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Relationship between item characteristics and
detection of Differential Item Functioning
under the MIMIC model

Daniella A. Rebougas’ & Ying Cheng’

Abstract

Differential item functioning (DIF) occurs when individuals of the same true latent ability or
psychological trait from different demographic populations are found to have different chances of
endorsing an item category. The ability to identify such items depends on many factors, including
the sample size of each demographic group, average true latent trait scores in each group, the
chosen DIF assessment method, the magnitude of DIF effect and the quality of the anchor set.
An anchor is a group of items free of DIF that establish a common metric between groups. If the
anchor is contaminated, that is, if it contains a DIF item, the common metric is inappropriate. The
current literature rarely addresses the relationship between item parameters, anchor selection, and
subsequent DIF detection. In this two-part study, we show that the power of DIF detection is high
when the anchor has highly discriminating items. Additionally, DIF items of large discrimination
and moderate difficulty have generally high power when using a correctly specified anchor, given a
fixed DIF effect size. Implications for anchor selection and DIF effect size research are discussed.
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Introduction

Differential item functioning (DIF) occurs when individuals of the same true latent ability
or psychological trait from different demographic populations are found to have different
chances of endorsing an item category (Holland & Wainer, 1993). For example, suppose
a question on a national U.S. math assessment uses an idiom well known to individuals
whose native language is English. Given the same math ability, individuals of English as
a second language would have a lower chance of answering the item correctly due to their
lack of familiarity with the idiom. Even after the test designer’s best effort, problematic
items such as this are unlikely to be identified by a simple visual check. Using statistical
procedures to properly identify such items on an educational assessment helps secure
fairness and impartiality of the assessment (Zwick, 2012).

The issue of DIF is distinct from inherent latent trait differences. High schoolers, for
instance, will likely score higher on a math item than middle schoolers, which is a
consequence of true ability differences on average (known as “impact”). A DIF effect
occurs when differences are found after people have been matched on ability. If the
item favors one subgroup at all ability levels, the effect is called uniform DIF. If the
favored subgroup changes at different levels of the latent trait, the effect is known as
non-uniform DIF. DIF assessment depends on the type of effect, and, in this study, we
limit our discussion to the case of uniform DIF.

If an item truly functions differently between groups, the chance of identifying such
item depends on many factors, including the sample size of each demographic group,
average true latent trait scores in each group (impact), the DIF assessment method and the
magnitude of the DIF effect (DeMars, 2011; Kubinger, Rasch, & Yanagida, 2009; Sireci
& Rios, 2013; Zumbo, 1999). For DIF detection methods that depend on the selection of
an anchor set, that is, a set of pre-selected test items that help establish a common metric
between groups, the quality of the anchor is yet another crucial factor to successfully
detect a DIF item. A threat to the quality of the anchor is anchor contamination, i.e., when
an anchor contains one or more DIF items, which could hinder the ability to find a true
DIF effect (Finch, 2005; Woods, 2009). If the anchor is contaminated, the common metric
set by the anchor is inappropriate, and the latent trait estimates are biased (Holland &
Thayer, 1988). Therefore, DIF research could greatly benefit from further understanding
which factors affect the quality of the anchor. Previous studies have shown that two of
these factors are anchor length and percentage of DIF items on the test. However, given
a set of test items and its characteristics, i.e., difficulty and discrimination parameters,
little is known about which items are most likely to be selected for the anchor, and how
the anchor items’ characteristics affect the power of DIF detection. In this study, our
goal is to examine how item parameters influence the selection of anchor items, and
subsequently, the DIF detection.
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DIF assessment methods

A variety of statistical methods have been proposed to detect items with DIF within the
test. Widely used DIF assessment techniques are the Mantel-Haenszel test (Holland
& Thayer, 1988), the item-response-theory likelihood-ratio test (IRT-LRT; Thissen,
Steinberg, & Wainer, 1988), the simultaneous item bias test (SIBTEST; Shealy & Stout,
1993) and the multiple indicators, multiple causes (MIMIC; Camilli & Shepard, 1994;
Joreskog & Goldberger, 1975) model method. Unlike other methods, such as the Mantel-
Haenszel method, which tests one item at a time based on contingency tables conditional
on test sum-scores, the MIMIC model allows several items to be tested for DIF at once.
Additionally, the structural equation modeling approach provides a flexible framework for
testing both dichotomous and polytomous items simultaneously. Given these advantages,
the MIMIC model approach has become increasingly popular for DIF detection (Chun,
Stark, Kim, & Chernyshenko, 2016; Finch, 2005; Lee, Bulut, & Suh, 2017; Teresi,
Ramirez, Lai, & Silver, 2008; Wang & Shih, 2010; Wang, Shih, & Yang, 2009; Woods,
2009; Woods & Grimm, 2011). We will, therefore, focus on applications of the MIMIC
model in this paper.

In order to detect a DIF effect, a common metric must be established between the
subgroups to allow group differences in the item to be compared against the common
metric. Some methods that establish a common metric are: the equal-mean-difficulty
method (Lord, 1980; Wang, 2004), which assumes the average item difficulty is the
same for each subgroup; the all-other-items method (e.g., Cohen, Kim, & Wollack, 1996;
Wang, 2004; Wang, Yeh, & Chia-Yi, 2003), which tests one item at a time while all other
items on the test serve as matching variables (i.e., act as the anchor set); scale-purification
methods (e.g., Hidalgo-Montesinos & Lopez-Pina, 2002; Lautenschlager, Flaherty, &
Park, 1994; Wang et al., 2009), where items are included and removed from the matching
set while testing the other items for DIF until the same set of items is flagged on two
successive iterations; and the constant anchor item method (e.g., Wang, 2004), where
a subset of items from the test that are most likely DIF-free is selected as the anchor
based on their effect size or p-value (for a review of anchor methods, see Kopf, Zeileis,
& Strobl, 2015).

