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Abstract

Previous studies have repeatedly  demonstrated the existence of item position effects

in large-scale  assessments. Usually, items are answered correctly more often when

administered at the beginning of a test compared to at the end of a test. In this article, the

aspects of item position effects that are investigated are their pattern, whether they remain

stable over time, and whether they are affected by changes in the test administration

mode. For this purpose, a Bayesian item response model for modeling item position

effects is proposed. This model allows for nonlinear position effects on the item side and

linear individual differences on the person side. A full Bayesian estimation procedure is

proposed as well as its extension to data collected from stratified clustered samples. The

model was applied to the reading data collected in the 2009, 2012, and 2015 cycles of

the Programme for International Student Assessment (PISA) for six countries.
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Introduction

Large-scale assessments (LSAs) in the field of education aim to monitor student com-

petencies and to examine them as indicators of school-system quality from an output

perspective. LSAs describe specific student abilities, how and why students at certain

schools show certain levels of abilities, or even how and why the students of whole

countries show different levels of abilities from those of other countries. National LSAs

are typically aligned with national curricula and aim to provide information about what

students of the respective country know and are able to do with regard to the respective

curriculum. International LSAs assess students from different countries and measure the

abilities or skills that are assumed to be crucial for students’ participation in society. The

Programme for International Student Assessment (PISA; OECD, 2017), for instance,

”assesses the ability of 15-year-olds to apply their knowledge in reading, mathematics,

and science to real-life problems, rather than the acquisition of specific curriculum con-

tent” (Kirsch, Lennon, von Davier, Gonzalez, & Yamamoto, 2013, p. 17). International

LSAs make comparisons between the participating countries’ educational outcomes

possible.

Whether national or international, LSAs provide researchers and policy makers with

benchmarks for judging educational outcomes (i.e., those of an education system) within

a national or international frame of reference. In general, LSAs are conducted iteratively.

PISA, for instance, takes place every three years. Providing information about educational

outcomes and their development over a longer period of time makes it possible to monitor

education systems. By interpreting the findings of LSAs, policy makers gain insights into

the functionality, productivity, or even equity of a country’s education system. Whenever

these insights are relevant for decision making, the validity of those interpretations must

be confirmed.

Item position effects in LSAs

In order to meet the abovementioned objectives of LSAs (i.e., valid comparisons between

countries, reports of ability trends within countries over time), standardized achievement

tests are applied to measure the ability construct under investigation. These tests, consist-

ing of a set of items, are administered to students. The observed performance a student

shows in solving these items indicates the level of his or her ability, which the test is

supposed to measure. To derive measures of the ability of interest from the observed

performance, several statistical models can be used. The most prevalent models are

grounded in the item response theory (IRT; e.g., van der Linden & Hambleton, 2013). In

all of these models, the assumption has to be made that all relevant factors that have an

influence on a student’s test performance are captured by the model.

At the item level this means that administered items are assumed to function invariantly

regarding some of their characteristics, if these characteristics are not captured by the

model. In this respect, ‘functioning’ can be understood as the influence of the item and
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its characteristics on the way in which it is responded to by students. The influence

that an item characteristic has on the response behavior should correspond to at least

some parts of the construct that the item is intended to measure. In this case, the item

characteristic causes construct-relevant variance in the response behavior. However,

there might also be some item characteristics that do not function invariantly and that

cause variance in the response behavior that is not intended to be measured. This kind of

variance is called construct-irrelevant variance. Construct-irrelevant variance can affect

the derivation of test scores and thereby threaten the validity of the interpretations of

these test scores (Messick, 1995).

Effects that represent construct-irrelevant variance can be traced back to changes in

the test administration or in test contexts, for example. Probably the most well-known

example of a validity threat to the interpretation of test scores is the 1986 NAEP reading

anomaly described by Zwick (1991). A suspiciously large decline in the estimated

reading proficiency from 1984 to 1986 could be traced back to changes in test contexts.

Furthermore, a well-known item characteristic that influences response behavior is the

position within a sequence of items in which an item is administered to a student (e.g.,

Mollenkopf, 1950). Since variance caused by so-called item position effects (IPEs) is

usually not intended to be measured, these effects might threaten the validity of test score

interpretations.

