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Abstract

This paper provides an overview of recent proposals for using latent class models for the multiple

imputation of missing categorical data in large-scale studies. While latent class (or finite mixture)

modeling is mainly known as a clustering tool, it can also be used for density estimation, i.e., to get

a good description of the lower- and higher-order associations among the variables in a dataset. For

multiple imputation, the latter aspect is essential in order to be able to draw meaningful imputing

values from the conditional distribution of the missing data given the observed data.

We explain the general logic underlying the use of latent class analysis for multiple imputation.

Moreover, we present several variants developed within either a frequentist or a Bayesian frame-

work, each of which overcomes certain limitations of the standard implementation. The different

approaches are illustrated and compared using a real-data psychological assessment application.
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Introduction

Social and behavioral science researchers often collect data using tests or questionnaires

consisting of items which are supposed to measure one or more underlying constructs.

In a psychology assessment study for example, this could be constructs such as anxiety,

extraversion, or neuroticism. A very common problem is that a part of the respondents

fail to answer all questionnaire items (Huisman, 1998), resulting in incomplete datasets.

However, most of the standard statistical techniques can not deal with the presence of

missing data. For example, computation of Cronbach’s alpha requires that all variables

in the scale of interest are observed.

Various methods for dealing with item nonresponse have been proposed (Little & Rubin,

2002; Schafer & Graham, 2002). Listwise and pairwise deletion, which simply exclude

units with unobserved answers from the analysis, are the most frequently used in

psychological research (Schlomer, Bauman, & Card, 2010). These are, however, also

the worst methods available (Wilkinson & Task Force on Statistical Inference, 1999):

they result in loss of power and, unless the strong assumption that data are missing

completely at random (MCAR)1 is met, they may lead to severely biased results. Due to

their simplicity and their widespread inclusion as standard options in statistical software

packages, these methods are still the most common missing data handling techniques

(Van Ginkel, 2007).

Methodological research on missing data handling has lead to two alternative approaches

that overcome the problems associated with listwise or pairwise deletion: maximum like-
lihood for incomplete data (MLID) and multiple imputation (MI). Under the assumption

that the missing data are missing at random (MAR), the estimates of the statistical model

of interest (from here on also referred to as the substantive model) resulting from MLID

or MI have the desirable properties to be unbiased, consistent, and asymptotically normal

(Roth, 1994; Schafer & Graham, 2002; Allison, 2009; Baraldi & Enders, 2010). MLID

involves estimation the parameters of the substantive model interest by maximizing the

incomplete-data likelihood function. That is, the likelihood function consisting of a part

for the units with missing data and a part for the units with fully observed data. While

in MLID the missing data and the substantive model are the same, in MI (Rubin, 1987)

the missing data handling model (or imputation model) and the substantive model(s) of

interest can and will typically be different. Note that unlike single value imputation, MI

replaces each missing value with m > 1 imputed values in order to be able to account

1According to Rubin’s (1976) classification, a missing data mechanism is said to be: (a) MCAR, when the

probability of nonresponse in a variable is independent of the variable itself as well as of the other variables;

(b) missing at random (MAR), when the probability of nonresponse in a variable depends only on the

variables observed for the person concerned; (c) missing not at random (MNAR), when the probability of

missingness is related to variables which are unobserved for the person concerned.
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for the uncertainty about the missing information. In practice, applying MI yields m
complete datasets, each of which can be analyzed separately using the standard statistical

method of interest, and where the m results should be combined in a specific manner.

For more details on MI, we refer to Rubin (1987), Schafer (1997), and Little and Rubin

(2002).

For continuous variables with missing values, Schafer (1997) proposed using the multi-

variate normal MI model, which has been shown to be quite robust to departures from

normality (Graham & Schafer, 1999). Items of psychological assessment questionnaires,

however, are categorical rather than continuous variables. For such categorical data,

Schafer (1997) proposed MI with log-linear models, which can capture the relevant

associations in the joint distribution of a set of categorical variables and can be used

to generate imputation values. However, log-linear models for MI can only be applied

when the number of variables is relatively small, as the number of cells in the multi-way

cross-table that has to be processed increases exponentially with the number of variables

(Vermunt, Van Ginkel, Van der Ark, & Sijtsma, 2008).

An alternative MI tool is offered by the sequential regression modeling approach, which

includes multiple imputation by chained equation (MICE) (Van Buuren & Oudshoorn,

1999). This is an iterative method that involves estimating a series of univariate regression

models (e.g., a series of logistic or polytomous regressions in the case of categorical

variables), where missing values are imputed (variable by variable) based on the current

regression estimates for dependent variable concerned. The idea of MICE is that

the sequential draws from the univariate conditional models are equivalent to or at

least a good approximation of draws from the joint distribution of the variables in the

imputation model. Despite of being an intuitive and practical method, also MICE has

certain limitations. First, there is no statistical support that missing data draws converge

to the posterior distribution of the missing data. Second, by default, MICE only includes

the main effects in the regression equations, which risks to not pick up higher-order

interactions among the variables. Furthermore, whereas the method allows including

higher-order interactions, this can be a fairly difficult and time-consuming task when the

number of variables in the imputation model is large (Vermunt et al., 2008).

Vermunt et al. (2008) proposed an imputation model for categorical data based on a

maximum likelihood finite mixture or latent class (LC) model. LC models for MI seem

to overcome various of the difficulties associated with log-linear models and MICE.

LC models can efficiently be estimated also when the number of the variables is large

(Si & Reiter, 2013). Also, with models containing a large enough number of latent

classes, one can pick up both simple associations and complex higher-order interactions

among the variables in the imputation (McLachlan & Peel, 2000). This makes the model
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appropriate for datasets coming from large-scale assessment studies, where the number

of variables can be large and where association structures can be complex.

Recently, Van der Palm, Van der Ark, and Vermunt (2013b) proposed a variant of the LC

model called the divisive latent class model, which can be used for density estimation

and MI. Compared to the standard LC model, this approach reduces computing time

enormously. Instead of using frequentist maximum likelihood methods, LC analysis

can also be implemented using a Bayesian approach as shown among others by Diebolt

and Robert (1994). An interesting recent development concerns the use of Bayesian

nonparametric methods for MI. More specifically, inspired by Dunson & Xing’s (2009)

mixture of independent normal distribution with Dirichlet process prior, Si and Reiter

(2013) proposed using a nonparametric finite mixture model for MI in a Bayesian

framework.

The aim of this paper is to offer a state-of-the-art overview of MI using LC analysis in

which we show similarities and differences and discuss pros and cons of the recently

proposed frequentist and Bayesian approaches. The remainder of the article is structured

as follows. In Section 2, the basic LC model is introduced and its use for MI is motivated.

Section 3 describes the four different LC MI methods in more detail. Section 4 illustrates

the use the four types LC MI methods in a real-data example, and also compares the

obtained results with those obtained with listwise deletion and MICE. Section 5 discusses

our main findings, gives recommendations for those who have to deal with missing data,

and lists topics for further research.

Latent Class models and Multiple Imputation

Latent Class Analysis for Density Estimation

The latent class model (Lazarsfeld, 1950; Goodman, 1974) is a mixture model which

describes the distribution of categorical data. Mixture models are flexible tools that

allow modelling the association structure of a set of variables (their joint density) using

a finite mixture of simpler densities (McLachlan & Peel, 2000). In LC analysis, each

latent class (or mixture component) has its own specific multinomial density, defining

the probability of having a specific response pattern. The estimated overall density is

obtained as a weighted average of the class-specific densities. An important assumption

of LC analysis is local independence (Lazarsfeld, 1950), according to which the scores

of different items are independent of each other within latent classes.

Before discussing the implications of using a LC model as a tool for density estimation,

let us first briefly introduce its mathematical form with the aid of a small example. Let
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yi j be the score of the i-th person on the j-th categorical item belonging to a n× J
data-matrix Y (i = 1, ...,n, j = 1, ...,J), yyyiii the J-dimensional vector with all scores of

person i, and xi a discrete (unobserved) latent variable with K categories. In the LC

model, the joint density P(yyyiii;πππ) has the following form:

P(yyyiii;πππ) =
K

∑
k=1

P(xi = k;πππx)P(yyyiii|xi = k;πππy)

=
K

∑
k=1

P(xi = k;πππx)
J

∏
j=1

P(yi j|xi = k;πππy j). (1)

The LC model parameters πππ can be partitioned into two sets: the latent class proportions

(πππx) and class-specific item response probabilities (πππy), where the latter contains a sepa-

rate set of parameters for each item (πππy j ). The fact that we are dealing with a mixture

distribution can be seen from the fact that the overall density is obtained as a weighted

sum of the K class-specific multinomial densities P(yyyiii|xi = k;πππy), where the latent pro-

portions serve as weights. Moreover, in (1) the local independence assumption becomes

visible in the product over the J independent multinomial distributions (conditional on

the k-th latent class).

By setting the number of latent classes large enough, LC models can capture the first,

second, and higher-order moments of the J response variables (McLachlan & Peel,

2000), that is, univariate margins, bivariate associations, and higher-order interactions

when dealing with categorical variables (Vermunt et al., 2008). Moreover, because of the

local independence assumption, it is possible to obtain estimates of the model parameters

also when J is very large.