DIF detection methods that rely on a previously chosen set of clean items, such as the
constant anchor item method, have been called DIF-free-then-DIF methods (Wang, 2008;
Wang, Shih, & Sun, 2012). They generally consist of two steps: in step 1, an anchor
selection strategy is employed to select a set of DIF-free items to compose the anchor; in
step 2, items outside the anchor are assessed for DIF. In this study, the DIF-free-then-DIF
strategy is employed under the MIMIC model framework. In the first step, the anchor
is selected through an iterative procedure with the MIMIC model (M-IT), and in the
second step, DIF is assessed with a pure anchor (M-PA). These steps are described later
in further detail.
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Selecting an anchor set

In order to successfully identify DIF items in the second step of the DIF-free-then-DIF
strategy, the anchor set selected in the first step must be clean, or free of DIF items.
Among the factors known to affect anchor contamination are anchor length (number of
anchor items) and percentage of DIF items on the test. As the number of DIF items on
the test increases, the chance of anchor contamination also increases; thus, keeping the
anchor short would reduce the possibility of erroneously including a DIF item in the
anchor, especially when the test has many DIF items. Longer anchors yield generally
higher power than a short one (Lopez Rivas, Stark, & Chernyshenko, 2009; Thissen et al.,
1988). A four- or five-item anchor has been shown to reduce the chance of contamination
while leading to desirable power rates when the test contains at most 40 % DIF items
(Meade & Wright, 2012; Wang & Shih, 2010). Ideally, an anchor must be short enough
to reduce anchor contamination but long enough to produce adequate power.

Although we understand what are desirable qualities in regards to anchor length and
reducing chance of anchor contamination, much less is known about how item character-
istics of the test affect anchor selection procedures, which may lead to higher chances
of anchor contamination. For example, which items from a given test are more likely
to be selected for the anchor? Moreover, how do items’ characteristics affect anchor
quality and further DIF detection? Lopez Rivas et al. (2009) studied the effects of anchor
item discrimination and difficulty on IRT-LRT DIF detection and concluded that anchor
quality and DIF assessment are both affected by item characteristics. A single-item
anchor of high discrimination produced high power of DIF detection. For long anchors,
the IRT-LRT was able to successfully identify DIF items as long as the anchor contained
at least one highly discriminating item, even for conditions with a small DIF effect.

Similarly to Lopez Rivas et al. (2009), Meade and Wright (2012) constructed the anchor
set by ranking items with non-significant DIF tests according to their discrimination
parameter. They concluded that when using the IRT-LRT, an anchor made up of highly
discriminating items yielded higher power rates than the all-other-items method. These
two studies suggest that anchor item discrimination affects anchor quality and the power
of DIF detection when using the IRT-LRT. Further investigation is needed about the
role of anchor item difficulty. Anchor formulation will, of course, depend on the anchor
selection strategy, and many strategies do not take the item parameters into account. In
the MIMIC model framework, limited research has been done on what factors influence
the formulation of the anchor, that is, which items are most likely to be included in the
anchor.

Moreover, the current literature rarely addresses the relationship between DIF assessment
and item parameters, with a few exceptions (e.g., Hong, 2010; Jodoin & Gierl, 2001;
Sireci & Rios, 2013; Wang, 2008). For example, Jodoin and Gierl (2001) found inflated
type-I error rates for hard and easy items when using the logistic regression procedure
for DIF assessment; Hong (2010) concluded power of DIF detection decreases for items
of small discrimination when using the MIMIC model.
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Our main goal for the present study is to examine how item parameters of dichotomous
items influence the selection of anchor items when the anchor is established through the
M-IT, and subsequently, DIF detection through the M-PA. Both procedures are discussed
in the next section.

Methods

The MIMIC model

Responses y; to dichotomous items are conceptualized as realizations of an underlying
continuous latent response variable y7, such that:

1 ify e
yﬂ_{ 0, ifyf <7 M

where j =1, ..., J, with J the total number of items on the test, and 7; the threshold for
item j. 7; represents the expected tendency of the item to be endorsed in the popula-
tion. For example, considering an item with a standard normally distributed underlying
continuous variable and 7; = .7, only about 25 % of the population has a tendency of
answering the item correctly (y; = 1).
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Figure 1:
The MIMIC model with 10 indicators, one “cause” variable and the group variable Z; DIF is
tested on items 1 to 6 and the last four items Y7, Y3, Yo and Y1 act as the anchor set.
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Under the structural equation modeling framework, the unidimensional MIMIC model
is composed of the measurement:

Y =A0+BZ+¢ ©)

and the structural model:
0=~Z+¢ 3)

where y* = (y7,y5,...,y%)" is the J x 1 vector of underlying latent response variables;
0 represents the person’s latent trait variable; A = (A1, g, ..., As)’ is the vector of factor
loadings for each item; and 3 = (81, B2, ..., Bs)’ is the vector of group path coefficients;
Z is the group membership variable, where Z = 1 if the person belongs to the focal
group and 0 otherwise; € = (1, €9, ...,£7)" is the vector of measurement errors in y*.
In eq. 3, 7y represents the effect of group membership on the latent variable 6, i.e., it
accounts for differences between groups in the average latent variable scores; ¢ is the
error variable.