Typically, in LSAs, several test forms that each consist of different items are administered

and each item occurs in different positions within the different test forms. Consequently,

IPEs should always be taken into consideration in LSAs. Furthermore, LSAs are low-

stakes tests, which means that the result of the test does not have any personal conse-

quences for the students who have taken it. The fact that test results have no individual

impact might reduce the students’ test-taking motivation and, consequently, the effort

that the students invest in the test. Wise and DeMars (2005) examined the relationship

between test-taking motivation and test scores. They concluded that when students’

abilities are assessed by a low-stakes test, there are indications that these abilities are

substantially underestimated due to students’ low test-taking motivation, which leads to

low test-taking effort. Weirich, Hecht, Penk, Roppelt, and Böhme (2016) investigated the

degree to which IPEs are moderated by test-taking effort and/or changes in test-taking

effort. Even though they could not completely explain the variances found in IPEs with

the variances found in test-taking effort, their findings underline the fact that LSAs, due

to their low-stakes character and the resulting lower test-taking effort, are especially

susceptible to IPEs. The presence of IPEs in LSAs has already been shown in several

studies. We refer the reader to the review, for instance, in Bulut, Quo, and Gierl (2017).

When analyzing data derived from LSAs in which IPEs may be present, two important

points/steps are (1) the equating of test scores derived from different test forms and (2)

the linking of test scores derived from different assessments. First, in order to map the

observed scores obtained in different test forms on a common scale, it is often assumed

that the respective item parameters function invariantly across test forms and, therefore,
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invariantly across positions. Second, in order to link the abilities derived from two

different assessments, it is assumed that some sort of measurement invariance holds (e.g.,

Meredith, 1993). Some researchers postulated at least partial invariance (e.g., Byrne,

Shavelson, & Muthén, 1989), others claimed that the items that are common to both

assessments function invariantly on average in both assessments (e.g., Kolen & Brennan,

2004).

One option to deal with IPEs is to use an appropriate test design. Such test designs aim

(amongst other things) to balance position effects across items. That is, every item is,

on average, affected by the same IPEs. As a result, the derived item parameters that

represent an item characteristic such as the average item difficulty (across item positions)

show no or only minimal bias when estimated in the population. Item parameters are

then interpreted as parameters that were derived from a test of a certain length (including

other characteristics such as test breaks), in which the items occur in (approximately)

every position with equal frequency (e.g., Frey & Bernhardt, 2012; Frey, Hartig, & Rupp,

2009).

LSAs generally aim to provide information about subpopulations, such as individual

countries. Beyond the assumption that IPEs are averaged out in a population, one

could question whether IPEs are invariant between subpopulations (e.g., across students,

groups, countries, or over time; Meyers, Miller, &Way, 2009). In this case of invariance,

a comparison of abilities between subpopulations is unaffected by IPEs even if they

are not explicitly accounted for. However, it has been shown in the literature that this

assumption is questionable and that IPEs seem to vary across persons (Debeer & Janssen,

2013; Hartig & Buchholz, 2012; Robitzsch, 2009), between countries (Debeer, Buchholz,

Hartig, & Janssen, 2014; Le, 2009), and over time (Nagy, Haag, Lüdtke, & Köller,

2017). Therefore, the difference in the test scores of different subpopulations such as

countries might partly depend on the position of the administered items in the test (Frey

& Bernhardt, 2012; Nagy, Lüdtke, & Köller, 2016; Nagy et al., 2017).

Whereas IPEs and even changes in IPEs have been analyzed and reported in the literature

quite extensively, there is only little knowledge about how stable these effects are

for certain subpopulations over a longer period of time when assessments take place

iteratively. In this article, we focus on the IPEs that occurred in the reading domain of the

PISA assessments in 2009, 2012, and 2015, and we analyze the stability of these IPEs

for six countries across time. We chose this domain because reading is regarded as a key

competence that students require for their academic success (e.g., Connor et al., 2011).

In conducting these analyses, we were particularly interested in the most appropriate

specification of a statistical model for quantifying IPEs. It is frequently assumed that

IPEs follow a linear curve when considered as a function of test duration. We questioned

the specification of IPEs as linear effects and allowed them to function more flexibly.
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Nonlinearity of item position effects

Previous research on IPEs in LSAs has mainly been based on the assumption that IPEs

on the person and item side are linear (e.g., Nagy et al., 2017, 2016; Weirich et al.,

2016; Debeer et al., 2014; Debeer & Janssen, 2013; Hartig & Buchholz, 2012). This

assumption is mainly based on the observation of growing exhaustion during testing

situations on the person side, which leads to a linear drop in performance. However,