A quantity of interest when using LC models is the units’ posterior class membership
probabilities, i.e., the probability that a unit belongs to the k-th class given the observed

data pattern yyyiii. It can be defined through the Bayes’ theorem as follows:

P(xi = k|yyyiii;πππ) =
P(xi = k;πππx)P(yyyiii|xi = k;πππy)

P(yyyiii;πππ)
.

As an example, suppose we have a data-matrix Y for J = 5 binary variables, where

the first 3 observations have the observed patterns presented in Figure 1a. Suppose

furthermore that we specified a 2-class model (K = 2) and obtained the parameter

estimates reported in Figure 1b. Looking at Figures 1a and 1b, it seems that the first

observation is more likely to belong to class 1 and the second more likely to belong to

class 2. Indeed, for the first observation the class 1 posterior probability P(x1 = 1|yyy111;πππ)
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(a)

(b)

Figure 1: (a) Example of observed data-matrix Y for J = 5 dichotomous items and observed patterns yi for
i = {1,2,3}.

(b) Example of 2-class LC model parameters: latent probabilities πx (on the top) and conditional
probabilities πy j (in the body of the table).

equals 0.997, whereas for the second observation the class 2 posterior probability

P(x2 = 2|yyy222;πππ) equals 0.999. The third unit has posteriors P(x3 = 1|yyy333;πππ) = 0.86 and

P(x3 = 2|yyy333;πππ) = 0.14.

Multiple Imputation using LC Models

In a standard LC analysis, the aim is to find a meaningful clustering with a not too large

number of well interpretable clusters. In contrast, when used for imputation purposes,

the LC model is “just” a device for the estimation of P(yyyiii;πππ). In other words, in MI,

LC models do not need to identify meaningful clusters, but instead should yield an

as good as possible description for the joint density of the variables in the imputation

model. This means that issues which are problematic in a standard LC analysis, such

as nonidentifiability, parameter redundancy, overfitting, and boundary parameters, are

less of an issue in a MI context. The main thing that counts is whether P(yyyiii;πππ) is

approximated well enough in order to be able to generate as good as possible imputations

based on P(yyyi,mis|yyyi,obs).

Specifically, Vermunt et al. (2008) motivate that when a LC model is used as a tool for

estimating densities rather than clustering, some differences arise: (a) there is no need to

interpret either the parameter estimates or the latent clusters of the latent class imputation
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model, (b) capturing some sample specific variability (namely overfitting the data) is

not problematic in this context, because the aim is to reproduce a sample even with its

specific fluctuation, while ignoring certain structures of the data (underfitting) can cause

important associations between the variables to be ignored, (c) unidentifiability is not an

issue either, inasmuch the quantity of interest P(yyyiii;πππ) is uniquely defined even when the

values of πππ are not, and (d) obtaining a local maximum of the log-likelihood function,

instead of a global maximum, is also not a problem since the former may provide a

representation of P(yyyiii;πππ) that is approximately as good as the one provided by latter.

Once the LC model has been estimated using an incomplete dataset, it is possible to

perform MI by randomly drawing m imputations for each nonresponse from the posterior

distribution of the missing values given the observed data and the model parameters.

To make this clearer, let us return to the small example introduced in the previous

section. Suppose now we also have missing values as shown in Figure 2, and that under

this new scenario the resulting LC 2-class model is again the one with the parameter

values presented in Figure 1b. With yyyi,obs we denote the observed part of the response

pattern for person i, while the unknown part, marked with “?", is denoted by yyyi,mis. LC

model parameter (πππ) estimation and inference can be achieved with only the observed

information, yyyi,obs. As shown among others by Vermunt et al. (2008), the probability

P(yyyi,mis|xi = k;πππy) cancels from the (incomplete data) log-likelihood function that is

maximized, which implies that each subject contributes only to the parameters for the

variables which are observed2.

Once the model has been estimated, the aim of MI is to generate an imputation for

each “?" in the dataset by sampling from P(yyyi,mis|yyyi,obs;πππ). This requires two draws:

the first assigns a class to each unit using the posterior membership probabilities given

yyyi,obs. Unit 1, for instance, has now a probability equal to P(x1 = 1|yyy1,obs;πππ) = 0.98

to belong to class 1 and P(x1 = 2|yyy1,obs;πππ) = 0.02 to belong to class 2. Once the

class membership has been established, “?" in item j is replaced by drawing from the

conditional multinomial distribution of j-th item in that class. If, in the previous step,

the first unit was allocated to the first class, then the missing value of Item 4 will be

replaced by the value 1 with probability 0.9 and by the value 2 with probability 0.1. The

uncertainty about the imputations is accounted for by repeating this procedure m > 1

times for each unit with at least one missing value.

LC models can also be implemented within a Bayesian framework, which involves

specifying prior distributions for the class proportions and the class-specific response

probabilities. Two kinds of priors can be applied: a Dirichlet distribution or a Dirichlet

2In Vermunt et al. (2008) and Van der Palm, Van der Ark, and Vermunt (2014) the procedure is given for

maximum likelihood methods. For the Bayesian framework, Appendix B.1 shows how the model can be

estimated conditional on yyyi,obs only.
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Figure 2: Example of data-matrix Y for J = 5 dichotomous items and i = {1,2,3}, with both observed and
missing data (the latter marked by "?").

Process prior. The Dirichlet distribution, used as prior for the multinomial conditional

distributions or for the multinomial latent distribution of standard Bayesian LC models,

is suited for modelling multivariate quantities that lie in the interval (0,1) and that sum

to 13. In the Dirichlet process approach, on the other hand, the number of latent classes

becomes uncertain, and a baseline distribution is used as prior expectation density. A

concentration parameter (α) rules the concentration of the prior for xi around the baseline

density: when α is large, the prior of xi is highly concentrated around the expected

baseline (the latent classes will tend to have equal sizes), while for small α there is a

larger departure from the baseline (few classes will have most of the probability mass)

(Congdon, 2006).

In a frequentist setting, maximum likelihood (ML) estimation is typically performed

using an EM algorithm (Dempster, Laird, & Rubin, 1977), whereas in a Bayesian

framework, MCMC algorithms such as the Gibbs sampler are used (Geman & Geman,

1984; Gelfand & Smith, 1990). In mixture models, the Gibbs sampler iterations contain

a Data Augmentation step in which units are allocated to latent classes. The Data

Augmentation (DA) algorithm (Tanner & Wong, 1987) can be seen as a Bayesian version

of the EM algorithm, which can be used for the estimation of Bayesian LC models.

DA is particularly suitable also for MI computation as it also involves imputing the

missing data given the current state of the model parameter as one of the steps. Tanner

and Wong (1987) showed that under certain conditions, the algorithm converges to the

true posterior distribution of the unknown quantities of interest. The m imputations are

obtained by drawing m imputed scores from the posterior distribution of the missing

values. A description of both the Gibbs sampler and the DA algorithm is provided in

Appendix A.2.

3For the mathematical formulation of the Dirichlet distribution, see the Appendix A.1.
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Four Different Implementions of Latent Class Multiple Imputation

In this section we present four different implementations of LC models for MI: the

Maximum Likelihood LC model (MLLC), the standard Bayesian LC model (BLC), the

Divisive LC model (DLC), and the Dirichlet Process Mixture of Multinomial distribu-

tions (DPMM). These four models share the characteristics of the LC model mentioned

in the previous section, which make that each of them can serve an excellent tool for the

MI of large datasets containing categorical variables.

These four types of LC models, however, also differ in a number of respects. First, they

differ in the way in which they deal with the uncertainty about the model parameters.

Note that taking into account this uncertainty during the imputation is a requirement for

valid inference with a multiple imputed data set. The two frequentist models (MLLC

and DLC) resort either on a nonparametric bootstrap or on different draws of class

membership and missing scores, whereas the two Bayesian methods (BLC and DPMM)

automatically embed parameter uncertainty by sampling the parameters from their

posterior distribution.

Second, the four methods differ in the way they select the number of classes K. While

the standard implementation of the LC model (MLLC and BLC) requires estimating

and testing a series of models with different numbers of classes using some fit measure

(e.g., the AIC), in DLC and DPMM the number of classes is determined in an automatic

manner. In DPMM the number of latent classes is treated as a model parameter, while

for the other three types of models K is fixed though unknown.

Lastly, the four methods differ in terms of computational efficiency. Note that the main

factors affecting computation time are the sample size n, the number of classes K, and the

number of variables J. While MLLC and BLC require estimating models with different

numbers of classes to determine the required number of classes, DLC and DPMM have

the advantage that a good fitting model is obtained in a single estimation run. For this

reason, MLLC and BLC turn out to be the computationally most demanding methods,

while DLC and DPMM are less demanding. In the remainder of this section, we provide

a more detailed description of the four approaches.
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Fixed K, Frequentist: the Maximum Likelihood LC Model

The MLLC approach uses a nonparametric bootstrap4 in order to take into account the

uncertainty about the imputation model parameter estimates, which is a requirement

for valid post-imputation inference. Specifically, imputation using MLLC proceeds as

follows: first, m nonparametric bootstrap samples Y ∗
l (l = 1, ...,m) of size n are obtained

from the original dataset Y ; second, the LC model is estimated for each Y ∗
l , providing

m different sets of parameters πππ l ; third, the original dataset is duplicated m times and

for the l-th dataset the set of parameters πππ l is used to impute the missing values from

P(yyyi,mis|yyyi,obs;πππ l).

