANOVA obtained by using any 
major statistical software package. Finally, the covariance between ζ0 and ζ1 maps the rela-
tionship between pre- and post-test after controlling for any predictors. Using gender as a 
predictor, there is a slight, but significant correlation between pre- and posttest (φ01 = -0.427, 
corr = -0.437, SE = 0.156, p < .05), while the correlation gets smaller and is no longer sig-
nificant after controlling for g instead of gender (φ01 = -0.254, corr = -0.259, SE = 0.159, p 
> .05). This suggests that part of the covariation between pre- and post-test is “caused” by 
intelligence. However, because the sample size is small (and of course the fact that the data 
were chosen for illustrative rather than substantive purposes) one must be careful in inter-
preting this finding. 

As demonstrated in the first section of this paper, the LGCM approach allows us to take 
the reliabilities of x1 and x4 into account, should they be known. As before, a reliability of 
rtt(x1) = .80 and rtt(x4) = .85 was assumed. Likewise, predictors can be included in the base-
free measure of change model as shown in Figure 6B. Now, the effect of gender on im-
provement (η1) is independent of any prior performance. That is, if men and women would 
have started out equal on the learning task, they would still differ in their change from pre- 
to post-test by about 1.716 units. The estimated difference is larger than in the previous 
(difference score) model and is highly significant (γ1sex = 1.716, SE = 0.435, p < .05). The  
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Table 4: 
Independent samples t-test, repeated measures ANOVA and LGCM approach to testing the 

difference in pre- to post-test improvement between men and women. Note that (asymptotically) 
all three approaches will yield identical results 

 
                                                     Independent samples t-test 

Mean difference (M vs. F) t df p 
1.099 -2.444 33 .020 

                                                        Repeated measures ANOVA 
Source F df p 
Time 246.979 1 .000 
Time * sex 5.972 1 .020 

                                                             LGCM 
 Estimate (γ1sex) Standard error (SE) p 
 1.099 0.437 .020 

Note: t2 = F for dfnumerator = 1; M = Male, F = Female. 
 
 

effect of gender on η0 remains unaffected by analyzing residualized (true) gain scores instead 
of direct difference scores. However, it is now possible to obtain and test the indirect effect 
of gender via η0 on η1. The estimate is simply computed by multiplying β10 with γ0sex. The 
standard error is readily provided by most software packages (command IND for Mplus). 
The indirect effect (γ0sex * β10 = 0.573 * -1.077 = -0.617), however, is not significant (SE = 
0.322, p > .05). The same procedure can be adopted in testing the direct and indirect effects 
of g instead of sex (see Figure 6B). Note, that the LGCM approach makes no difference 
between categorical and continuous predictors. This stands in sharp contrast to the repeated 
measures ANOVA, where the between-subject factor must be categorical. If this is the case, 
the results are identical as shown in Table 4. ANOVA, however, cannot be employed if g 
would be used as a predictor instead of gender. In the case of two-wave data, taking the 
difference between x4 and x1 and regressing it on any continuous predictor easily circum-
vents this problem. This cannot be done in multi-wave data as will be discussed in the next 
section. In addition, the predictor is assumed to be measured without error in standard re-
gression or ANOVA type procedures. This is also no longer true for the LGCM approach, 
where we can easily adjust for unreliability of the predictor in the same way the dependent 
variable(s) were adjusted for unreliability. Moreover, the independent variables need not be 
directly observed, but may be latent. This is only possible in the LGCM approach. 