If an item j is assumed to be free of DIF, 3; is set equal to zero for that item. Otherwise,
DIF is tested by assessing whether 3; is significantly different from zero with the Wald
test. Figure 1 illustrates DIF detection with the MIMIC model with ten indicators and one
“cause” variable. Given one group variable, such as biological sex (male/female), and
ten indicator variables, e.g., ten observed responses to questions on a math assessment,
DIF is tested on all but four of the items, which have been previously selected as the
anchor. Items 1 to 6 are tested for DIF, while items 7 to 10 act as the anchor set.

M-IT/M-PA procedure to assess DIF

The M-IT/M-PA is a DIF-free-then-DIF procedure which requires that an anchor set
be selected first with the iterative MIMIC model (M-IT; Shih & Wang, 2009) before
proceeding with DIF assessment through the MIMIC model with a pure anchor (M-PA;
Wang & Shih, 2010). The M-IT establishes a common metric through the constant anchor
item method, that is, it selects a constant number of items that are most likely DIF-free
based on a rank of estimated /3; coefficients. An anchor set may contain, for instance, 1,
4 or 10 items; a four-item anchor has been shown to produce satisfactory results (Wang
et al., 2012). Once a clean, DIF-free anchor is established, the MIMIC model with a
short and pure anchor is employed to identify DIF items. The M-PA was found to be
superior to other methods (equal-mean-difficulty and all-other-items) since it does not
suffer from severe loss of power even when the test has as much as 40 % of DIF items.
Below we provide technical details on the implementation of the DIF-free-then-DIF
approach when using M-IT for anchor selection and M-PA for assessing DIF.

Anchor selection. In the first step, an anchor set is selected with the M-IT. Given a test
with J items, the M-IT strategy of anchor selection takes the following steps:

1. Assume the first item is DIF-free (or “clean”) and assess all other J — 1 items on the
test for DIF;
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2. Obtain one DIF index for each studied item (e.g., 3;), resulting in a total of J — 1
DIF indices;

3. Repeat steps 1 and 2 assuming each item as DIF-free at a time, while testing all others
for DIF; a total of J — 1 DIF indices per item will be recorded;

4. Compute an average DIF index for each item and select the desired number of items
with the smallest DIF indices to compose the anchor.

After the anchor has been established, items that are not part of the anchor are tested for
DIF with the MIMIC model, which is the M-PA step.

DIF detection. In order to test items for DIF, the M-PA procedure is employed. Similarly
to the model illustrated in Figure 1, given a J-item test and an anchor fixed at length
4, all J-4 items outside the anchor are tested simultaneously. While the anchor items
have their group parameters ; set to 0, the Wald test is used to assess whether the group
parameters of the studied items are significantly different from 0 (Hy : 8 = 0). The
Wald statistic is asymptotically y2-distributed with 1 degree of freedom under the null
hypothesis (Dobson & Barnett, 2008), and the item is flagged if the test statistic is larger
than the critical value.

When anchor methods are used, little is known about how item characteristics affect
anchor formulation. Given a fixed DIF effect size, how will the item characteristics (more
specifically item discrimination and difficulty parameters) affect anchor formulation and
the subsequent DIF detection? To answer this question, we conduct a two-part simulation
study that varies item parameters for the DIF and the DIF-free items and assesses items
for DIF with the M-IT/M-PA, with an anchor of fixed length. In the first part of this
study, we demonstrate the effect of item parameters on the selection of a clean anchor set,
that is, an anchor that includes only DIF-free items, and show which items on the test are
most likely to be selected for the anchor, given the item characteristics. In the second
part of the study, assuming an anchor free of contamination, we assess how varying
item parameters affect true- and false-positive rates of subsequent DIF detection. In
summary, we investigate: (1) the relationship between item characteristics and anchor
selection; and (2) the effects of item characteristics on DIF detection. This is done under
the MIMIC model framework.

Simulation study: Part 1

The association between item characteristics and anchor selection is studied through a
simulation study by performing the M-IT while varying the DIF item’s discrimination
and difficulty parameters.

Simulation design

Only one DIF item was included in the test so that the effect of the DIF item’s discrimi-
nation and difficulty parameters on anchor selection may not be confounded with the
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number of DIF items on the test. With 1 DIF item and 33 DIF-free item, the test length
was fixed at 34 for every studied condition. Assuming the 2-parameter logistic model
(2-PL; eq. 4 and 5), response data was generated for 500 examinees per group (focal/refer-
ence) — the total sample size was of 1000 examinees. True abilities of test-takers from the
focal and the reference groups followed the standard normal distribution (§ ~ N (0, 1)).

For each iteration of the M-IT, each item acts as the interim matching variable at a time
with their 8; = 0, while the MIMIC model is fit and a DIF index (absolute value of 3;)
is obtained for all other items on the test. With a total of 34 iterations, each item has

33 DIF indices, thus an average DIF index is computed for each item, B = Zf’il 5]@.
Items are then ranked on their average DIF indices, and the ones with the four smallest
average indices are selected to compose the anchor. On the rare occasion of a tie, where
the items ranked fourth and fifth (from smallest to largest) have the same average DIF
index, the one with the smallest variance over iterations is selected for the anchor.

DIF effect

Under every condition, the DIF item is the first item of the test and has a uniform DIF
effect favoring the reference group. As discussed previously, if a DIF effect is present,
the item functions with different true values of the difficulty parameter for the focal
and reference groups. Let the difficulty parameters of the focal and reference groups be
bjr and b; r, respectively, for the DIF item. The DIF effect size in this study is chosen
as the difference between difficulty parameters Ab; = b;r — bjr. Under the 2-PL
model, Raju (1988) showed that the signed area between the two ICCs is equivalent to
the difference between the difficulty parameters in the two groups. There has been a
long history of using the area between two item characteristic curves (ICCs) of reference
versus focal groups as a measure of DIF effect, tracing at least back to the early 1980s
(Rudner, Getson, & Knight, 1980; Shepard, Camilli, & Averill, 1981), and the difference
between difficulty parameters has been used to generate DIF effect in many studies
(e.g., Finch, 2005; Jamali, Ayatollahi, & Jafari, 2017; Jin, Myers, Ahn, & Penfield, 2012;
Wang & Shih, 2010; Woods & Grimm, 2011). Therefore, we find it important to show
its limitations in a case that applies to so many previous studies.