Debeer and Janssen (2013) discussed alternative forms of modeling IPEs, such as a

quadratic function. Arguments supporting alternative modeling approaches stem from

psychological research, where it has been shown that the drop in performance during

testing situations does not perfectly follow a linear function: While the drop in perfor-

mance was significantly lower at the beginning of a test, it accelerated at the end of

a test. For instance, Schweizer, Schreiner, and Gold (2009) focusing on intelligence,

found that a nonlinear “acceleration” function outperformed a linear one. This was also

supported by the work of Kang (2014), who used the PISA 2009 data and examined how

different representations of item positions (categorical, linear, and quadratic) affected the

relationship between item difficulty and item position. For the domain of mathematics

in vocational education, Frey, Bernhardt, and Born (2017) showed that IPEs followed

a curvilinear function. Taking these findings together, it seems reasonable to assume

that IPEs in PISA reading assessments are nonlinear. In more detail, the present paper

investigates whether violations to the linearity of IPEs can be found in the PISA reading

assessments. In addition to the pattern of IPEs within one assessment, we investigated

whether IPEs varied within countries and across assessments.

Stability of item position effects across assessment cycles

PISA – as an example of a school-system monitoring study – is conducted in a regular

three-year cycle in a multitude of countries. PISA assesses the domains of reading,

mathematics, and science in each assessment. Therefore, it is ideally suited to study the

stability of IPEs across countries and points of measurement. IPEs generally depend

largely on the test context and the testing situation. For instance, IPEs tend to increase

with test duration (e.g., OECD, 2017). Therefore, IPEs can be expected to be greater in

magnitude for longer tests than for shorter ones. For two similar tests of equal length, one

would expect IPEs to be similar in magnitude. The testing time in PISA is 120 minutes

in all cycles. In addition, other aspects of the test context, such as different combinations

of the domains to be measured (Zwick, 1991) or the item format, can impact on IPEs. Le

(2009), for instance, showed for the PISA 2006 science data that constructed-response

items tended to exhibit larger IPEs than closed-response items (such as multiple-choice

items).

IPEs and test context effects (e.g., Brennan, 1992) can often not be separated; IPEs are

considered to be a specific type of test context effects (e.g., Nagy et al., 2016). However,

if the test context and testing situation do not vary notably across assessments, it can

also be assumed that IPEs do not vary. As the participating countries in PISA tests must
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administer the test in a standardized manner, it can be assumed that the IPEs across

assessments are quite stable.

A relatively new development within international LSAs is the change in the test admin-

istration mode. Recently conducted LSAs were designed as computer-based assessments

(CBAs). In PISA 2015, CBA replaced paper-pencil testing (PPT) for the majority of

countries (OECD, 2017). This is a notable change in the testing situation. CBA makes

it possible to administer the test fully adaptively or adaptively in multiple stages and

provides greater flexibility in positioning items. The latter might be at least partly the

reason for why IPEs tended to decline on a global level from PISA 2012 to the PISA

field test in 2014 (OECD, 2015) and to the main assessment in 2015 (OECD, 2017).

Taking these results into account, it can be assumed that, on the country level, IPEs in

PISA 2015 (CBA) were smaller than in PISA 2012 (PPT).

Research questions

The presence of IPEs within educational and psychological assessments has been demon-

strated in various contexts. Due to their low-stakes character, the results of LSAs might

be especially affected by IPEs. IPEs might be a threat to the validity of comparisons

between the school systems of different countries, and might thereby be a threat to the

aims of LSAs. This study adds to the literature on IPEs by studying (1) the nonlinear

patterns of IPEs, (2) their stability across countries, and (3) whether the internationally

reported decline in IPEs at a global level can be replicated on the country level for PISA

2012 and 2015.

Summing up, the following research questions were investigated:

1. Did IPEs for the reading domain in PISA 2009, 2012, and 2015 follow a nonlinear

curve within countries and across assessments?

2. Did IPEs for the reading domain in PISA 2009 and 2012 vary within countries and

across assessments?

3. Did IPEs decline within countries from PISA 2012 to PISA 2015?

Taking theoretical assumptions and previous empirical work into account, the following

hypotheses can be formulated. We assumed that IPEs within countries and across

assessments would be nonlinear (Hypothesis 1), due to the nonlinear decrease in student

performance, which has already been demonstrated. Moreover, we expected IPEs to be

stable within countries and across the assessments 2009 and 2012 (Hypothesis 2), because

PISA is administered according to a standardized assessment procedure. Considering

IPEs for the reading domain in PISA 2012 and 2015, we expected to find a decline in

IPEs within countries (Hypothesis 3) and, thereby, a replication of this decline on the

global level.
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Method

Modeling item position effects in the IRT framework

Item position is defined as the position in which an item is administered within a test

form also referred to as booklet. In most test designs, booklets consist of different but

fixed clusters that contain several items. Clusters can occur in different positions within

a booklet. The item position is thus operationalized by the position of the cluster that

contains the item.