Of course it is possible to consider more than one predictor at a time and to include inter-
actions among predictors. All this is not different from any standard regression analysis and 
shall not be reviewed in this paper (but see Cohen et al., 2003; Aiken & West, 1991). In 
structural equation modeling, multiple group analysis is another option to test hypotheses 
involving categorical (grouping) variables. An introduction to multiple group analysis can be 
found in any SEM textbook (e.g., Bollen, 1989, pp. 355). One advantage of multiple group 
analysis is the possibility to test for differences in variances across groups instead of being 
limited to mean differences as it is the case in linear regression. From the previous analyses 
we know that men are significantly better, both, in true initial performance and improvement 
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from pre- to post-test. Accordingly, we might set up a model, which accounts for this fact by 
allowing the means of the two latent variables to differ across groups. In a next step, how-
ever, it might be interesting to see whether men are not only better, but exhibit larger interin-
dividual differences as compared to women. This test is readily implemented by comparing a 
model where the variances of η0 and η1 are constrained to equality across groups to a model 
where the variances are allowed to be freely estimated. Figure 7 shows the parameter esti-
mates of the unconstrained model. Constraining both variances to equality (var(η0men) = 
var(η0women) = 0.408, SE = 0.097, p < .01 and var(η1men) = var(η1women) = 1.602, SE = 0.382, p 
< .01), we obtain a model fit of χ2 = 7.546 with 2 degrees of freedom. Allowing the variances 
to differ, the model is just identified with zero degrees of freedom, so the χ2 reported above 
indicates that the two variances (taken together) differ significantly across groups (p < .05). 
As apparent from Figure 7, men exhibit an over three times larger variance at the pre-test, 
while the post-test variance is almost identical for men and women (var(η0men) = 0.627, SE = 
0.209, p < .05; var(η1men) = 1.646, SE = 0.549, p < .05 and var(η0women) = 0.167, SE = 0.057, 
p < .05; var(η1women) = 1.687, SE = 0.579, p < .05). As a matter of fact, when constraining the 
post-test variance to equality, the drop in fit is negligible suggesting that men and women do 
not differ in their variability of pre- to post-test change (χ2

Diff = 7.546 - 7.056 = 0.49, dfDiff = 
2 - 1 = 1, p > .05). Reintroducing g as a predictor of η0 and η1 allows us to test (possibly 
quite sophisticated) interaction hypotheses. For example, by comparing a model where γ1g is 
constrained to equality across the two groups to a model where γ1g is allowed to differ, is 
equivalent to testing an interaction between g and sex. A significant χ2

Diff would suggest that 
the effect of g on pre- to post-test change differs between men and women. One can think of 
numerous other hypotheses, which are readily formulated and tested within this general 
 

 

 
Figure 7:  

Multiple group analysis using gender as grouping variable. All freely estimated parameters are 
allowed to differ across groups (saturated model) 
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framework. As mentioned in the first section of this paper, the LGCM approach gets particu-
larly interesting if more than one (parallel) measure was obtained at each time point, so that 
the error terms can be estimated rather than being constrained a priori. 

 
 

Predicting change in multi-wave data 
 
The option to use difference scores as dependent variable in a pre- to post-test analysis 

makes it easy to analyze and predict change in two-wave data. This is no longer true for the 
prediction of change over multiple waves. As discussed in the previous section, traditional 
methods are often based on very restrictive assumptions, such as compound symmetry or 
sphericity, which still apply when it comes to the prediction of change. Furthermore, there 
are additional assumptions that must be met when including predictors. Finally, the exclusive 
focus on mean changes – instead of individual trajectories – restricts MANOVA and 
ANOVA to the use of categorical predictors. The more general LGCM approach is not only 
more flexible with respect to those assumptions, but offers a convenient way to test them. 
Moreover, it is not limited to categorical predictors but allows for any combination of cate-
gorical and/or continuous variables.  