Given group membership and a fixed true ability level 8 = 6 = 0, the probabilities
of correctly answering an item when uniform DIF is present are:

B ~exp(a;(0 —bjr))
P(yjr = 1|0,R) = 11 epoaj(H —]bjR))’ @

and
exp (a;(0 — (bjr + Abj)))

1+ exp (a;(0 — (bjr + Abj)))’
where a; is the discrimination parameter and y;r and y;r represent the observed re-

sponses for individuals of the reference and focal groups, respectively. For a DIF item
with Ab; > 0 (Ab; < 0) the item will seem more difficult to individuals from the focal

P(yjr =110, F) = ®)
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(reference) group, given the same true ability level.

The item parameters from the 2-PL are related to the parameters of the MIMIC model
through the equations (B. Muthén & Christoffersson, 1981):

Aj
G e ©
b= B2 (7)

when the latent variable is constrained to have mean 0 and variance 1. Additionally, if
Z = 0 for the reference group respondents and Z = 1 for the focal group respondents,
the effect size of uniform DIF may be rewritten as Ab; = bjp —b;r = —(;/\; (MIMIC-
ES; Jin et al., 2012). In what follows item parameters for the DIF item are indicated with
the subscript “DIF”. Similarly, item parameters of DIF-free, clean items are indicated
with the subscript “clean”.

A DIF effect was introduced by adding a difference of Abp;r = .3,.5 or .7 to the
difficulty parameter of the focal group (br prr = br,prr + Abprr) for all simulation
conditions. Given fixed apsr and Abp;r, the expected value of 5; can be derived
through equations 6 and 7. Furthermore, the effects of .3, .5 and .7 are equivalent to
negligible, moderate and large DIF effect sizes, respectively, on the delta scale (Zwick,
2012). Note that Ap;g = —2.35 X Abpyp, therefore Ay = —.705, —1.175 and
—1.645 for Abprr values of .3, .5 and .7, respectively.

Item parameters

There was a total of 34 items on the test (1 DIF item and 33 DIF-free items). The DIF item
was the first item on the test, and the remaining items were DIF free. Item parameters for
the DIF-free items were fixed for every condition, while the DIF item parameters varied.

The DIF-free item parameters are described in Table 1. Item discrimination values were
.5, 1.0 or 2.0, and the difficulty parameters were between -2.5 and 2.5 with increments of
.5. The test had a total of eleven DIF-free items of each discrimination parameter value
and three DIF-free items of the same difficulty parameter value. The DIF-free items
parameters were varied this way to allow investigation of the number of times an item
was selected through a range of item discrimination and difficulty values.

The DIF item parameter conditions are summarized in Table 2. Discrimination was .5, 1.0
or 2.0, and difficulty for the reference group varied between -2.5 and 2.0 with increments
of .5. This fully-crossed design was chosen so that the effects of discrimination and
difficulty parameters on DIF detection could be parsed apart. The DIF item parameters
varied in a total of 3 discrimination x 10 difficulty x 3 DIF effect sizes = 90 conditions.
Each simulation condition was replicated 1000 times.
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Table 1:
Item difficulty and discrimination parameters for the 33 DIF-free (clean) items on the test.

Item Gclean bclean ‘ Item Gclean bclean ‘ Item Qclean bclean

Y, .5 25| Y3 1.0 25| You 2.0 -2.5
Ys3 5 2.0 | Yiu 1.0 2.0 | Yo5 2.0 -2.0
Y, 5 -1.5 | Y 1.0 -1.5 | Yo 2.0 -1.5
Ys .5 -1.0 | Yig 1.0 -1.0 | Yo7 2.0 -1.0
Ys 5 -5 Yz 1.0 -5 | Yaos 2.0 -5
Y7 5 0| Yig 1.0 0| Ya 2.0 0
Ys 5 S| Yo 1.0 S5 Yo 2.0 5
Yy 5 1.0 | Yoo 1.0 1.0 | Y3 2.0 1.0
Y10 5 1.5 | Yo 1.0 1.5 | Yao 2.0 1.5
Y11 .5 2.0 | Yoo 1.0 2.0 | Ys3 2.0 2.0
Y12 .5 2.5 | Yo3 1.0 2.5 | Yy 2.0 2.5
Table 2:
DIF item (Y1) difficulty and discrimination values: 30 simulation conditions.
Discrimination Difficulty

(aprF) br.prr brprF=.3 brprr=.5 brpprr=.7

5 2.5 2.2 -2.0 -1.8

1.0 2.0 -1.7 -1.5 -1.3

2.0 -1.5 -1.2 -1.0 -.8

-1.0 -7 -5 -3

-5 -2 0 2

0 3 .5 7

5 .8 1.0 1.2

1.0 1.3 1.5 1.7

1.5 1.8 2.0 2.2

2.0 2.3 2.5 2.7

Outcome variables

Anchor frequency. In the M-IT step, four items are selected for the anchor set, and for
each replication, we record which items are chosen. Anchor frequency is reported for
each DIF-free item as the average number of times that item was selected into the anchor
per DIF item discrimination (apr) condition. If all items had the same characteristics,
each item would be expected to be selected into the anchor 4/.J x 1000 times, where J is
the total number of items on the test. With J = 34, DIF-free items are each expected to
be selected about 117 times out of 1000 replications. Anchor frequency is only reported
for DIF-free items. Anchor accuracy rates provide information about whether the DIF
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item ended up in the anchor.