Let p = 1, ..., N ; i = 1, ..., I and t = 1, ..., T denote the indices representing persons,

items, and item positions, respectively. Further, let Ypit denote the binary random variable

representing the response of person p to item i when administered in position t. Note
that this notation is somewhat redundant since an item is usually administered to person

p in one position only. However, to facilitate interpretation, the index t is kept. The first
model (Model M0) used to assess individual position effects in Debeer et al. (2014) can

be formulated as follows:

Model M0: probit [P (Ypit = 1)] = θp + (t− 1)ηp + bi + (t− 1)β (1)

where bi is a fixed effect representing the item-specific difficulty. θp is the random effect

representing the ability. β is the average change in performance from one item position

to the next, while ηp is the individual deviation from this average and is also called

persistence (e.g., Hartig & Buchholz, 2012). A positive (negative) value of ηp increases
(decreases) the probability of a correct response at position t > 1. Note that we used
the probit function instead of the logit function as the link function for computational
reasons, where probit(x) = Φ−1(x) and Φ is the standard normal distribution function.

The vector (θp, ηp)
T follows a bivariate normal distribution with mean vector µθ,η =

0 = (0, 0)T and covariance matrix

Σθ,η =

(
σ2
θ

σθη σ2
η

)
(2)

where σθ, ση , and σθη are free parameters representing the standard deviation of θ and η,
and the covariance between θ and η, respectively. Dependencies between the ability and
the persistence are captured by σθη . Model M0 falls into the class of generalized linear

mixed effects models (Albano, 2013; Debeer & Janssen, 2013; De Boeck & Wilson,

2004; Hartig & Buchholz, 2012; Weirich, Hecht, & Böhme, 2014). This model can also

be specified as a multidimensional Rasch model, which allows linear constraints to be

placed on item parameters (Adams, Wilson, & Wang, 1997).

We extended the Model M0 by introducing dimension-specific loadings ai and gi as
well as position-specific item effects βt allowing for nonlinear position-specific change

on the item side (Debeer & Janssen, 2013; Hecht, Weirich, Siegle, & Frey, 2015). That

is,

Model M1: probit [P (Ypit = 1)] = aiθp + gi(t− 1)ηp + bi + βt (3)
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where ai is the item discrimination regarding the ability and gi can be interpreted as the
extent to which the performance in solving item i is affected by the persistence η. The
parameter βt represents the position-specific effect of position t on items and is allowed
to deviate from linearity (see Le, 2009; Robitzsch, 2009). To ensure the identifiability of

the model, β1 is set to zero, σθ and ση are set to one and gi are restricted to gi > 0 for
all i = 1, ..., I .

Model M1 can be considered to be a generalized nonlinear mixed effects model (Debeer

& Janssen, 2013) or a two-dimensional item response model with constraints on item

intercepts and item slopes. This model can be estimated with (marginal) maximum

likelihood methods. However, we propose a Markov chain Monte Carlo approach, which

makes the extension to more complicated models easier.

Markov chain Monte Carlo estimation

To fit the proposed model, a fully Bayesian approach was applied. A Markov chain

Monte Carlo (MCMC) procedure using the Gibbs sampler (Gelfand & Smith, 1990) was

implemented in R (R Core Team, 2016) by the authors.

The MCMC approach has found widespread use in the estimation of item response mod-

els (König & van de Schoot, 2017; Rupp, Dey, & Zumbo, 2004). Compared to maximum

likelihood estimation methods, MCMC methods are relatively easy to implement for

complex item response models (see Fox, 2010; Levy & Mislevy, 2016; Patz & Junker,

1999). The Gibbs sampling approach reduces complicated high-dimensional estimation

problems to stepwise evaluations of lower dimensional posterior distributions (which are

often chosen to be unidimensional). However, in contrast to maximum likelihood estima-

tion, the Bayesian approach additionally requires the specification of prior distributions

for all parameters (Hoff, 2009). After implementing the Gibbs sampler, we observed

some instabilities in the estimation of the gi parameters. To improve the stability, we
decided to specify informative prior distributions for the gi parameters. For all other
parameters, noninformative (improper) prior distributions were chosen.