Using the same factor loading matrix as before,  
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η0 is again “centered”, mapping average interindividual differences across all four time 
points. Thus, a regression of η0 on a categorical predictor corresponds to the between-subject 
analysis in a repeated measures ANOVA. Figure 8 shows the according path diagram for our 
example data set. Constraining the regression coefficient γ0sex to zero, the variance of η0 
(var(η0) = var(ζ0) = 2.439) corresponds to the between-subjects sum of squares divided by n 
(35 * 2.439 = 85.36 = SSBetween; see Table 3). When regressing η0 on gender (γ0sex = 2.230), 
the remaining variance corresponds to the variance not accounted for by sex (var(ζ0) = 
1.197), so that the sum of squares explained by sex are SSBetween(sex) = 85.36 - 35 * 1.197 = 
43.47, corresponding exactly to the SSBetween(sex) obtained by any standard software package. 
Likewise, F = (SSBetween(sex) / dfBetween) / (SSBetween(error) / dfBetween(error)) = (43.47 / 1) / 
(41.89 / 33) = 34.25, suggesting that there are significant differences in mean performance 
between men and women (p < .01). Since the variance of the other factors is not affected by 
the introduction of a predictor, the change over time can be evaluated as discussed above 
(compare Figure 8 and Figure 3). However, while the prediction of interindividual differ-
ences in average performance does not depend on the within-subject covariance matrix (Φ), 
the analysis of interindividual differences in change over time does. In addition, the intro-
duction of a categorical predictor requires that the variance-covariance matrix (Φ) is identi-
cal across all levels of the predictor (in our example for men and women). It is important to 
note that the two assumptions of sphericity and homogeneity of variance are independent,  
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Figure 8:  

Repeated measures (M)ANOVA with one between (sex) and one within (time) subject factor, 
where only between-subject variance is predicted by sex (no interaction between time and sex). 

Parameter estimates on the right side of the graph are obtained when fixing the regression 
coefficient of η0 on sex to zero (γ0sex = 0) 

 
 
that is it can easily happen that one assumption is met, while the other is not (Maxwell & 
Delaney, 2000, p. 534). This makes the estimation of an interaction between a within-subject 
factor and a between-subject factor much more demanding. The prediction of within-subject 
variance is easily implemented by regressing all growth factors (η1 - η3) on the independent 
variables(s) in question. Figure 9 shows the according path diagram (with Λ as shown 
above). As a reminder, the within-subject main effect due to time can be computed by con-
straining the means of η1 - η3 to zero (in addition to setting γ1sex = γ2sex = γ3sex = 0), and com-
paring the sum of the residual variances to the sum of residual variances after allowing the 
means to be freely estimated.  

The prediction of change by gender corresponds to an interaction effect of the between-
subject factor sex and the within-subject factor time. This is readily apparent from Figure 9 
where the effect of sex on x is mediated by η. This is not true for the prediction of the be-
tween-subject variance, because all factor loadings of η0 are identical, thus the effect is sim-
ply multiplied by a constant. For example – and as shown above – if all factor loadings of η0 
are constrained to 0.5, the variance of η0 corresponds to the average between-subject vari-
ance, while the mean (α0 = 4.624) must be divided by two in order to obtain the average 
performance of women on the learning task ( womenx = 2.312). When setting γ1sex = γ2sex = γ3sex  
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Figure 9:  

Repeated measures (M)ANOVA with one between (sex) and one within (time) subject factor. 
Interindividual differences in change over time are predicted by sex (interaction between time 

and sex). Parameter estimates on the right side of the graph are obtained when setting the 
regression coefficients γ1sex = γ2sex = γ3sex = 0 

 
 

= 0, the sum of the variances of η1 to η3 is 1.063 + 0.255 + 0.177 = 1.495. Multiplying 1.495 
by the number of subjects, the sum of squares between persons is SSBetween = 35 * 1.495 = 
52.325, which is the sum of squares after controlling for the within-subject factor time (note 
that α1 to α3 are freely estimated). The resulting sum of squares can be further partitioned 
into one part that is due to gender differences and one part that is independent of gender and 
independent of mean changes over time. This is readily computed by reintroducing the direct 
effects of sex on η1, η2 and η3. The estimates are shown in Figure 9. The sum of the vari-
ances of η1 to η3 is 0.870 + 0.255 + 0.169 = 1.294. After multiplication with n, this corre-
sponds to the SSWithin(error) after accounting for changes over time (main effect time) and 
gender differences in change over time (time * sex), and is identical to the SSWithin(error) 
obtained by any conventional software package (SSWithin(error) = 45.29). As a consequence, 
the interaction between time and sex can be easily computed by subtracting 45.29 from 
52.325, resulting in an effect of SSWithin(time * sex) = 7.035. The F-test can be computed 
accordingly, with F = (SSWithin(time * sex) / dfWithin(time * sex)) / (SSWithin(error) / 
dfWithin(error)) = (7.035 / 3) / (45.29 / ((35 - 2) * (4 - 1))) = 5.13 suggesting that men and 
women differ significantly in their change over time (p < .05).  