Anchor accuracy. For each replication, we record whether the anchor set included the
DIF item. Anchor accuracy is the proportion of times the anchor is clean; that is, it
contains only DIF-free items.

The simulation study was conducted using R and Mplus. Data was generated with R
version 3.3.2 (R Core Team, 2018). All subsequent analyses, including M-IT and M-
PA, were run on Mplus (Muthén & Muthén, 1998-2017) through the MplusAutomation
package in R (Hallquist & Wiley, 2018). The default weighted least squares estimator in
Mplus (ESTIMATOR=WLSMV) was used (B. O. Muthén, du Toit, & Spisic, 1997).

Results

Anchor frequency. Tables 3 and 4 show average anchor frequencies (across DIF item
difficulty conditions) for DIF-free items averaged over their discrimination and difficulty
parameters conditions, respectively. In these two tables, the DIF item had a moderate
effect size of Abpyr = .5. Table 3 shows that clean items with small discrimination pa-
rameters were more likely to be selected into the anchor. For example, when the DIF item
had a discrimination parameter ap;r = 1.0, the average anchor frequencies were 362, 2
and 0 when the clean items were low, moderate or highly discriminating, respectively.
Discrimination parameter of the DIF item had no effect on anchor frequencies. Table 4
shows that average anchor frequencies for clean items remained about the same across
difficulty parameter values. For instance, when the DIF item discrimination parameter
was aprr = 1.0, average frequencies were 122 and 121 for DIF-free items of b¢jeqn = 0
and bejeqn = 2.0, respectively. In addition, the discrimination parameter of the DIF
item does not seem to affect anchor selection frequency. Results for the conditions of
negligible (Abprr = .3) and large (Abp;r = .7) DIF effect sizes are reported in the
Appendix in Tables 7 to 10 and similar trends were found under those conditions. DIF
magnitude did not seem to affect anchor selection frequency.
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Table 3:
Average frequency of DIF-free items selected by the M-IT per item discrimination parameter
(Abprr = .5).

Qclean

apJrF ) 1.0 2.0

.5 354 2 0
1.0 362 2 0
20 362 2 0

Table 4:
Average frequency of DIF-free items selected by the M-IT per item difficulty parameter
(Abprr = .5).

bclean
apjp —25 —-20 -15 —-10 -5 0 ) 1.0 1.5 20 25
%) 119 121 121 119 116 117 117 120 116 122 119

1.0 122 121 121 121 121 122 119 119 122 121 125
2.0 123 120 122 120 120 120 120 122 120 123 124

Anchor accuracy. The DIF item was sometimes included by the M-IT in the anchor set.
Rates of anchor accuracy are reported in Table 5. Accuracy rates were 100 % under
all conditions as long as the item was moderate (aprr = 1.0) to highly discriminating
(aprr = 2.0). When the DIF item had small discrimination ap;r = .5, rates of
accuracy ranged from 89 to 94 % and were smaller for items with extreme difficulty
parameter values, that is, when the item was very easy or very hard. For example, when
br.prr = —2.0, the anchor set was clean 91 % of the time, against 94 % accuracy when
br prr = 0. In summary, large discrimination and moderate difficulty of the DIF item
were associated with higher accuracy rates.

Simulation study: Part 2

In the second part of this study, we evaluate the performance of the M-PA with a pure
four-item anchor in terms of true- and false-positive rates of DIF detection with three
anchor configurations (small, medium and large anchor item discrimination) and varied
DIF item parameters.

Simulation design

Test length, sample size, item parameters and DIF effects remain the same as in Part
1. Anchor sets were constructed from a subset of four items from the test. Out of a
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Table 5:
Accuracy rates of selecting a clean anchor with the M-IT (Abprr = .5).
Difficulty
br,DIF -25 —-20 -15 —-10 -5 0 b 1.0 1.5 2.0
brpprFr —20 -15 -1.0 -5 0 .5 1.0 1.5 20 25
aprr Accuracy Rates

.5 .893 906 910 924 940 940 938 .924 907 918
1.0 1 1 1 1 1 1 1 1 1 1
2.0 1 1 1 1 1 1 1 1 1 1

test with 33 clean items, four clean items were chosen as the anchor according to three
configurations: small (agnchor = -5), medium (agnehor = 1.0) and large (agnehor =
2.0) discrimination parameters. For each item discrimination condition, the anchor items
were the ones with difficulty parameters -1.0, -.5, .5 and 1.0. That is, as displayed in
Table 1, the items that composed the small anchor item discrimination condition were
Y5, Y, Ys and Yy; for the medium discrimination condition, items Yig, Y17, Y19 and
Y50; and, for the large discrimination condition, items Y57, Yog, Y30 and Y31. We only
examined the effect of varying anchor items’ discrimination parameter on power of DIF
detection, as we expect the effect of anchor item discrimination to be more pronounced
than anchor item difficulty.

Outcome variables

Type-I error. Type-1 error rates are computed as the proportion of times the DIF test of a
clean item is significant out of 1000 replications for each of the 29 clean items outside
the anchor. Type-I error rates were computed after running the M-PA for each simulation
condition, and therefore, type-I error rates are averaged over all conditions of DIF item
parameters and DIF effect sizes, as no effect on the rates of false positives is expected
from varying those conditions.

Power. The proportion of significant tests of the DIF item out of 1000 replications is
reported across item parameters and anchor configurations conditions.