To describe the joint distribution of the data as accurately as possible, K is selected based

on penalized likelihood statistics, such as the AIC (Akaike Information Criterion) or

the BIC (Bayesian Information Criterion) index. In MI, the AIC criterion is preferable

over BIC since it yields a larger number of classes; nevertheless, an even higher K than

the one indicated by the AIC index may be used, since, as already noticed, the risk of

overfitting in the MI context is less problematic than the risk of underfitting.

Though Vermunt et al. (2008) showed that the performance of MLLC is similar to both

ML for incomplete data and MI using a log-linear model, in terms of parameter bias,

some issues with respect to the model-fit strategy remain; in order to select the optimal

K value according to the AIC index, in fact, one needs to estimate a 1-class model, a

2-class and so on, until the best fitting model has been found5. It will be clear that this

approach may be time-consuming, especially when used with large data sets.

MI through MLLC is available in software such as LatentGOLD (Vermunt & Magidson,

2013), which includes a special option for MI. In R, LC analysis can be performed with

the package poLCA (Linzer & Lewis, 2014). This package could be used to implement

the MI procedure described above.

4The nonparametric bootstrap (Efron, 1979) is a technique that allows reproducing the distribution of some

specific parameter by resampling observations from the original sample multiple times with replacement;

in such a way, the original sample is treated as the population of interest. Through this procedure, which is

useful when the theoretical distribution of the parameters of interest is difficult to derive, uncertainty about

the model parameters can be inferred.
5Rather than starting with a one class model and subsequently increasing the number of classes, alternative

more efficient strategies may be used, such as starting with a large number of classes and both increasing

and decreasing this number to see whether a larger number is needed or a smaller number suffices.
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Fixed K, Bayesian: the Bayesian LC Model

While in the frequentist framework a nonparametric bootstrap is needed to account for

parameter uncertainty, when using a Bayesian MCMC approach parameter uncertainty

is automatically accounted for. More specifically, Rubin (1987) recommended using

Bayesian methods in order to obtain proper imputations, which fully reflect the uncer-

tainty about the model parameters and which are draws from the posterior predictive
distribution of the missing data. Vermunt et al. (2008) mentioned the possibility to

implement their approach using a Bayesian framework. Si and Reiter (2013) present the

Bayesian LC (BLC) model as a natural step to go from the MLLC to the DPMM MI

approach. Therefore, though the BLC model has not been proposed explicitly for MI,

we present it here as one of the possible implementations of LC-based MI. As in the

frequentist case, standard parametric BLC analysis requires that we first determine the

value of K, for example, using the AIC index evaluated by ML estimation. Therefore,

also with this approach, determining the number of classes may be rather time consuming

in larger data sets.

For the distribution of πππx the prior will typically be a K-variate Dirichlet distribution (if

K=2 this is equal to a Beta distribution), whereas for the conditional probabilities πππy j , a

Dirichlet prior for each j = 1, ...,J and k = 1, ...,K, with number of components equal

to the number of categories of the j-th variable, is assumed. Setting weakly informative

prior distributions helps the posterior distribution of πππ to be data dominated. For the

Dirichlet distribution, an uniform prior is achievable by initializing all its parameters to

16. Within the latent classes, the conditional probabilities are initialized to be equal to the

observed marginal frequencies of the scores of each variable. Also, for MI, nonresponses

are initialized with a random draw from the observed frequency distribution of the

variables with missing values. Once the first set of πππx has been drawn from the Dirichlet

prior, the Gibbs sampler proceeds as follows. First, each unit is assigned to a latent

category by drawing from the posterior membership probabilities P(xi = k|yyyiii;πππ); second,

the parameters of the Dirichlet distribution for πππx are updated: this is done by adding the

number of units dropped in the k-th latent class to the starting value of the k-th parameter

(that is 1 in the case of a weakly informative prior). From this updating, a new value

of πππx is extracted. Third, the parameters of the Dirichlet distributions of πππy j are in turn

updated in an analogue way: the number of units which take on one of the possible

observed values of the j-th variable and dropped into the k-th latent class is added to

the initial parameter value of the category concerned of the j-th Dirichlet prior of the

6This is equivalent to a prior sample size equal to the number of components of the Dirichlet distribution.

Setting the Dirichlet prior with all its parameters equal to 1 is a common choice (Congdon, 2006) which

yields an uniform, but not necessarily uninformative, distribution. Jeffrey’s uninformative prior can be

obtained by initializing all the parameters of the Dirichlet distribution equal to 1/2.
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k-th latent component (again, this is 1 in the case of a weak prior); after the updating, a

new value of πππy j is drawn. The fourth, and last, step is the imputation step: given the

value xi = k of each unit (resulting from the first step), and the new set of probabilities

πππy j , a new score for yij,mis is drawn from P(yij|xi = k;πππy j ). Steps 1-4 are repeated until

convergence is reached. Appendix B.1 gives a formal description of these steps.

A BLC model can be estimated in R through the package “BayesLCA" (White & Murphy,

2014).

Unknown K, Frequentist: the Divisive LC Model

The main problem of the standard LC approach is that it uses a substantial amount

of computation time to estimate multiple models with increasing number of classes to

determine the value of K. Divisive latent class (DLC) models (Van der Palm et al., 2013b)

overcome this problem by breaking down the global estimation problem into a series of

smaller local problems. The DLC model incorporates an algorithm that increases the

number of latent classes within a single run until the possible improvements in model

fit have been achieved. This implies that the best fitting model is found in a single

estimation run. The DLC model has been developed by Van der Palm et al. (2013b,

2014) for density estimation and MI purposes, while a substantive interpretation of the

resulting LC parameters is still unexplored.

The DLC algorithm involves evaluating a series of 1-class and 2-class models. At the

start, a single LC assumed to contain the whole sample is split into two latent classes

if the 2-class model improves the model fit sufficiently (for instance, in terms of log-

likelihood). If this is the case, every unit will have a probability of belonging to each of

the two latent classes, which corresponds to the posterior class membership probabilities.

Using these posterior probabilities, two fuzzy subsamples are created. In the following

step, these two new latent classes are checked separately to establish whether a further

split into 2 classes, within each subsample improves the model fit. In the next steps,

this operation is repeated for each newly formed latent class, until the best model fit is

achieved for every fuzzy subsample. Since a DLC model is estimated sequentially, each

submodel created at step s builds on the results of steps 1, ...,s− 1; in such a way an

automatic estimate of the optimum K is obtained with much smaller computation time

compared to the MLLC approach. Van der Palm et al. (2013b) discussed various decision

rules to determine whether the improvement in model fit is large enough to accept a

split of a latent class. Their advice is to use a stop-criterion based on the increase in

the log-likelihood values between the 1-class and 2-class model for a particular fuzzy

subsample. For further technical details, we refer to Van der Palm et al. (2013b).
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Van der Palm et al. (2014) observed that the DLC model in combination with the non-

parametric bootstrap may yield biased parameter estimates in a subsequent substantive

analysis. Therefore, they proposed implementing the actual MI procedure in slightly

different from MLLC, while still taking into account the uncertainty about the imputation

model parameters. First, the DLC model and its parameters πππ is estimated using the

original dataset; second, the posterior membership probabilities P(xi = k|yyyi,obs;πππ) are

computed; third, the original dataset is duplicated m times; fourth, the P(xi = k|yyyi,obs;πππ l)
are used to assign m times a latent class to each respondent; last, for each missing

value of unit i in item j, m missing scores are sampled using the conditional response

probabilities P(yi j|xi = k;πππ).

The Latent GOLD software allows performing DLC-based MI, while to our knowledge

currently there is no R package that implements the DLC approach.

Variable K, Bayesian: Dirichlet Process Mixture of Products of Multinomial
Distributions

Even if the AIC index provides a sufficiently large number of mixture components,

once the value of K is determined uncertainty about K is ignored when generating

the imputations. This counters Rubin’s (1987) suggestion to account for all possible

uncertainties about the imputation model parameters in order to avoid underestimation

of the variances of the substantive model parameters (Si & Reiter, 2013). The Dirichlet

process mixture of products of multinomial distributions (DPMM) overcomes the need of

an ad hoc selection of a fixed K and, moreover, automatically deals with the uncertainty

about this parameter. This happens by assuming that in theory there is an infinite number

of classes (K =+∞), but letting the data fill only a smaller number of components that

is actually needed. A simulation study by Si and Reiter (2013) showed that DPMM MI

may outperform MICE in terms of bias and confidence interval coverage rates of the

parameters of a substantive model.

DPMM offers a full Bayesian modeling approach for high-dimensional categorical data.

Similarly to BLC, DPMM can be estimated through the Gibbs sampler. One of the

possible conceptualization of the Dirichlet process which serves as a prior for the mixture

proportions πππx is the stick-breaking process (Sethuraman, 1994; Ishwaran & James,

2001). In this formulation, an element of πππx, say πk (k = 1, ...,+∞), is assumed to

take on the form πk =Vk ∏h<k(1−Vh) for each k, where every Vk is drawn from a Beta

distribution with parameters (1,α). Here, α , the concentration parameter of the process,

is allowed to vary according to a Gamma distribution with parameters (a,b). The

conditional responses (and their prior) keep the same distributional form as in the BLC

model, that is, multinomial densities with Dirichlet priors. Also in this case, it is possible
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to set weakly informative priors for the model parameters; Dunson & Xing’s (2009)

suggestion for weak priors is to initialize α to be equal to 1 and set the parameters of its

Gamma distribution to a = b = 0.25. This allows each Vk to be uniformly distributed in

the (0,1) range, whereas the Dirichlet priors of the conditional distributions can be made

uniform by setting all their parameters to 1 (as we already saw for the BLC approach).