Our Gibbs sampler employs augmented latent data z which can be interpreted as contin-

uous versions of corresponding dichotomous item responses y (Albert & Chib, 1993). If

an item response is y = 1, it holds for the latent data that z > 0. In this data augmenta-
tion step, every dichotomous item response ypit is mapped onto a real valued random
variable zpit. The use of augmented data considerably simplifies the Gibbs sampling
steps (Levy & Mislevy, 2016). The joint posterior density of the parameters given the
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data is specified as

p(a,b, g,β,θ,η, z,Σθ,η|y)

∝

∏
p

∏
i(t)

P (Ypit = ypit|Zpit)P (Zpit|θp, ηp, ai, gi, bi, βt)


×

[∏
p

P (θp, ηp|Σθ,η)

]
× π(a,b)π(g)π(β)π(Σθ,η)

(4)

where the proportional sign is used since a normalizing constant is left out of the equa-

tion.

The MCMC sampling from the posterior distribution was divided into several steps

for the different parameter groups of the model. Each of the sampling steps from

the corresponding posterior distribution can be derived by using common Bayesian

techniques (Hoff, 2009).

To illustrate how the sampling procedure works for single parameters, we describe the

sampling step for the parameters (ai, bi). More details can be found in Glas (2012), for

example. The parameters (ai, bi) are modeled as fixed effects with no prior distribution,
that is, an improper prior distribution which is constant across the whole parameter

range. In this step, for all other parameters θp, ηp, gi, βt as well as for the samples from

the augmented data step zpit current samples are available. These can be derived from
previous sampling steps or, in the case of the first sampling cycle, can be the starting

values. Let p1, ..., pK denote the persons to whom item i was administered. Defining
Z∗
pit = Zpit−giηp−βt = aiθp+bi+εpi, the components of parameter vector (ai, bi)

T

can be considered to be coefficients of the normal regression of Z∗
i = (Z∗

p1it
, ..., Z∗

pKit)
T

on Xi = (θi, 1), where θi = (θp1 , ..., θpK
)T and 1 is the K-dimensional vector with

components equal to one. The conditional distribution of (ai, bi) is given as a bivariate
normal distribution:

(ai, bi) ∼ N
(
(XT

i Xi)
−1XT

i Z
∗
i , (X

T
i Xi)

−1
)

(5)

Drawing one sample from the conditional distribution described by (5) for each item i,
forms the sampling step for the parameters (ai, bi).

It is known that the point estimator that results from MCMC estimation asymptotically

converges to the maximum likelihood estimate (Gelman et al., 2014). To reveal this, we

rewrote the joint posterior in (4). Let δ denote the vector of all model parameters. Then,

the joint posterior is given as

p(θ,η, z, δ|y) ∝

[∏
p

P (yp|zp)P (zp|θp, ηp, δ)P (θp, ηp|Σθ,η)

]
× π(δ). (6)
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It is evident that the posterior contains the likelihood part involving data from all persons

and a joint prior distribution π(δ). If the latent data are integrated out, the posterior for
model parameters δ further simplifies to

p(δ|y) ∝

[∏
p

∫
P (yp|zp)P (zp|θp, ηp, δ)P (θp, ηp|Σθ,η)dzpdθpdηp

]
× π(δ) (7)

If the prior is chosen to be improper (i.e., π(δ) = 1), the multivariate mode of the
posterior distribution for δ equals the maximum likelihood estimate (Gelman et al.,

2014). Hence, MCMC estimation can be used to obtain estimates that are asymptotically

equivalent to maximum likelihood estimates.

Extension to weighted clustered samples

In LSAs, samples are not drawn completely randomly, but rather in a hierarchical manner.

Usually, in a first step, schools are drawn randomly, followed by a random selection of

classes or students within schools (e.g., OECD, 2017). To account for this structure in

the samples, an extension to weighted clustered samples is necessary as the statistical

inference that assumes persons to be independent is biased and leads to underestimated

standard errors (Rust, 2013). Therefore, the MCMC sampling steps must also involve

sampling weights (e.g., Goldstein, 2011) and we incorporated the respective sample

weight wp for person p in the likelihood part of (7). This led to the posterior distribution
described by

p(δ|y) ∝

[∏
p

(∫
P (yp|zp)P (zp|θp, ηp, δ)P (θp, ηp|Σθ,η)dzpdθpdηp

)wp
]
× π(δ) (8)

For the parameters (ai, bi), for instance, this means that samples are drawn from the

conditional distribution

(ai, bi) ∼ N
(
(XT

i WiXi)
−1XT

i WiZ
∗
i , (X

T
i WiXi)

−1
)

(9)

whereWi is a diagonal matrix that has entries wp1 , ..., wpK
on the diagonal.