In order for the F-value to be a reasonable test statistic, not only the assumption of 
sphericity must be met, but also the assumption of equal variances and covariances across 
groups (i.e., the homogeneity of variance assumption). The latter is true for the traditional 
repeated measures approach as well as the LGCM approach. If the assumption is not met, it 
would not make sense to compare mean changes across groups, since the within-subject error 
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terms (i.e., the residual within-subject (co)variance matrix) would differ, making it a futile 
comparison. Other than ANOVA or MANOVA, however, LGCM provides not only a direct 
test of this assumption, but offers an alternative to the F-ratio, which neither depends on the 
assumption of sphericity, nor on the assumption of variance homogeneity. For this purpose, 
gender is not treated as an exogenous variable but as a grouping variable in a multiple-group 
analysis as described above. Figure 10 shows the according model. The assumption of vari-
ance homogeneity can be simply tested by comparing a model where all elements in Φ are 
constrained to equality across groups10 to a model where all elements in Φ are allowed to 
differ (see Raykov, 2001). Since the two models are nested, a likelihood-ratio test can be 
carried out to test the significance of any differences between the models. Technically speak-
ing, the null-hypothesis (H0) states that Φ(men) = Φ(women), while the alternative hypothesis 
assumes that there are significant differences between the covariance matrices of the two 
groups (H1: Φ (men) ≠ Φ(women)). For T repeated measures, the within-subject matrix contains T 
* (T + 1) / 2 non-redundant elements, resulting in a χ2-difference test with 4 * 5 / 2 = 10 
degrees of freedom in our example. The test of variance homogeneity is readily implemented 
by constraining all ten elements in Φ to equality across groups. The means of the latent 
variables are allowed to differ across groups and may be freely estimated. The constrained 
model results in a χ2 of 18.262 with 10 degrees of freedom. Since this value must be com-
pared to a saturated model with χ2 = 0, the model fit indicates that the homogeneity assump-
tion may be met (p > .05). As before, the reader is reminded that the test is actually a large 
sample test and its performance is not very well known in small samples. In large samples, 
however, it might be an interesting alternative to the popular Box M test (Box, 1949) as 
pointed out by Raykov (2001).  
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As shown in Equation (17), Box’s M statistic is also based on the likelihood-ratio test. G 

is the number of groups (g = 1…G; e.g., males and females), Ng is the sample size in each 
group, and Sg the within group covariance matrix. S is the covariance matrix pooled across 
all groups (i.e., 1( 1) /( )G

g gg
N N g

=
= − −∑S S ). In the present example, M = 17.183. For 

small samples an F approximation is used to compute its significance, indicating that the 
covariance matrices are not significantly different across groups (F = 1.491, df1 = 10, df2 = 
5163.441, p > .05; see Box (1949) for details). This stands in contrast to the assumption of 
sphericity, which was clearly violated. Notice that sphericity was not tested by either of the 
two tests, although a combined test of sphericity and variance homogeneity would be possi-
ble using the LGCM approach. With respect to variance homogeneity, the LGCM based test 
and Box’s test yield very similar results in our example. However, since the LGCM ap-
proach requires large samples, Box’s M statistic may be better suited for small sample sizes. 
Having said that, Box’s test appears to be overly sensitive to non-normality (Tabachnick &  
 