Since the stick-breaking specification of the Dirichlet process incentivizes the size of

each latent class πk to decrease stochastically with k, this model tends to put meaningful

posterior probabilities on a limited number of components automatically determined by

the data. When the concentration parameter α is small, in fact, most of the probability

mass is assigned to the first few components, with the number of significant components

increasing as α increases. As a consequence, there will be a finite number of classes with

a meaningful size, while the classes with a negligible probability mass will be ignored.

Since working with an infinite number of classes is impossible in practice, Si and Reiter

(2013) proposed truncating the stick-breaking probabilities at an (arbitrarily) large K∗,

but not so large as to compromise the computing speed. If, after running the MCMC

chain, significant posterior masses are observed for all K∗ components, the truncation

limit should be increased. As for the BLC approach, conditional probabilities of the J
variables within each latent class are initialized with the observed frequencies and, for

MI, missing data are initialized too with draws from these frequency tables. The Gibbs

sampler is then performed as follows. First, each unit is assigned to a latent category

by drawing from the posterior membership probabilities P(xi = k|yyyiii;πππ); second, Vk
(k = 1, ...,K∗ −1 because of the truncation) are drawn from a Beta distribution, whose

first parameter is updated by adding the number of units allocated in the k-th latent class

to its initial value (set to 1), whereas α is updated by adding to it the number of units

assigned to the latent classes which go from k+1 to K∗; after setting VK∗ = 1, each πk
is calculated through the formula πk =Vk ∏h<k(1−Vh); in the third step the parameters

of the conditional Dirichlet distributions of πππy j are updated by adding the number of

units, which take one of the possible observed values of the j-th variable and are dropped

into the k-th latent class, to the initial parameter value of the related component of that

distribution; after the updating, a new value of πππy j is drawn; fourth, a new value for

the concentration parameter α is drawn from the Gamma distribution with parameters

updated as a+K∗ −1 and b− log(πK∗); fifth, the imputation step analogue to BLC is

performed. Steps 1-5 are repeated until convergence is reached. For a formal description

of the algorithm, see Appendix B.2.

To our knowledge no off-the-shelf software is currently available that enables estimation

of the DPMM model. We implemented a custom routine in R to fit the model. The

R-code is available from the corresponding author upon request7.

7The code has been written and implemented to run with the example of Section 4, but it has been not
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Table 1: Differing features of the four LC models for MI.

Method
Parameters uncer-

tainty
K-handling Time-consuming

MLLC
·nonparametric

bootstrap

·fixed, determined a priori,

AIC criterion

·Yes, estimation of

multiple models

BLC

·embedded in the

posterior distribu-

tions

·fixed, determined a priori,

AIC criterion

·Yes, estimation of

multiple models

DLC

·m different draws

through the esti-

mated model

·fixed, unknown a priori,

automatically determined

by algorithm

·No, best fitting model

achieved in a single

run

DPMM

·embedded in the

posterior distribu-

tions

·uncertain, varying, ruled

by the data

·No, best fitting model

achieved in a single

run

Table 1 summarizes the main differences of the four models described in this section.

In the next section, we are going to apply the LC MI models to a real-data example in

order to show their working in the practice. We will examine similarities and differences

between the four methods and also with listwise deletion and MICE.

Real-data Example

The KRISTA dataset (Van den Broek, Nyklicek, Van der Voort, Alings, & Denollet,

2008) contains self-reported and interviewer-rated information from 748 patients aged

between 18 and 80 years who got an Implantable Cardioverter Defibrillator (ICD) in

two large Dutch referral hospitals between May 2003 and February 2009. The aim of

the study was to determine whether personality factors affect the occurrence of anxiety

as a result of the shocks the patients gets from the ICD. We selected the items of four

scales to illustrate the application of MI: Eysenck Personality Questionnaire (EPQ, 24

binary items scored 0-1, 12 of which measure patient’s neuroticism -EPQN- and the

remaining 12 measure patient’s extraversion -EPQE), Marlowe Crowne Scale (MC, 30

binary items scored 0-1), State-Trait Anxiety Inventory (STAI, 20 items on a 4-point

Likert scale), and Anxiety Sensitivity Index (ASI, 16 items ranging from 0 to 4). We

included in the analysis also the categorical background variable Sex, yielding a total

of J = 91 variables. After removing the persons without any observed score on the

90 questionnaire items, we have a sample size of n = 706 patients, nM = 555 of which

are men and nF = 151 of which are women. Although in this reduced dataset the total

validated with other data sets yet.
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percentage of missingness was very low (2.4%), it should be noticed that a method such

as listwise deletion (LD) may cause a large amount of loss of power, since about 30% of

the units contained at least one missing value, resulting in only n∗ = 494 persons with

fully observed information (n∗M = 400 males and n∗F = 94 women).

We also created a version of the same dataset with some extra MAR missingness8. The

new total rate of missingness was about 22.5%. In this new case, only n∗∗ = 109 units

had a completely observed response pattern (of which n∗∗M = 96 males and n∗∗F = 13

women) while the remaining n−n∗∗ = 597 cases (84.56 % of the units) had at least one

missing value. This data set with a much larger percentage of missing values will be

used to investigate whether and how the behaviour of the missing data models differs

compared to the original low missingness situation.

Case I - Low missingness. We applied LD and MICE and the four LC MI methods to

the original dataset. Subsequently, we computed the estimates of various quantities of

interest for the resulting complete data sets. For the scales we selected, we obtained

Cronbach’s alpha (α̂), the means for males and females (μ̂M and μ̂F) and their standard

errors (σ̂μM , and σ̂μF ), the t-value of the test for assessing the hypothesis of equality of

means between men and women (against the alternative hypothesis H1 : μ̂M �= μ̂F) and

the resulting p-value.

Note that the purpose of our example is to illustrate the use of the LC-based MI ap-

proaches with a real life application. Contrary to the controlled conditions of a simulation

study, we do not know the true values of the quantities of interest. Instead, we will

compare the estimates obtained with different imputation methods, as well as compare

the estimates obtained in the low missingness condition (Case I) with those in the high

missingness condition (Case II). For elaborate simulation studies on the behavior of the

LC imputation models, we refer to Vermunt et al. (2008); Van der Palm, Van der Ark,

and Vermunt (2013a); Gebegziabher and DeSantis (2010); Si and Reiter (2013).

We applied MICE with its default setting using the R library (Van Buuren et al., 2014)

and ran it for 15 iterations. For MLLC and BLC, we specified two kind of models,

one resulting from the selection of K based on the AIC index and the other using

an arbitrarily large value for K. Models specified through the AIC index will be de-

noted by MLLC(AIC) and BLC(AIC), while models with a large K will be denoted by

MLLC(large) and BLC(large). For the former, we estimated a 1-class model, a 2-class

model, and so on, up to a 70-class model. The best fitting model, according to the AIC

index, was the 14-class model. MLLC(large) and BLC(large) were implemented with

K = 50. Furthermore, we used the 1-class MLLC model (MLLC(1), an independence

8For the generation of the extra missingness, we followed Brand (1999) and Van Buuren, Brand, Groothuis-

Oudshoorn, and Rubin (2006). Appendix C details the procedure adopted.
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model), which is in fact a random version of mean (or mode) imputation. We used the

MLLC(1) model to show the consequence of using an imputation model that does not

correctly model the associations between the variables in the data file. The DLC model

was estimated with a decision rule based on the improvement in log-likelihood larger

than 0.6 · J, following Van der Palm et al.’s (2014) advice. This resulted in a model with

K = 111 classes. DPMM, finally, was implemented with K∗ = 50 truncated components.

For BLC and DPMM, the Gibbs samplers were run with B = 50000 iterations and with

the prior specifications described in Section 3.

Model-estimation and imputation was performed with LatentGOLD 5.0 (Vermunt &

Magidson, 2013) for MLLC and DLC, while we implemented two routines in R 3.0.2 for

the Gibbs samplers of BLC and DPMM. Following Graham, Olchowski, and Gilreath

(2007) we used m = 20 imputations for each method (including MICE). R 3.0.2 was

used to obtain estimates for the parameters of interest with LD and the MI methods

(pooled estimates for the latter).

Table 2 reports α̂ , μ̂M, μ̂F,σ̂μM , σ̂μF , t-values, and p-values for each method. The σ̂μM and

σ̂μF obtained with the MI methods reflect both the “within imputation” and the “between

imputation” variability of the estimates of the population means. T-values were also

calculated taking into account both the sources of variability. Null hypotheses rejected

at the significance level of 5% are marked in boldface.

As can be seen, the estimates obtained with the different LC-MI implementations are

all very similar. However, the estimates provided by the MI methods appear to differ

systematically from the estimates of the LD method. For example, the α̂ estimates for

the EPQN and ASI scales obtained with the MI approaches are always larger than the

ones for LD, but the differences among the LC models (both frequentist and Bayesian)

are very small. Also some differences between MICE and LC imputation methods can

be observed. For example, the Cronbach’s alpha of the EQPN and ASI scales of MICE

are not only larger than those of LD, but also somewhat larger than those of the LC

methods.

Also for μ̂M and μ̂F, differences between the LC imputation models are very small.