MCMC sampling provides approximations for the posterior distributions of the respective

parameters. Point estimates of parameters can be directly obtained as the mode or

the mean of their corresponding marginal posterior distributions. Thus, the statistical

inference, including sample weights, can be seen as a Bayesian variant of pseudo-

likelihood estimation (Rabe-Hesketh & Skrondal, 2006).

In addition, the computation of standard errors should take the stratified clustered sam-

pling into account (OECD, 2017). Therefore, standard errors are computed by applying

resampling methods (balanced repeated replicate weights). In the case of PISA, the

resampling design consists of R = 80 replication weights (OECD, 2017). Applying the
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MCMC estimation R-times to the data with the respective replication weights results in
R replicated statistics, from which a covariance matrix Vδ for a vector of estimated pa-

rameters δ̂ can be calculated (e.g., Kolenikov, 2010). MCMC estimation with replicated

weights is expected to perform similarly to pseudo-likelihood estimation with sample

weights.

The covariance matrix Vδ can be used to test the linear hypotheses of the form Cδ = d.
The respective test statistic X2 = (Cδ̂ − d)′V −1

δ (Cδ̂ − d) is χ2 distributed with

df = rank(C) degrees of freedom. When testing hypotheses regarding single parameters,

the derived standard errors can be used to construct the usual Z tests.

Data

The PISA samples of Austria, Finland, Germany, Japan, Portugal, and Turkey were

analysed. Regarding the internationally reported results for 2009 (OECD, 2010), the

sample comprised two countries that were significantly above (Finland and Japan), two

countries that were significantly below (Austria and Turkey), and two countries that were

not significantly different from the OECD average (Germany and Portugal).

We used the published reading data of PISA 2009, 2012, and 2015 (OECD, 2012, 2014,

2017). We included only students to whom booklets containing reading items were

administered and for whom at least one valid response to a reading item was observed.

The resulting sample sizes for each assessment and each country are shown in Table 1.

Table 1:

Number of students included in the analyses of the PISA 2009, 2012, and 2015 reading data from

Austria, Finland, Germany, Japan, Portugal, and Turkey.

Country 2009 2012 2015 Country 2009 2012 2015

Austria 6,475 (470) 3,274 2,417 Japan 6,065 (520) 4,338 2,244

Finland 5,806 (536) 6,058 2,007 Portugal 6,294 (489) 3,923 2,513

Germany 4,797 (497) 3,332 2,177 Turkey 4,982 (464) 3,350 2,006

Note. Values in parentheses represent the country specific mean performance on the overall reading scale

reported in OECD (2010).

In all PISA cycles, booklets contain four clusters of items, resulting in 4 different

operationalized item positions. One cluster consists of items of solely one domain. In

2009, reading was the major domain in PISA and, consequently, all 13 booklets contained

at least one cluster that consisted of reading items. In total, 101 reading items5 were

administered. In 2012 and 2015 reading was a minor domain. In 2012, 13 booklets

were administered and nine booklets (booklets 2, 3, 4, 6, 8, 9, 11, 12, and 13) contained

5Two items in Austria and one item in Finland, one in Germany, and one in Japan were excluded due to

national item deletion (OECD, 2012)
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reading clusters, with a total of 44 reading items6. In 2015, PISA was conducted as

a CBA in most of the participating countries (and in all of the six countries that we

are focusing on here). This made it possible to administer more booklets than in PPT.

Therefore, in 2015, 66 booklets (ignoring different versions of booklets consisting of

different combinations of science clusters) were administered and 36 booklets contained

reading clusters, with a total of 88 reading items7.

Some of the items had originally been scored polytomously with three categories (in-

correct, partially correct, and full credit). These items were dichotomized, scoring the

full credit as correct (1) and partially correct and incorrect answers as incorrect (0). This

applied to eight reading items in 2009, one reading item in 2012, and seven reading items

in 2015. All missing responses that were coded as omitted were treated as incorrect

responses. All missing responses that were coded as not reached and all other missing

responses were treated as missing by design.