                                                                                                                         
10 Constraining all elements to equality across groups results in the same parameter estimates as shown in 

Figure 3. However, because the factor loadings of η0 are now constrained to 0.5 (instead of 1.0 as in Figure 
3), all estimates associated with η0 in Figure 3 must be multiplied by two in order to obtain the same esti-
mates. 
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Figure 10:  

Multiple group analysis using gender as grouping variable. All freely estimated parameters shown 
in the path diagram are allowed to differ between groups (saturated model). Parameter estimates 

on the left side of the graph are obtained when constraining the means of the four factors to 
equality across groups (not within groups). The assumption of variance homogeneity is tested by 

comparing the two models 
 
 

Fidell, 2001; Stevens, 2002), a problem that might be less severe for the LGCM based test 
with large sample sizes. Future research might address this apparent trade-off by means of a 
Monte Carlo Simulation. 

The LGCM approach offers not only a direct test of the assumptions of sphericity and/or 
homogeneity of variance, but can account for these violations. The multiple group analysis 
allows researchers to formulate and implement very specific hypothesis regarding possible 
group differences in Φ. Given the usual assumptions of structural equation models are met 
(primarily multivariate normality and/or a sufficiently large sample size), the resulting pa-
rameter estimates and significance tests (i.e., likelihood-ratio tests) are correct. Note that this 
is not true for the F-ratio as described above, which always depends on the assumption of 
variance homogeneity across groups. Another important advantage of LGCM is the option to 
use continuous predictors instead of categorical predictors. This is not possible in standard 
ANOVA or MANOVA and opens up a wide field of new applications. In our example this 
would simply mean replacing sex by g in Figure 8 and Figure 9. Finally, it is straightforward 
to combine the use of continuous and/or categorical exogenous predictors and multiple group 
analysis (i.e., categorical predictor). This is a great improvement over traditional techniques, 
because it allows a detailed analysis of interindividual differences in individual change over 
time making use of all available information (e.g., no need for categorization of continuous 
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predictors). At the same time, the assumptions of variance homogeneity and sphericity are no 
longer indispensable, but may be relaxed if necessary. However, future research is necessary 
to explore the differences of the approaches with respect to accuracy, power and robustness 
under various conditions. The great flexibility of LGCM is certainly an advantage, but also 
calls for a thorough matching of theory and statistical modeling. For example if change over 
time can be described by a linear function as demonstrated in the previous section of the 
present paper (Figure 5), it is easy to explain interindividual differences in initial perform-
ance as well as interindividual differences in intraindividual change over time by the intro-
duction of level two predictors. This is illustrated in Figure 11, where gender is used to pre-
dict η0 and η1. In this example, men and women differ significantly in initial performance 
(γ0sex = 0.467, p < .05) as well as linear change over time (γ1sex = 0.399, p < .05). The use of 
additional categorical and/or continuous predictors (such as g) is straightforward. Numerous 
examples of conditional latent growth curve models can be found in the literature (e.g., Bol-
len & Curran, 2006; Duncan, Duncan, & Strycker, 2006). Of course the use of level two 
predictors is contingent on an adequate description of the change process, so that eventually 
it is up to the researcher to define the most appropriate model for his or her purposes. 

 

 

Figure 11:  
Conditional linear latent growth 
curve model using gender as level 
two predictor 

 
 

Extensions 
 
Throughout the last years, the basic latent growth curve model has been extended in nu-