For instance, the mean of men’s scores on the EPQN scale provided by DLC is only

slightly larger than the ones provided by MLLC(AIC), MLLC(large), BLC(AIC), and

BLC(large), the latter ones being very similar to one another, while DPMM yields

an estimate that may appear somewhat different. Actually, it seems as if the LC-MI

models produce estimates that differ mainly because randomness involved in the methods

(parameter draws and imputation draws). Probably, if we ran these methods again, we

would obtain slightly different estimates, but without important differences from the

ones reported in Table 2. Differences between LD, MICE and LC-MI estimates are

larger than the differences among the various LC MI methods.
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As far as MICE is concerned, it can be seen that the difference in estimated means

between MICE and LD is usually larger than the difference between LC-MI and LD.

If we look at the SE estimates, the LC-MI procedures seem to yield somewhat smaller

value than MICE and LD (which is disadvantaged by a smaller sample size). Furthermore,

SEs are very similar across LC methods. Differences between LD and the MI methods

turn out to be important for the t-tests: while we rejected only 2 null hypotheses (EPQN

and MC) with LD, we have 4 out of 5 rejections (EPQN, MC, STAI and ASI) with all

MI methods investigated.

It is also possible to see from Table 2 that the independence model, MLLC(1), does

not produce very different results compared to the other LC MI models. The main

difference occurred in the estimates of α̂ , which are slightly lower than the Cronbach’s

alpha produced by the other LC-MI methods. The other quantities do not differ much

from those obtained with the others LC imputation models. Seemingly, with this low

rate of missingness, it is more important to prevent deleting cases with missing values

than to have "correct" imputations for the missing values.

Given the similar results produced by the MI methods, a look at the computation times

in Table 3 may be useful for a further comparison. For the MLLC approach, the required

computation time to estimate models with fewer classes is also reported. Estimation of

MLLC models with 1 up to 70 classes took almost 13 hours. For BLC and DPMM, we

report the computation time required to run the Gibbs sampler for one model. The time

spent on estimating all MLLC models should be added to the computation time to run

the Gibbs sampler for BLC(AIC). Running the MICE with (only) 15 iterations required

about 13 hours. Among the LC imputation methods, MLLC and BLC(AIC) are more

time-consuming than DLC, BLC(Large), and DPMM, which are faster and took about

the same computation time, as they do not require the estimation of multiple models to

find the ideal number of classes.

Case II - High missingness. Table 4 reports the estimates obtained using the KRISTA

dataset with extra (22.5%) missingness. The settings were the same as with Case I,

except for the number of classes of MLLC(AIC) and BLC(AIC), which was K = 10,

and the number of classes of DLC, which was K = 106. The LD method was applied

with n∗∗ = 109 persons with fully observed score patterns.

As can be seen from Table 4, the contrast between LD and the MI methods, as well as the

differences between MICE, the 1-class LC model, and the other LC models, are much

clearer now. This shows that the way the imputation is performed matters with larger

proportions of missing values. All LC imputation methods recover μ̂M and μ̂F well; that

is, estimates of these means are similar or very close to those of the low-missingness case.
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Table 3: Computation time for MI using MICE and the six different LC imputation models.

Imputation model Model time Total time

MICE* / 13h05min

MLLC(AIC)** 0h58min 12h51min

MLLC(large)** 7h17min 12h51min

DLC 5h39min 5h39min

BLC(AIC)*** 6h04min 18h55min

BLC(large) 6h41min 6h41min

DPMM 6h27min 6h27min

Note: *MICE was run for 15 iterations. **MLLC models were estimated from MLLC(1) to MLLC(70). The second
column shows the required time to estimate the indicated model, while the third column shows the computation time taken
to estimate all the 70 models. ***For BLC, in the second column the computation time needed to run the Gibbs sampler has
been reported, while in the third column the computation time of MLLC for selecting the number of classes has been added.

Also the estimated standard errors of the means, σ̂μM and σ̂μF , do not differ much from

the previous case, though they are slightly smaller than for Case I. Notice, furthermore,

that the MLLC(1) model yielded standard errors that are much smaller than the other

methods, showing that an under-specified model will typically underestimate variability.

The t-tests with MLLC(large), BLC(large) and DPMM yielded the same conclusions as

with Case I, as 4 out of 5 tests are rejected at a significance level of 5 %. MLLC(AIC),

DLC, and BLC(AIC) did not reject the hypothesis of equality of means for the ASI scale,

which is result of the slightly lower power in the high missingness condition. LD seems

to produce very much biased means and large standard errors (the latter resulting from

the strongly reduced sample size). The MICE standard errors are similar those of the

LC-MI methods, except for MLLC(1). However, the MICE estimated means are not

only rather different from the LC-MI estimates, but also from MICE estimates for Case

I. The largest differences are encountered for STAI and ASI.

As far as the LC-MI methods is concerned, larger differences between Case I and Case II

occurred for Cronbach’s alpha; that is, in the high missingness condition, the α̂ estimates

are lower than in the low missingness condition. MLLC(1) produced the lowest values

of α̂ . The other methods are very similar to each other, but all smaller than in Case I.

Especially the alpha value for the MC scale is quite a bit lower. The fact that α̂ seems to

be underestimated indicates that the LC MI models have some difficulties in capturing

and describing the complex associations among the 91 variables used in the imputation

model. MICE provides a Cronbach’s alpha value closer to the estimates of Case I than

the LC methods for the MC scale, but for the other scales MICE seems to yield larger

downward biased alpha values than the LC-MI methods.



562 D. Vidotto, J. K. Vermunt & M. C. Kaptein

Table
4:

F
in

al
estim

ates
o
f

th
e

q
an

tities
inv

estig
ated

o
n

th
e

K
R

IS
T

A
d
ataset

(ex
tra

m
issin

g
n
ess).

p
-v

alu
es

are
b
ased

o
n

th
e

t-test
w

ith
n ∗∗−

2
=

1
0

7
d

f
fo

r
th

e

L
D

m
eth

o
d

,
an

d
w

ith
d

eg
rees

o
f

freed
o

m
calcu

lated
acco

rd
in

g
to

M
I

ru
les

fo
r

M
I

m
eth

o
d

s.
S

ig
n

ifi
can

t
5

%
p

-v
alu

es
are

m
ark

ed
in

b
o

ld
face.

M
issin

g
d

ata
m

o
d

el

S
cale

L
D

M
IC

E
M

L
L

C
(1

)
M

L
L

C
(A

IC
)

M
L

L
C

(larg
e)

D
L

C
B

L
C

(A
IC

)
B

L
C

(larg
e)