Results
Type-I error rates. Average type-I error rates are reported in Table 6 for each clean
item discrimination parameter value for an anchor of small (agpchor = -5), medium

(a@gnchor = 1.0) and large (agnchor = 2.0) item discrimination parameter. Each number
in Table 6 represents an average over items with the same discrimination value. For
example, the first element of the first row is an average rate over DIF tests of items Y5 to
Yy, Y7, and Yig to Y7o, given a small anchor item discrimination. The diagonal cells are
type-I error rates averaged over items that have the same discrimination as the anchor
items, and therefore represent an average over seven items. All off-diagonal elements are
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averages over eleven items within the test that have the same discrimination parameter
(none of which were part of the anchor). Results show that, in general, false positive
rates are well-controlled for each anchor configuration condition.

Table 6:
Average type-I error (and standard deviation) for each clean item discrimination parameter
condition given anchor configuration.

DIF-free item discrimination

Anchor configuration  agpchor  Gelean = -9 Gelean = 1.0 Qglean = 2.0

small 5 .0487(.006) .048(.006)  .049(.007)
medium 1.0 .047(.007)  .0497(.007)  .051(.007)
large 2.0 .050(.007)  .049(.007)  .0491(.006)

TType-I error rates are averaged over seven clean items that are not in the anchor but have the same
a as the anchor items. All other values in the table are averaged over a total of eleven items.

Power rates. Due to space limitations, we report power rates here only for a moderate
DIF effect (Abprr = .5) and a medium anchor item discrimination (agpnchor = 1.0),
which are shown in Figure 2. A constant relationship is found between DIF item difficulty
and power when aprp = .5 and a quadratic relationship when aprr = 1.0 or 2.0. The
proportion of times the DIF item was correctly identified was overall higher when the
DIF item had a large discrimination parameter. For example, power rates were .45, .88
and .99 for aprr = .5, aprrp = 1.0 and ap;r = 2.0, respectively, when bp;p = 0.
When the item was too easy/difficult, power rates were smaller than when the items
had mid-range difficulty, unless the DIF item discrimination was very low (aprr = .5).
Complete results can be found in the Appendix for the small (Figures 4 to 6), medium
(Figures 7 and 8) and large (Figures 9 to 11) anchor item discrimination conditions.
Overall, the same trends for power of DIF detection are observed for other conditions
of anchor item discrimination and DIF effect sizes. As expected, the DIF item is more
easily identified by the M-PA as DIF effect size increases, given a fixed discrimination
and difficulty parameter value.

Anchor configuration also affected the power of DIF detection, as shown by Figure 3,
where results for a DIF item of moderate DIF effect (Abp;r = .5) are reported for
three levels of item difficulty of the reference group: a) medium (br,prr = 0), b)
medium-high (bg, prr = 1.0) and c) high (b, prr = 2.0). In general, power decreased
as the DIF item difficulty level increased, while the power increased with increasing
values of DIF item discrimination. For all levels of DIF item difficulty, given a fixed
DIF item discrimination, the power rates were larger if the anchor items were highly
discriminating. For example, in Figure 3a, when ap;r = 1.0, the empirical power
rates were .73, .88 and .93 for the anchor item small-, medium- and large-discrimination
conditions, respectively. Due to space limitations, we omit the results for other studied
conditions of bg prr. Note that if bg pyr = —1.0 or —2.0, power rates are expected
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Figure 2:
Power rates given a clean anchor set with items of medium discrimination (¢gnchor = 1.0) and
moderate DIF effect size (Abprr = .5).

to be similar to those shown for br prr of equal absolute value but different direction.
Results for the conditions where Abp;r was .3 or .7 are reported in the Appendix in
Figures 12 and 13 and similar trends were observed for each of the DIF effect size
conditions.

Conclusions

Although anchor contamination and the quality of the anchor set may affect our ability to
identify DIF items, few studies have considered the effect of difficulty and discrimination
parameters on anchor selection and subsequent DIF detection. Through a simulation
study, we show how item characteristics affect (1) anchor selection and (2) true- and
false-positive rates of DIF detection.

Results from the simulation study show that the anchor set produced by the iterative
MIMIC model procedure (M-IT) is more likely to include only DIF-free items if the
DIF item has a large discrimination parameter. That is, the M-IT will rarely select DIF
items with high discrimination for the anchor, and the risk of anchor contamination
is therefore decreased. These results are not surprising if we consider the mechanism
underlying the anchor selection procedure and how the DIF indices change with the
item parameters. The M-IT is a rank-based method that ranks items according to their
estimated average DIF index (absolute group parameter B) and selects the items with
the m smallest DIF indices (m = 4 in this study). A large discrimination parameter
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amplifies the DIF index, that is, given two items with the same DIF effect by — bp, the
item with a large discrimination parameter is expected to have greater DIF indices (| B D
than the one with a small discrimination parameter. This can be shown analytically for
the MIMIC model. Given the effect size MIMIC-ES for uniform DIF, Ab = %ﬁ, some
algebraic manipulation and equation (6) lead to the following relationship between 3

and a:
a

V1+a?
Therefore, 8 estimates will increase (in absolute value) as a increases, even if the DIF
effect size Ab remains the same. In this study, we considered the case of only one DIF
item on the test; thus, across conditions, while keeping everything else constant, a highly
discriminating DIF item is less likely to be selected for the anchor than a DIF item of
small discrimination. Conversely, a DIF item with low discrimination is more likely to
be mistakenly included in the anchor set.