Procedure

We analyzed the reading data from PISA 2009, 2012, and 2015 separately for each

country and each cycle. To derive estimates for the IPEs, Model M1 was fitted to the

data by applying the described MCMC sampling method. The sampling procedure

had a burn-in period of 25,000 iterations and the whole chain was 50,000 iterations

long. Reported estimates for all parameters are the respective expected a posteriori

(EAP), that is, the expected values of the respective posterior distributions. To assess

the convergence of the MCMC algorithm, the potential scale reduction factor (PSRF),

proposed by Gelman and Rubin (1992), was calculated, as were the effective sample

sizes to ensure a sufficiently small MCMC error (Hoff, 2009). In order to calculate

the PSRF, we divided the long chain into 4 chains of equal length. The PSRF never

exceeded 1.05 for any estimated parameter and the effective sample size was always
greater than 150. Further, we inspected the traceplots of every estimated parameter and
the respective autocorrelation function with an increasing lag between the successive

draws. All models met the respective diagnostic criteria.

To compare the variance explained by θ and η, respectively, one would have to impose
some normalization restrictions on the ai and gi parameters in Model M1. Then, the

parameters σθ and ση could be free parameters and the model could remain identifiable.

Another way would be to consider the respective mean of the parameters ai and gi.
Of course, these two values are conceptually not the same as the respective standard

deviations. However, the balanced booklet design used in PISA (e.g., Frey & Bernhardt,

2012) and the randomized assignment of students to booklets leads to all items making

approximately equally weighted contributions to the respective factors. Therefore, the

respective means of ai and gi can be considered as good approximations.

To specify the aforementioned prior distribution for the gi parameters, we used the results

6One item was excluded in Austria, in Finland, and in Germany due to national item deletion (OECD, 2014)
7One item was excluded in Turkey because the relative frequency of correct responses was < 0.01.
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provided by Debeer et al. (2014) for PISA 2009. The authors analyzed the PISA 2009

reading data from 65 countries, including the countries we are focusing on in the present

article. For their analyses, they fitted – amongst others – the Model M0 to the data and

presented estimates for the standard deviation of η denoted by σ̂prior
η for each country.

It should be noted that the estimates provided by Debeer et al. (2014) were calculated

on the logit metric. Therefore, we transferred the estimates to the probit metric using

the factor 1/1.7 (e.g., Lord & Novick, 1968). For each country we specified the prior

distribution of all parameters gi as a normal distribution with a mean of σ̂prior
η /1.7

and a standard deviation of 0.2. This resulted in a weakly informative prior, which

sufficiently stabilized estimation. For the analyses of the 2012 data (2015 data), we

used the respective country-specific mean and the standard deviation of the estimated

parameters that resulted from fitting Model M1 to the 2009 data (2012 data) for each

country.

Standard errors were calculated using the replicate weights provided in the published

datasets. To answer Research Question 1, respective χ2 tests were conducted, with the

null hypothesis that linearity holds for the parameters β2, β3 and β4 (note that β1 is

fixed to zero). As mentioned before, this can be done be specifying a proper matrix C.

We choose the equations β3 = 2β2 and β4 = 3β2 representing linearity. This leads to

C =

(
2 −1 0
3 0 −1

)
and linearity holds if C(β2, β3, β4)

T = 0.

For the other research questions, the respective Z tests were conducted separately for

each pair of parameters. To make the IPEs comparable across two different years of

assessment, we used approximations of the standardized IPEs β∗
t = βt/M(ai). For

Research Question 2, the null hypothesis was β∗2009

t = β∗2012

t for t = 2, ..., 4 where

β∗2009

t and β∗2012

t denote the approximation of the standardized parameter β∗
t for 2009

and 2012, respectively, with a corresponding two-sided Z test. The null hypothesis for

Research Question 3 was β∗2012

t ≤ β∗2015

t where β∗2015

t denotes the approximation of the

standardized parameter βt for 2015, with a corresponding one-sided Z test. We report

significance starting from a nominal alpha level of .05.

Results

Table 2 summarizes the results of Model M1, which was fitted separately to the data of

the six selected countries for PISA 2009, 2012, and 2015. The mean of the estimated

item discriminationsM(ai), the mean of the estimated item specific loadingsM(gi) on
η, the correlation ρθ,η between θ and η, and the mean of estimated item difficultyM(bi)
are shown.

The meansM(ai) andM(gi) can be seen as proxy variables for the standard deviation
of θ and η, respectively (with the abovementioned caveats). ConsideringM(gi)/M(ai),
the values ranged from around one sixth (Finland in 2012) to around one forth (Japan

in 2015). This means that, for the case of Finland in 2012, the variance explained by η



254 M. Trendtel & A. Robitzsch

was as high as one sixth of the amount of variance explained by θ. For most countries,
the estimated correlation ρθ,η was positive for the years 2009 and 2012 and, in some

cases, even significantly so. Turkey and Portugal were exceptions for the year 2009 and

2012, respectively, where the estimated correlations were slightly negative. A positive

correlation between θ and η means that students with a higher level of ability showed
lower declines in performance over the course of the test compared to students with a

lower level of ability. However, except for Austria, in 2015 all estimated correlations

were negative, which means that students with a higher level of ability showed higher

declines in performance over the course of the test compared to students with a lower

level of ability. In 2015, another mode of test administration was introduced, that is,

CBA replaced PPT; maybe this is one reason for the different correlations obtained when

comparing PISA 2009 and 2012 with PISA 2015.