merous ways. An overview of these extensions is beyond the scope of this article, but is 
provided for example by Bollen and Curran (2006), Duncan, Duncan and Strycker (2006), or 
in the excellent book edited by Moskowitz and Hershberger (2002). With respect to the 
prediction of change, however, there are at least three extensions worth mentioning. First, 
the effect of any time-invariant predictor on x must not necessarily be mediated by the 
growth factors but may be direct and time-varying (Stoel, van den Wittenboer, & Hox, 
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2004). This is easily accomplished by regressing x directly on the predictor(s) with all re-
gression weights allowed to be freely estimated. Second, the predictors themselves can 
change over time, what is not possible in traditional repeated measures ANOVA or 
MANOVA designs (e.g., Bollen & Curran, 2006, pp. 192). The impact of time-varying 
predictors may again change over time or be time-invariant (i.e., the regression weights are 
constrained to equality). Third, it is possible to estimate parallel growth processes with aver-
age performance and/or rate of change of one process affecting average performance and/or 
rate of change on another variable. An introduction is given for example by Bollen and 
Curran (2006, pp. 198) or Curran and Willoughby (2003). Finally, the LGCM approach has 
been combined with other techniques to analyze change over time such as the autoregressive 
model (Bollen & Curran, 2004). All of these extensions are not possible with traditional 
techniques such as the paired samples t-test, ANOVA or MANOVA, making a comparison 
impossible. For more detailed information on these extensions, the interested reader is re-
ferred to the above-mentioned literature. 

To summarize, it has been shown that LGCM is a very general approach to the prediction 
of change. The conventional t-test, repeated measures ANOVA and MANOVA – with and 
without between-subject and within-subject factor – are all special cases of the more general 
latent growth curve approach. For the most simple case of only two time points, the use of 
difference scores constitutes an easy way to analyze interindividual differences in change. In 
such a case, and for only two groups, the independent samples t-test, repeated measures 
ANOVA with one between-subject factor, MANOVA and LGCM as shown in Figure 6A 
yield identical results. In addition, the LGCM approach offers a convenient way to analyze 
and predict residualized (true) gain scores. Finally, LGCM can account for imperfect reli-
ability of the criterion and/or predictor. Especially for more complex models with multiple 
measurements taken at each time point and complex (latent) predictors, this is a great im-
provement over traditional techniques. For multi-wave data it has been shown that the re-
peated measures design with one between- and one within-subject factor (also known as 
split-plot or mixed design, see Maxwell & Delaney, 2000, pp. 517) can be easily incorpo-
rated into the more general LGCM approach. Other than the traditional methods, however, 
LGCM is not limited to the use of categorical predictors. As a matter of fact, quite complex 
interaction hypotheses including categorical and/or continuous predictors can be tested. The 
assumption of variance homogeneity across groups, which is crucial for repeated measures 
ANOVA and MANOVA, can be tested within the LGCM framework, but other than 
ANOVA or MANOVA, LGCM can also account for violations of this assumption by offer-
ing an alternative to the conventional F-test. The most striking difference between LGCM 
and ANOVA/MANOVA is the greater flexibility of the former as compared to the latter. 
While this is certainly an advantage, it demands great diligence from the researcher when 
setting up the model and interpreting results.  

 
 

Discussion 
 
By demonstrating that the analysis of variance and multiple regression are essentially 

identical data analytic systems, Cohen (1968) prepared the ground for a new way of statisti-
cal thinking among social scientists. Instead of treating ANOVA and multiple regression as 
different techniques, he pointed to the generality of MR, which comprises the analysis of 
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variance as a special case. This prepared the ground for more refined analyses regarding 
group differences and interindividual differences, helping ultimately to bridge the gap be-
tween experimental and differential psychology. In the present paper I have argued that it is 
time for a similar reconceptualization in the analysis of change. During the last decade there 
has been an almost exponential increase in methodological and applied articles using “new 
methods for the analysis of change” (Collins & Sayer, 2001). The new procedures focus on 
intraindividual variability instead of mean changes, which have been of central interest in 
traditional methods such as the paired samples t-test, repeated measures ANOVA or 
MANOVA. The notion that the latter are just a special case of the former has always been 
present (Meredith & Tisak, 1990), but most of the current literature treats techniques rooted 
in the analysis of variance (i.e., t-test ANOVA, MANOVA) and factor analytic techniques 
(i.e., latent growth curve modeling) as largely unrelated. I think that this is unfortunate, 
because much can be learned about either approach by examining their commonalities as 
well as their differences. Of course there exist some noteworthy exceptions, for example 
chapter three in Duncan, Duncan and Strycker (2006) to name just one, but I am not aware 
of any comprehensive treatment of this topic. The present paper attempts to fill this gap in a 
didactic manner by demonstrating the equivalence of traditional techniques (t-test, base-free 
measures of change, repeated measures ANOVA, polynomial contrasts, MANOVA) and the 
more general latent growth curve models, if certain assumptions are met and certain con-
straints are imposed. All arguments have been illustrated by a hypothetical data set on skill-
acquisition. 