D
P

M
M

E
P

Q
N

0
.5

2
9

0
.7

9
8

0
.7

6
7

0
.8

3
3

0
.8

3
0

0
.8

2
9

0
.8

2
8

0
.8

2
3

0
.8

2
5

E
P

Q
E

0
.8

5
1

0
.7

8
9

0
.7

4
8

0
.8

2
2

0
.8

3
1

0
.8

3
0

0
.8

1
0

0
.8

1
4

0
.7

7
0

α̂
M

C
0

.7
2

8
0

.7
4

4
0

.6
3

2
0

.6
6

8
0

.6
9

9
0

.6
9

8
0

.6
5

8
0

.6
7

6
0
.6

5
7

S
T

A
I

0
.9

1
9

0
.9

0
3

0
.8

9
2

0
.9

4
1

0
.9

3
7

0
.9

3
8

0
.9

3
5

0
.9

3
5

0
.9

3
6

A
S

I
0

.8
1

8
0

.8
2

7
0

.8
0

5
0

.8
7

4
0

.8
7

0
0

.8
7

3
0

.8
5

9
0

.8
6

2
0

.8
6

4

E
P

Q
N

9
.6

1
5

7
.5

6
9

8
.5

8
8

8
.5

7
6

8
.5

9
4

8
.6

1
4

8
.5

6
8

8
.5

9
6

8
.5

7
0

E
P

Q
E

4
.1

6
7

5
.3

1
0

4
.8

0
9

4
.8

7
7

4
.8

9
0

4
.8

2
1

4
.8

2
2

4
.8

3
8

4
.8

0
6

μ̂
M

M
C

2
0

.9
6

9
1

8
.1

9
8

2
0

.6
2

0
2

0
.6

6
3

2
0

.5
9

2
2

0
.6

1
8

2
0

.6
2

8
2

0
.5

8
0

2
0

.5
8

2

S
T

A
I

3
6

.3
6

5
4

0
.8

9
0

3
8

.4
8

5
3

8
.2

1
1

3
8

.3
9

0
3

8
.1

0
6

3
8

.3
3

0
3

8
.3

1
4

3
8

.3
2

4

A
S

I
1

1
.8

1
2

1
8

.3
1

1
1

3
.3

7
4

1
3

.3
1

2
1

3
.3

3
7

1
3

.2
0

3
1

3
.5

3
6

1
3

.6
5

2
1

3
.5

0
2

E
P

Q
N

9
.4

6
2

6
.5

9
8

7
.6

8
3

7
.6

9
9

7
.6

8
0

7
.7

0
8

7
.7

1
2

7
.6

9
2

7
.6

9
4

E
P

Q
E

4
.0

7
7

5
.4

5
6

4
.9

9
1

5
.1

2
7

5
.0

4
1

5
.0

3
1

5
.0

8
2

5
.0

4
5

4
.9

7
8

μ̂
F

M
C

2
1

.4
6

2
1

9
.2

5
2

2
1

.4
9

5
2

1
.5

6
4

2
1

.5
6

7
2

1
.5

8
9

2
1

.4
8

8
2

1
.5

0
5

2
1

.4
7

7

S
T

A
I

3
7

.6
1

5
4

3
.5

2
0

4
0

.5
9

8
4

0
.5

9
2

4
0

.6
5

0
4

0
.6

3
8

4
0

.7
8

6
4

0
.5

9
2

4
0

.6
5

6

A
S

I
1

3
.8

4
6

1
9

.7
8

7
1

4
.9

3
7

1
4

.9
7

0
1

5
.1

0
9

1
4

.8
6

1
1

5
.2

2
3

1
5

.3
9

6
1

5
.3

6
7

E
P

Q
N

0
.1

9
0

0
.1

3
7

0
.1

2
0

0
.1

3
5

0
.1

3
3

0
.1

3
3

0
.1

3
4

0
.1

3
2

0
.1

3
5

E
P

Q
E

0
.3

3
4

0
.1

4
1

0
.1

2
4

0
.1

4
6

0
.1

4
2

0
.1

4
5

0
.1

4
0

0
.1

4
3

0
.1

3
5

σ̂
μ

M
M

C
0

.4
2

8
0

.2
1

6
0

.1
6

7
0

.1
6

9
0

.1
8

0
0

.1
8

3
0

.1
7

5
0

.1
7

9
0
.1

7
3

S
T

A
I

1
.0

0
9

0
.5

0
1

0
.4

1
0

0
.4

9
2

0
.4

8
5

0
.4

8
5

0
.4

8
6

0
.4

8
9

0
.4

8
6

A
S

I
0

.7
6

1
0

.4
5

2
0

.3
5

3
0

.4
0

8
0

.4
0

1
0

.4
0

9
0

.4
0

7
0

.4
0

0
0

.4
0

7

E
P

Q
N

0
.4

7
5

0
.2

6
8

0
.2

4
6

0
.2

7
3

0
.2

7
1

0
.2

6
9

0
.2

6
9

0
.2

6
9

0
.2

7
0

E
P

Q
E

0
.8

6
6

0
.2

5
8

0
.2

2
0

0
.2

4
5

0
.2

5
2

0
.2

5
6

0
.2

5
3

0
.2

5
1

0
.2

2
7

σ̂
μ

F
M

C
1

.1
6

9
0

.3
7

6
0

.2
9

9
0

.3
1

6
0

.3
1

9
0

.3
2

8
0

.3
2

0
0

.3
1

8
0
.3

1
9

S
T

A
I

1
.9

5
0

0
.9

1
8

0
.7

7
1

0
.9

1
4

0
.8

9
3

0
.9

1
5

0
.9

0
6

0
.9

2
0

0
.9

0
8

A
S

I
2

.2
9

2
0

.9
0

4
0

.7
5

6
0

.8
4

5
0

.8
5

4
0

.8
4

1
0

.8
3

0
0

.8
4

8
0

.8
6

8

E
P

Q
N

0
.2

8
1

3
.2

4
7

3
.4

6
2

2
.9

7
2

3
.1

3
1

3
.1

3
8

2
.9

4
8

3
.1

5
1

3
.0

0
1

E
P

Q
E

0
.0

9
3

-0
.4

8
4

-0
.6

8
5

-0
.8

3
0

-0
.4

9
8

-0
.6

7
3

-0
.8

7
2

-0
.6

8
4

-0
.6

1
9

t-v
alu

e
M

C
-0

.3
9

8
-2

.3
0

8
-2

.4
7

5
-2

.4
3

6
-2

.5
3

9
-2

.5
1

6
-2

.3
1

7
-2

.4
7

5
-2

.4
0

5

S
T

A
I

-0
.4

4
1

-2
.4

7
0

-2
.3

9
7

-2
.2

5
8

-2
.1

7
4

-2
.4

2
9

-2
.3

6
6

-2
.1

6
7

-2
.2

3
7

A
S

I
-0

.9
1

1
-1

.5
3

1
-2

.0
1

1
-1

.8
5

9
-1

.9
8

0
-1

.8
5

7
-1

.9
3

3
-1

.9
7

2
-2

.0
6

6

E
P

Q
N

0
.7

7
9

0.001
0.0006

0.0003
0.002

0.002
0.003

0.002
0.003

E
P

Q
E

0
.9

2
6

0
.6

2
9

0
.4

9
4

0
.4

0
7

0
.6

1
8

0
.5

0
1

0
.3

8
3

0
.4

9
4

0
.5

3
6

p
-v

alu
e

M
C

0
.6

9
2

0.021
0.014

0.015
0.011

0.012
0.021

0.014
0.016

S
T

A
I

0
.6

6
0

0.014
0.017

0.024
0.030

0.015
0.018

0.031
0.026

A
S

I
0

.3
6

4
0

.1
2

6
0.045

0
.0

6
3

0.048
0

.0
6

4
0

.0
5

4
0.049

0.039

N
ote:

L
D

=
listw

ise
d
eletio

n
m

eth
o
d
;

M
IC

E
=

M
I

b
y

ch
ain

ed
eq

u
atio

n
s

m
eth

o
d
;

M
L

L
C

(1
)

=
M

L
L

C
im

p
u
tatio

n
m

eth
o
d

w
ith

1
laten

t
class;

M
L

L
C

(A
IC

)
=

M
L

L
C

im
p
u
tatio

n
m

eth
o
d

w
ith

n
u
m

b
er

o
f

laten
t

co
m

p
o
n
en

ts
d
eterm

in
ed

b
y

th
e

A
IC

in
d
ex

;
M

L
L

C
(larg

e)
=

M
L

L
C

im
p
u
tatio

n
m

eth
o
d

w
ith

an
arb

itrarily
larg

e
n
u
m

b
er

o
f

laten
t

co
m

p
o
n
en

ts;
D

L
C

=
D

L
C

im
p
u
tatio

n
m

eth
o
d
;

B
L

C
(A

IC
)

=
B

L
C

im
p
u
tatio

n
m

eth
o
d

w
ith

n
u
m

b
er

o
f

laten
t

co
m

p
o
n
en

ts
d
eterm

in
ed

b
y

th
e

A
IC

in
d
ex

;
B

L
C

(larg
e)

=
B

L
C

im
p
u
tatio

n
m

eth
o
d

w
ith

an
arb

itrarily
larg

e
n
u
m

b
er

o
f

laten
t

co
m

p
o
n
en

ts;
D

P
M

M
=

D
P

M
M

im
p
u
tatio

n
m

eth
o
d
.

/α̂
:

v
alu

es
fo

r
C

ro
n
b
ach

’s
alp

h
a;μ̂

M
=

m
ean

s
o
f

th
e

to
tal

sco
res

o
f

th
e

m
en

;μ̂
F

=
m

ean
s

o
f

th
e

to
tals

sco
res

o
f

th
e

w
o
m

en
;σ̂

μM
an

d
σ̂

μF
=

stan
d
ard

erro
rs

o
f

th
e

m
ean

s
o
f

th
e

to
tal

sco
res

o
f

m
en

an
d

w
o
m

en
;

t-v
alu

es
an

d
p
-v

alu
es

refer
to

th
e

testH
0

:μ̂
M
=

μ̂
F

v
s.H

1
:μ̂

M
�=

μ̂
F

.



Multiple Imputation using Latent Class Models 563

In order to see whether focusing on a single scale improves the estimate of Cronbach’s

alpha, we performed a separate MI with MICE and the LC methods for the 30 items of

the MC scale (the scale with the worst results in terms of α̂ , compared with the results of

Table 2). From Table 5 it can be seen that MLLC(AIC), MLLC(large), DLC, BLC(AIC),

BLC(large), and DPMM are doing much better now, their estimates being much closer

to those of Table 2. MLLC(1), on the other hand, is still doing badly, which confirms

that it is an inadequate imputation model. MICE produced a Cronbach’s alpha identical

to the one with all 91 variables.

Table 5: Comparsion of α̂ (MC scale) estimated after performing MI only on items of MC

scale.

Imputation model α̂(MC)
MICE 0.743

MLLC(1) 0.631

MLLC(AIC) 0.729

MLLC(large) 0.727

DLC 0.725

BLC(AIC) 0.725

BLC(large) 0.728

DPMM 0.728

Discussion

This paper offered a state-of-the-art overview on the use of LC models as tools for

MI. One feature that makes LC models attractive imputation tools for psychological

assessment studies is that they do not require complex model specification, since only the

specification of the number of classes, K, is needed. Second, LC models can efficiently

be computated even when dealing with a large number of variables. Third, by selecting

a large enough number of classes, LC models can pick up complex associations in

high-dimensional datasets.

Four possible LC implementation for MI were described: the Maximum Likelihood LC

(MLLC), the Bayesian LC (BLC), the Divisive LC (DLC), and the Dirichlet Process

Mixture of Multinomial Distributions (DPMM) approaches. While sharing the attractive

features of LC modeling for MI, these methods differ in various ways. One is how they

account for the uncertainty about the imputation model parameters: whereas MLLC

uses a nonparametric bootstrap and DLC draws m unit class-memberships from the
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estimated model, the Bayesian methods (BLC and DPMM) draw parameters from their

posterior distribution. Second, the decision regarding the number of classes K is handled

differently by the four approaches. MLLC and BLC require model comparison through

for example the AIC, DLC determines K in a single run of its sequential algorithm, and

DPMM leaves the number of classes unspecified. In MLLC and BLC, it is also possible

to set K to an arbitrary large value, which makes them more similar to DLC and DPMM,

also in terms of computation time.