B=—Ab\=—Ab (8)

A similar trend is found for the DIF-free items most likely to be selected into the anchor.
If a clean item has a small discrimination parameter, it is more frequently chosen for the
anchor than a clean item of high discrimination. Intuitively, this result can be explained
by the observed discrepancies between groups resulting from sampling variability. Such
discrepancies make it seem as if an item of high discrimination functions differently
between groups, more so than an item of low discrimination, at each ability level,
making it more likely for the highly discriminating item to be ranked lower in the M-IT
procedure. Sampling variability also makes it more likely for a DIF-free item with large
discrimination parameter to appear to have a DIF effect than truly DIF items of low
discrimination, and consequently, for DIF items to be chosen over DIF-free items for the
anchor. No effect was found regarding item difficulty on the frequency which clean items
are selected for the anchor. Clean items of varying levels of difficulty were selected for
the anchor with about the same frequency.

Accuracy rates were 100 % across all conditions as long as the DIF item had at least
a moderate effect (Abprr = .5) and a medium (apyr = 1.0) or large (ap;r = 2.0)
discrimination parameter. For a DIF item of low discrimination (aprr = .5), the chance
of anchor contamination increases as the item difficulty level goes to the extremes. This
shows a small but relevant effect of item difficulty on the quality of the anchor.

In summary, part 1 of this study suggests that item discrimination plays an important
role in anchor selection. Part 1 showed that clean items of low discrimination are more
likely to be selected for the anchor than highly discriminating ones. Therefore, in part 2,
we address the question as to how anchor item discrimination affects the power of DIF
detection. Overall, our results suggest that a small anchor item discrimination negatively
impacts power of DIF detection; with the assumption of a clean anchor, the DIF item is
more easily identified if the items composing the anchor are highly discriminating.

Furthermore, the power of DIF detection also depends on the DIF item difficulty param-
eter, but such effect changes at different levels of item discrimination. For DIF items
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with very small discrimination parameters (.5), power remains about the same for any
value of difficulty of the DIF item, given fixed DIF magnitude and anchor configuration.
When the DIF item has a moderate to large discrimination parameter (1.0 or 2.0), power
decreased quadratically with increasing difficulty parameters. That is, items had higher
power for the mid-range difficulty levels, and the lowest power was found when the
items were very easy or very difficult. Because difficulty and discrimination parameters
are usually positively correlated, we would rarely encounter an item that is very easy
(large negative value) and highly discriminating. Therefore, we are mainly interested in
the cases where, for example, easy items have small discrimination or hard items have
large discrimination. In such cases, for the purpose of DIF assessment, we would like
to avoid items that are too easy, since they would likely not discriminate well between
different ability levels, which would make DIF testing a challenge, while items in the
range of medium to high difficulty would provide acceptable levels of discrimination
and consequently of power of DIF detection.

Anchor configuration also affected the power of DIF detection. An anchor composed of
highly discriminating items produced the largest power for nearly all conditions. The
M-IT, however, more frequently selects items of low discrimination, which could hinder
the ability to identify DIF items.

Discussion

A possible solution to the issue of frequent selection of items of low discrimination would
be to implement a similar anchor selection strategy like the one employed by Lopez
Rivas et al. (2009) and Meade and Wright (2012), where the anchor was constructed by
ranking items with non-significant DIF tests according to their discrimination param-
eter. An application of such a strategy to the MIMIC model method of assessing DIF
would produce anchors with items of high discrimination while taking advantage of the
flexibilities of the MIMIC model framework.

In simulation studies, the DIF effect size (for example, Raju’s signed area by — bR)
is usually fixed across DIF items on the same test, and the average power rates of
successfully identifying DIF items are reported (e.g., Wang et al., 2009). This requires
interpreting power values with caution because they depend on the particular item
parameters in the assessment. When multiple DIF items are considered in a simulation
study, an average power rate may be reported, and, in that case, the items’ parameters
are usually not equal across items. For example, Shih and Wang (2009) and Wang et
al. (2009) had as many as 15 DIF items on a 50-item test, in which case discrimination
parameters ranged from .7 to 2.0 and had an average value of 1.27 (both studies used
the item parameters derived in Cohen et al., 1996). Woods and Grimm (2011) reported
average power rates for uniform DIF items, which comprised of a third of tests with
varying lengths of 6, 12 or 24. In that study, discrimination parameters were randomly
generated from N(u = 1.7,0 = .3) and truncated between .5 and 2.0. Although a test
with different values for the discrimination parameter conforms to the expectation that
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items within the same test may not uniformly discriminate the population, reporting
the average power of DIF detection can be misleading. Simulation studies that report
average power but do not stress the difference in discrimination parameter values may
lead readers to expect more/less power from a DIF method than it is warranted, given
the practitioner’s own test item characteristics. Additionally, a DIF researcher may
not be able to compare DIF studies on the same method. For clarity in interpretation,
we recommend that future studies report power conditional on the item parameters or
explicitly report on the DIF item parameter values and their relationship with power of
DIF detection.

This study has some limitations. All simulations focused on anchor selection and uniform
DIF detection of dichotomous items when using the M-IT/M-PA two-step procedure.
Other anchor selection procedures and other DIF tests (e.g., Mantel-Haenszel test or
SIBTEST) for uniform and non-uniform DIF on dichotomous or polytomous items may
be studied in the future. Additionally, the measure of DIF effect size chosen for this
study (Raju’s signed area) has three main limitations: first, its application to non-uniform
DIF may be problematic in the case where the item characteristic curves cross near
the difficulty parameter, as the areas would cancel each other out; second, it does not
have a one-to-one relationship to the power of identifying a DIF effect; and third, it
does not measure DIF effect size accurately in the presence of impact (DeMars, 2011).
This study investigates tests with a sample size of N = 1000 and assumes focal and
reference groups are of equal size, but in practice, the focal group is expected to be
smaller than the reference group. Furthermore, it is generally expected for a test to
have several DIF items, while this study only investigated the condition where 1 out
of 34 items on the assessment had a DIF effect. This study design was chosen out of
necessity, as including more DIF items would make interpreting the results dependent on
the average DIF items’ discrimination and difficulty parameters. As the number of DIF
items increases, interpretation could become increasingly challenging. Future directions
include evaluating other anchor selection and DIF methods, while varying sample sizes,
reference and focal group sample size ratio, and mean ability difference between the two
groups.