There are a number of problems associated with such a didactic approach. First and 
foremost, it falls short to set out the mathematical relationship between the models intro-
duced, even in cases where it would be possible to do so. In addition, the relationship be-
tween models can only be demonstrated on a conceptual (model-) level, since the actual 
estimates are affected by the estimation procedure, rounding errors and even differences in 
the software packages employed – although the last two issues are largely negligible. Espe-
cially the estimation procedure, however, depends greatly on sample size. Thus finite-sample 
differences in parameter estimates can be quite substantial. This is especially true if the 
sample is as small as the one used in the present paper. On the other hand, the use of a small 
set of raw data, enables the reader to reproduce all analyses and results using different soft-
ware packages or even hand calculation where possible. In addition, it is much easier to 
follow a simple, albeit artificial, example as compared to the typically much more complex 
real-world studies. Because of the didactic nature of this paper I opted for the small sample 
example.  

Considering the fact that the sample size in the present example is clearly too small for 
the more complex (e.g., multiple group) LGCM analyses, it is surprising that most parameter 
estimates turned out to be quite similar to the ones obtained by traditional methods in our 
example. Nevertheless, it must be emphasized – once again – that LGCM is a large sample 
method and cannot be recommended if the sample size is small and the assumptions of tradi-
tional methods are met. Having said that, it is difficult to tell when the sample size will be 
“too small” for LGCM. As long as the analysis is restricted to simple (saturated) models 
focusing on mean changes, LGCM and traditional techniques yield identical results even for 
very small samples. For more complex models, however, differences can be quite substan-
tial. On the other hand, obvious violations of central assumptions underlying traditional 
techniques (such as sphericity and homogeneity of variance) may justify the use of LGCM 
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despite an “insufficient” sample size. Clearly, there is a need for future research to shed light 
on the complex interaction between these factors (sample size, underlying assumptions, 
model complexity) in order to determine the optimal procedure for the analysis of change for 
a given set of data.  

Similar arguments can be made for most fit indices employed in LGCM, which are also 
greatly affected by sample size. This topic has been deliberately ignored because it is no 
different from standard structural equation modeling and a more detailed discussion would 
go far beyond the scope of this article.  

If sample size is sufficiently large, LGCM can be conceived as a general data analytic 
approach to the analysis of change. As discussed throughout the paper, it comprises many 
traditional methods as special cases. It offers direct tests of important assumptions and al-
lows researchers to account for potential violations of these assumptions. In addition, it can 
easily handle categorical as well as continuous variables. Its biggest advantage over conven-
tional techniques such as the t- test, ANOVA or MANOVA, however, is its flexibility with 
respect to the specification of the within-subject variance-covariance matrix Φ. Almost any 
hypothesis regarding interindividual differences in intraindividual change can be tested by 
imposing specific constraints on Φ. This argument also generalizes to the prediction of 
change as discussed in the last section of the article. It is this shift in focus – and no substan-
tial differences – that make “new methods for the analysis of change” different from “tradi-
tional” techniques. At the same time, however, it shows how the approaches relate to each 
other and how they can be integrated.  

It is hoped that the present article appeals to the applied and methodologically interested 
reader alike. Several avenues for future methodological research have been pointed out, 
mainly relating to power, precision and robustness of the different approaches. At the same 
time applied researcher are encouraged to pay more attention to the specification of the 
within-subject covariance matrix. Oftentimes, it is possible to formulate quite specific re-
search questions and LGCM offers the flexibility to address these questions. 
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