We illustrated the use of the LC imputation methods and compared them with listwise

deletion and MICE using a dataset with 91 categorical variables from a psychological

assessment study. We looked at two situations: the original situation with a low rate of

missingness and a situation with a much higher rate of missingness obtained by creating

additional missing values. In the first situation, the various types of LC imputation models

yielded very similar results; that is, similar Cronbach’s alpha values, means for men

and women, standard errors and t-tests. However, the fact that the results obtained with

the 1-class imputation model were also similar but those obtained with listwise deletion

different indicated that in this low missingness case it was more important to keep the

records with missing values than to have a correct imputation model. MICE imputation

supplied estimates very similar to those of the LC models, although minor systematic

differences appeared between these two different types of imputation methods.

The differences between LC imputation with both the under-specified model and MICE

were much larger in the high missingness situation. The estimates for Cronbach’s alpha

and the standard errors of the means were smaller (too small) in the 1-class model,

showing that the imputation model matters. Furthermore, LC imputation methods

introduced less bias in the estimates of means and standard errors than MICE in Case II,

whereas MICE appeared to better recover the alpha for one scale but worse for the other

four scales.

When comparing the LC-MI estimates of Cronbach’s alpha between the low and high

missingness condition, we saw that alpha was underestimated with more missing values,

where the degree of this underestimation varied per scale. This shows that also the

LC-MI methods do not pick up perfectly the variability in and the associations between

the variables in the dataset. When performing the imputation for a single subscale rather

than for all 91 variables simultaneously, the LC MI models yielded much better estimates

for Cronbach’s alpha. Capturing the associations among the variables turns out to be

easier with a smaller more homogeneous set of items, showing that in practice it may be

a good idea to perform the imputation per subset. Whether this is generally the case, is

something that needs future research.

Despite of their favorable features for missing data imputation in large-scale studies,

various issues concerning the implementation of the LC imputation models need further
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research. The first, and most important, is their moderate performance in capturing all

the associations with high rates of missingness. It may be that we need an even larger

number of classes than we used in our application. In the Bayesian specification, we

have to specify the prior distributions for the parameters, and it is well known that the

choice of priors may affect the results. Therefore, also the specification of the priors in

the context of LC-MI needs further study.

Moreover, LC models can easily be extended with a regression model in which the latent

classes are predicted using background variables, such as sex, age, and education level.

Such an approach has not been used for MI yet, but it may be interesting to investigate

whether inclusion of explanatory variables may improve the obtained imputations.

While we focused on the LC-based imputation methods for cross-sectional categorical

data, the methods may also be applied with mixed categorical and continuous data, as

well as with more complex longitudinal or multilevel designs. This reflects the wide

range of applications in which LC models can be used. For instance, LC models for

multilevel data (both for continuous and categorical variables) are described by Vermunt

(2008), while latent Markov models for longitudinal data are among others described by

Baum, Petrie, Soules, and Weiss (1970). Such more advanced LC models may also be

used for MI. A possible Bayesian (DPMM) implementation of LC MI for longitudinal

panel studies is provided by Si (2012).
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Appendices

Bayesian Tools

The Dirichlet Distribution

In Appendices A and B, f (·) will denote a generic probability distribution or density.

The Dirichlet Distribution will be denoted with Dir(λ ), where λ = (λ1, ...,λd) is a

multi-dimensional parameter.

Suppose we have a random variable U with d components (d ≥ 2) such that U =
(U1, ...,Ud); then U ∼ Dir(λ ), or equivantly,

f (U |λ ) = 1

B(λ )

d

∏
i=1

udi−1
i

in the d-dimensional simplex {(u1, ...,ud) : ui ∈ R
+ ∀ i,u1 + ...+ud = 1}. Here, each

ui is a realization of Ui and B(λ ) is the multivariate Beta function. When d = 2, the

Dirichlet distribution becomes a Beta distribution.

This density can be used to model sets of probabilities of mutually exclusive and

exhaustive events. This property, as well as its functional form, makes the Dirichlet

distribution a conjugate candidate for the Multinomial distribution, thus forming the

Dirichlet-Multinomial conjugate. According to this model, if the prior distribution of

the set of parameters of the Multinomial distribution with d categories, say π , follows

a Dirichlet distribution with parameter λ = (λ1, ...,λd) and the data Y = (Y1, ...,Yd) are

assumed to be distributed according to a Multinomial distribution with d components,

then the resulting posterior is λ |Y ∼ Dir(λ1 +Y1, ...,λd +Yd). In case of d = 2 the

Dirichlet-Multinomial conjugate corresponds to the Beta-Binomial.

Bayesian Computation

The Gibbs sampler

Consider a L-dimensional random variable θ = (θ1, ...,θL) and suppose that we want

to compute the marginal densities f (θi), i = 1, ...,L. Furthermore, suppose that these

marginal densities are obtainable by integration, f (θi) =
∫

f (θ1, ...,θL)d(θ−i), in which

θ−i = (θ1, ...,θi−1,θi+1, ...,θL), is difficult to compute due to its analytical complexity,
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but that a series of conditional distributions f (θi|θ−i) is available for each i = 1, ...,L.

The Gibbs sampler, after initializing the variables with some value θ (0) = (θ (0)
1 , ...,θ (0)

L ),
proceeds as follows:

1. Draw θ (t+1)
1 ∼ f (θ1|θ (t)

2 , ...,θ (t)
L )

2. Draw θ (t+1)
2 ∼ f (θ2|θ (t+1)

1 ,θ (t)
3 ...,θ (t)

L )
...

L. Draw θ (t+1)
L ∼ f (θL|θ (t+1)

1 ,θ (t+1)
2 ...,θ (t+1)

L−1 )

for t = 1, ...,T , where T is the total number of iterations of the sampler. Under mild

conditions, the Gibbs sampler converges to the stationary distributions f (·). For further

technical details, we refer to Gelfand and Smith (1990). Liu (1994) argued that the

efficiency of the Gibbs sampler can be further improved by considering blocks of

correlated components together. For instance, it is possible to group θ into two blocks,

G1 = (θ1, ...,θd′ ) and G2 = (θd′+1
, ...,θL). The result is a two-blocks Gibbs sampler:

1. Draw G(t+1)
1 ∼ f (G1|G(t)

2 )

2. Draw G(t+1)
2 ∼ f (G2|G(t+1)

1 )

for t = 1, ...,T .

The Data Augmentation Algorithm

The Data Augmentation (DA) Algorithm (Tanner & Wong, 1987) is a special case of the

Gibbs sampler. It exploits the fact that

f (θ |Y ) =
∫

Z
h(θ ,Z|Y )dz,

that is, the completion or data augmentation of f . Here, Z are unobserved or latent

data whose support is denoted by Z , whereas Y denotes a set of observed variables and

h(·) is a probability density function. The aim of the DA algorithm is to simplify the

sampling from the joint distribution f (θ |Y ) through a simpler conditional distribution

f (θ |Z,Y ). For the DA algorithm, both f (θ |Z,Y ) and f (Z|θ ,Y ) must be available. After

initializing the unobserved Z and the values of θ with some arbitrary values Z(0) and

θ (0), the algorithm consist of two steps:

– Imputation Step: Draw Z(t+1) ∼ f (Z|Y,θ (t))
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– Posterior Step: Draw θ (t+1) ∼ f (θ |Y,Z(t+1))

for t = 1, ...,T . In fact, this a version of the DA algorithm in which a single Z-value is

drawn at each step. The original DA algorithm with multiple Z-value draws, as well as

the conditions for convergence to the target distribution, can be found in Tanner and

Wong (1987).

The DA algorithm can be seen as the Bayesian counterpart of the EM algorithm. Since

both latent variables and missing data can be treated as unobserved values, this algorithm

is of particular interest in applications such as LC-MI.

Bayesian Multiple Imputation via Mixture Modeling

The notation and the model specification are the same as described in Section 2.1. The

parameters of a specific class k (i.e., πππyyy jjj when x = k) will be denoted by πππkkk
jjj. For

parameters initialization and implementation of the algorithms, we follow Si and Reiter

(2013). In order to simplify notation, a dot in the condition sign, i.e. P( |·), will indicate

a conditioning on all the data and other parameters included in the model.

The Bayesian Latent Class Multiple Imputation Model

a. Distributional assumptions.
-Data likelihoods:

– xi ∼ Multinom(πππxxx) where Multinom(πππxxx) is the Multinomial distribution with parame-

ter πππxxx = (π1, ...,πk, ...,πK) ∀ i;

– Yi j|xi = k ∼ Multinom(πππkkk
jjj))) with πππkkk

jjj = (πk
j1, ...,π

k
jd , ...,π

k
jd j
) where d j is the number

of categories of the variable Yj ∀ i, j.