Finally, this study points to a gap in the current DIF literature: a lack of a widely used
and accepted effect size measure for DIF effect. DeMars (2011) suggests that power is
associated with the measure of DIF magnitude. The author discusses the relationship
between item parameters and existing measures of DIF magnitude and theoretically
demonstrates that different measures of DIF effect are based on different metrics and,
therefore, relate to the item parameters in a variety of ways. For instance, the author
showed that the log-odds ratio increases as the item discrimination increases but remains
constant for varying item difficulty values. Thus, the Mantel-Haenszel-based effect
size is larger for highly discriminating items than for poorly discriminating items. In
turn, the IRT-based probability of correct difference between reference and focal group
decreases for items of low discrimination value and items of extreme difficulty parameter
values, given the same DIF magnitude. This also has implications for the standardized
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p-difference (Dorans, Schmitt, & Bleistein, 1988), which is based on the difference
in probabilities of correct for each demographic group weighted by the number of
respondents in each ability level (e.g., sum-score levels) for the focal group. Although
DeMars (2011) did not directly evaluate power of DIF detection, we expect that DIF
items with large magnitude will be more easily identified by the DIF method than items
of small magnitude. In other words, power of DIF detection will depend on the DIF effect
size measure and the scale set by such measure. Determining a standard, widely-used
DIF effect size measure would allow researchers to more clearly interpret and compare
DIF studies results, regardless of the technique used, and is a potential future direction
from this study.
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Appendix
Table 7:
Average frequency of DIF-free items selected by the M-IT per item discrimination parameter
(Abprr = .3).
Gclean
apirr .5 1.0 2.0
) 344 2 0
1.0 361 3 0
2.0 361 3 0
Table 8:
Average frequency of DIF-free items selected by the M-IT per item discrimination parameter
(Abprr = .7).
Gclean
apirr .5 1.0 2.0
) 360 2 0
1.0 362 2 0
2.0 362 2 0
Table 9:
Average frequency of DIF-free items selected by the M-IT per item difficulty parameter
(Abprr = .3).
bclean

aprp —25 -20 -15 —-10 -5 0 D 1.0 15 20 25

5 119 115 117 114 114 114 112 115 114 117 117
1.0 123 121 121 121 120 122 118 119 119 125 124
2.0 126 122 121 g 122 119 118 121 118 121 125
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Table 10:
Average frequency of DIF-free items selected by the M-IT per item difficulty parameter
(Abprr = .7).

bclean
aprp —25 —-20 -15 -10 -5 0 ) 1.0 15 20 25
.5 128 119 121 121 118 121 118 117 121 120 123

1.0 123 122 124 120 121 119 118 117 122 123 126
2.0 123 122 120 121 116 122 120 121 119 124 125

Table 11:
Accuracy rates of selecting a clean anchor with the M-IT (Abprr = .3).

Difficulty

br.prr —25 -20 -15 -10 -5 0 D 1.0 15 20
bpprr —-22 -17 -12 -7 =2 3 .8 1.3 18 23

aApIF Accuracy Rates
5} 788 .809 782 797 835 807 813 .809 .804 815
1.0 998 1 1 1 .999 1 1 1 1 .999
2.0 1 1 1 1 1 1 1 1 1 1
Table 12:
Accuracy rates of selecting a clean anchor with the M-IT (Abprr = .7).
Difficulty
br.prr —-25 —-20 -15 =10 -5 0 .5 1.0 1.5 2.0
bpprr —-18 —-13 -8 -.3 2 7 1.2 1.7 2.2 2.7
apIF Accuracy Rates
.5 972 983 987 984 990 985 978 987 985 .964
1.0 1 1 1 1 1 1 1 1 1 1

2.0 1 1 1 1 1 1 1 1 1 1
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Figure 4:

Power rates for a 34-item test, given a clean anchor set with items of small discrimination
(@anchor = .5) and negligible DIF effect size (Abprr = .3).
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Figure 5:

Power rates for a 34-item test, given a clean anchor set with items of small discrimination
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Figure 6:

Power rates for a 34-item test, given a clean anchor set with items of small discrimination

(@anchor = .B) and large DIF effect size (Abprr = .7).
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Figure 7:
Power rates for a 34-item test, given a clean anchor set with items of medium discrimination
(a@anchor = 1.0) and negligible DIF effect size (Abprr = .3).
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Figure 8:

Power rates for a 34-item test, given a clean anchor set with items of medium discrimination
(Ganchor = 2.0) and large DIF effect size (Abprr = .7).
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Figure 9:

Power rates for a 34-item test, given a clean anchor set with items of large discrimination
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Figure 10:

Power rates for a 34-item test, given a clean anchor set with items of large discrimination

(@anchor = 2.0) and moderate DIF effect size (Abprr = .5).
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Figure 11:
Power rates for a 34-item test, given a clean anchor set with items of large discrimination
(Ganchor = 2.0) and large DIF effect size.
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Figure 12:
Power rates across anchor configuration conditions for a negligible DIF effect size (Abprr = .3)
when (a) bR,DIF = 0, (b) bR,DIF = 1.0 and (C) bR,DIF = 2.0.
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Figure 13:
Power rates across anchor configuration conditions for a large DIF effect size (Abprr = .7)
when (a) bR,DIF = 0, (b) bR,DIF = 1.0 and (C) bR,DIF = 2.0.