-Parameters priors:

– πππxxx ∼ Dir(αααxxx) with αααxxx = (α1, ...,αk, ...,αK);

– πππkkk
jjj ∼ Dir(αααkkk

jjj) with αααkkk
jjj = (αk

j1, ...,α
k
jd , ...,α

k
jd j
).

b. Implementation.
-Parameters initialization:

– set ααα(0)
xxx = (α(0)

1 , ...,α(0)
k , ...,α(0)

K ) = (1, ...,1);

– set αααkkk(0)
jjj = (αk(0)

j1 , ...,αk(0)
jd , ...,αk(0)

jd j
) = (1, ....,1) ∀ j,k;
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– initialize πππ(0)
xxx with a draw from the Dirichlet distribution with parameters ααα(0)

xxx

– set P(yi j = d|xi = k;πππy j)
(0) = πk(0)

jd = f̂ (y j,obs = d) ∀ i, j,k, where f̂ (y j,obs = d) is the

marginal observed empirical probability that yi j = d;

– sample a value for Yi j,mis from f̂ (y j,obs) ∀ i in Yj,mis.

-The algorithm:

For t = 1, ...,T :

1. sample x(t)i ∈ {1, ...,K} ∀ i = 1, ...,n from a Multinomial distribution with posterior
membership probabilities as parameters:

P(x(t)i = k|·) =
π(t−1)

k ∏J
j=1

(
∏

d j
d=1

(
πk(t−1)

jd

)I (yi j=d)
)

∑K
h=1 π(t−1)

h ∏J
j=1

(
∏

d j
d=1

(
πh(t−1)

jd

)I (yi j=d)
)

where I (yi j = d) = 1 if yi j = d and 0 otherwise;

2. sample

(πππ(t)
xxx |·)∼ Dir

(
α(0)

1 +
n

∑
i=1

I (x(t)i = 1), ...,α(0)
K +

n

∑
i=1

I (x(t)i = K)

)

where I (x(t)i = k) is an indicator variable which is equal to 1 if x(t)i = k and 0

otherwise;

3. draw

(πππk(t)
j |·)∼ Dir

⎛
⎜⎝αk(0)

j1 + ∑
i:x(t)i =k

I (yi j = 1), ...,αk(0)
jd j

+ ∑
i:x(t)i =k

I (yi j = d j)

⎞
⎟⎠

∀ i, j,k ;

4. (imputation step): given the value x(t)i = k of each unit, for each {i, j} in Ymis sample

from

(Y (t)
i j |·)∼ Multinom(πππk(t)

j ).

Once the MCMC chain has completed its iterations, the m imputations are obtained by

selecting m draws from the sampled values Ymis from Step 4 in such a way that the draws
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are sufficiently independent. The thinning of the chain by taking the draws far enough

from one another reduces the autocorrelations within the chain.

Furthermore, with a few minor adjustments, it is possible to let the algorithm estimate

a LC model using only the observed information Yobs. This involves ignoring Step 4

(the imputation step) and setting I (yi j = d) = 0 for every Yi j ∈ Ymis in Step 1, in order

to ignore the missing values at every iteration of the MCMC chain. In this way, each

subject contributes to the model estimation and parameters updating only through his

observed values.

The Dirichlet Process Mixture of Multinomial Distributions Imputation Model

This section gives a short description of the implementation of the algorithm. For a more

detailed information on the Dirichlet Process Mixture, see Congdon (2006) and Escobar

and West (1995).

a. Distributional assumptions.
-Data likelihoods:

– xi ∼ Multinom(πππxxx) where πππxxx = (π1, ...,πk, ...,π∞) ∀ i;

– in the practice, the process is truncated at some K∗, with K∗ choosen to be arbitrarily

high, so that πππxxx = (π1, ...,πk, ...,πK∗);

– Yi j|xi = k ∼ Multinom(πππkkk
jjj))) with πππkkk

jjj = (πk
j1, ...,π

k
jd , ...,π

k
jd j
) where d j is the number

of categories of the variable Yj.

-Parameters priors:

– πk =Vk ∏h<k(1−Vh) for h ∈ {1, ...,K∗}9;

– Vk ∼ Beta(1,α) where α is the concentration parameter of the process;

– α ∼ Gamma(a,b);

– πππkkk
jjj ∼ Dir(αααkkk

jjj) with αααkkk
jjj = (αk

j1, ...,α
k
jd , ...,α

k
jd j
).

b. Implementation.
-Parameters initialization:

– set α(0) = 1;

– initialize Vk with a draw from the Beta(1,1) distribution ∀ k;

9This is the stick-breaking representation of the Dirichlet Process. For technical details, see Sethuraman

(1994) and Ishwaran and James (2001).
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– initialize the parameters of the Gamma distribution (a,b) = (0.25,0.25)10;

– set αααkkk(0)
jjj = (αk(0)

j1 , ...,αk(0)
jd , ...,αk(0)

jd j
) = (1, ....,1) ∀ j,k;

– set P(yi j = d|xi = k;πππy j)
(0) = πk(0)

jd = f̂ (y j,obs = d) ∀ i, j,k, where f̂ (y j,obs = d) has

been defined in Appendix B.1;

– sample a value for Yi j,mis from f̂ (y j,obs) ∀ i inYj,mis.

-The algorithm:

For t = 1, ...,T :

1. sample x(t)i ∈ {1, ...,K} ∀ i = 1, ...,n from a Multinomial distribution that has the

posterior membership probabilities as parameters:

P(x(t)i = k|·) =
π(t−1)

k ∏J
j=1

(
∏

d j
d=1

(
πk(t−1)

jd

)I (yi j=d)
)

∑K∗
h=1 π(t−1)

h ∏J
j=1

(
∏

d j
d=1

(
πh(t−1)

jd

)I (yi j=d)
)

where I (yi j = d) = 1 if yi j = d and 0 otherwise;

2. sample V (t)
k for each k ∈ {1, ...,K∗ −1} from

(V (t)
k |·)∼ Beta

(
1+

n

∑
i=1

I (x(t)i = k),α(t−1) +
K∗

∑
h=k+1

(
n

∑
i=1

I (x(t)i = h)

))

where I (x(t)i = k) is an indicator variable which is equal to 1 if x(t)i = k and 0

otherwise; set VK∗ = 1 and calculate each π(t)
k =V (t)

k ∏h<k(1−V (t)
h );

3. draw

(πππk(t)
j |·)∼ Dir

⎛
⎜⎝αk(0)

j1 + ∑
i:x(t)i =k

I (yi j = 1), ...,αk(0)
jd j

+ ∑
i:x(t)i =k

I (yi j = d j)

⎞
⎟⎠

∀ i, j,k ;

10In consistent with Dunson and Xing (2009) and Si and Reiter (2013)’s guidelines.
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4. update the value of α(t) according to

(α(t)|·)∼ Gamma
(

a+K∗ −1,b− log(π(t)
K∗)
)

5. (imputation step): given the value x(t)i = k of each unit, for each {i, j} in Ymis sample

from

(Y (t)
i j |·)∼ Multinom(πππk(t)

j ).

Once the chain has completed its iterations, m imputation are obtained in the same way

as seen for the Bayesian LC imputation model (see Appendix B.1). A DPMM (without

imputation purposes) can also be estimated using only the observed part of the dataset,

Yobs, in a fashion similar as indicated for the Bayesian LC analysis (see Appendix B.1).

Generating the Extra Missingness for the Real-data Example

In the Case II condition of the real-data example, missing values were generated by a

MAR mechanism following Brand (1999) and Van Buuren et al. (2006). After selecting

sample units with fully observed data (n∗ = 494, from here on referred as Y ∗), we

specified γ (i.e., the sought new proportion of incomplete cases) and P, the number of new

missing data patterns that should be created. The missing data patterns were randomly

generated through a series of binomial distributions, yielded P vectors Rp = (rp1, ...,rpJ)
of length J (in our example application J = 91), where each rp j = 0 if variable Y ∗

j is

missing in pattern p and rp j = 1 otherwise. Moreover, the relative frequency of each

pattern, f = ( f1, ..., fP), is such that ∑p fp = 1.

Subsequently, each person was randomly allocated to one of the P patterns according

with probabilities f : in this way, γ n∗ fp units were made incomplete for each pattern

according to the following probabilistic model. First, a linear combination of the

observed variables for each case in block p was calculated. For instance, we calculated

cip = ∑ j wp jrp jY ∗
i j, where wp j are the regression coefficient resulting from the linear

regression of Y ∗
p on Y ∗−p = (Y ∗

1 , ...,Y
∗
p−1,Y

∗
p+1, ...,Y

∗
J ). Second, for each p the cip were

categorized into 3 categories by specifying 2 cutoff points. For this purpose, we used

the 0.33 and 0.66 quantiles of cip within each block p. Third, odds ratio of having

response pattern Rp were specified for the second and the third category (the first

category is the reference category), were determined. For simplicity, in every block

we created a MARTAIL MAR mechanism with the same odds ratio for each p. A

MARTAIL mechanism is more likely to generate missingness for the lowest and highest

cip scores. More specifically, we set the missingness odds ratios to 0.25 and 1.00 for the



576 D. Vidotto, J. K. Vermunt & M. C. Kaptein

medium and high cip categories, respectively, yielding the missingness probabilities as

in Brand (1999), equation 5.5. Finally, a random draw uip from the uniform distribution

determined whether the data for unit i should be set as missing according to pattern Rp;

that is, if the value of uip is not larger than the corresponding probability of missingness

for case i, missing values were created in agreement with response pattern Rp. Once this

operation was accomplished, the resulting sub-dataset of 494 units was merged with the

212 incomplete cases of the original dataset, yielding the dataset used for our Case II

analyses.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