The IPEs, that is, the mean change in difficulty for each item position, are also presented

in Table 2. Values displayed in boldface indicate a significant difference from zero,

which is simultaneously the IPE of position one. All IPEs were consistently negative,

which means that, compared to position one, the difficulty of an item increased when it

was administered in position two, three, or four.

Regarding position two, except for Finland in 2009 and 2015, the effects of this item

position were significantly different from zero. For item position three, there was a

somewhat more heterogeneous pattern: For Austria in 2012, and for Finland, Germany,

and Japan in 2015, no significant difference was observed between position one and

position three. Furthermore, forAustria and Japan in 2012, as well as forAustria, Finland,

Germany, Japan, and Turkey in 2015, there was even a decline in IPEs from position two

to position three. It should be noted that there was a break in testing between position

two and three. The different patterns in the IPEs found for position three might be due

to the extent to which students from different countries recovered in the testing break.

Possibly, the change from PPT to CBA also had an influence on how students recovered

during the break. Considering item position four, all estimated mean changes in difficulty

were significantly different from zero. Further, compared to the effects of position three,

all effects were higher in magnitude for position four.

Again, using M(ai) as a proxy variable for the standard deviation of θ, we were able
to approximate standardized IPEs. Regarding position two, standardized IPEs ranged

from −0.031 SD for Finland in 2009 and 2012 to −0.281 SD for Japan in 2012. The

estimated standardized IPEs for position three ranged from −0.002 SD for Finland in

2015 to −0.356 SD for Japan in 2009 and, for position four, the effects ranged from

−0.100 for Germany in 2015 to −0.523 SD for Turkey in 2009. For Turkey in 2009,

this means a decline in performance from position one to position four that could be

expected between two individuals who are about one half of a SD apart regarding their

ability.
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To answer Research Question 1, χ2 tests were conducted, as described above. The

respective test statisticsX2 and p-values are presented in Table 3. Regarding the α-level
of .05 in 2009, there were significant deviations from linearity for the countries Finland,

Japan, and Turkey. For 2012, this was true only for Japan and Turkey. In contrast, for

2015, significant nonlinearity was found for all countries except Finland. Altogether,

Hypothesis 1 is only partly supported by the data.

Table 3:

Summary of the χ2 tests regarding linearity in item position effects for the countries Austria,

Finland, Germany, Japan, Portugal, and Turkey for the years 2009, 2012, and 2015.

2009 2012 2015

Country X2 p X2 p X2 p

Austria 2.881 .237 4.945 .084 17.370 .000
Finland 13.617 .001 0.474 .789 5.321 .070
Germany 5.343 .069 1.025 .599 9.349 .009
Japan 10.223 .006 23.700 .000 10.814 .004
Portugal 3.739 .154 3.617 .164 9.831 .007
Turkey 31.615 .000 16.681 .000 20.532 .000

Note. X2 denotes the test statistic of the χ2 tests with respective p-value denoted by p. Values displayed in

boldface indicate statistical significance on a 5 % alpha level.

To investigate the extent to which IPEs were stable across different years of assessment,

we conducted Z tests for the parameters of every position, estimated separately for PISA

2009 and 2012 for each country. The test statistics and p-values of the conducted tests
are presented in the left part of Table 4.

Table 4:

Summary of the two-sided Z tests regarding stability between 2009 and 2012 (left part) and of the

one-sided Z test regarding the decrease from 2012 to 2015 (right part) of the standardized item

position effects β∗
2 , β

∗
3 and β∗

4 for the countries Austria, Finland, Germany, Japan, Portugal, and

Turkey.

2009 and 2012 2012 and 2015

β∗
2 β∗

3 β∗
4 β∗

2 β∗
3 β∗

4

Country T p T p T p T p T p T p

Austria 0.100 .921 −2.120 .034 −2.372 .018 −2.405 .992 −1.260 .896 −0.996 .840
Finland 1.315 .188 1.100 .271 −0.743 .457 1.298 .097 2.123 .017 1.961 .025
Germany 0.702 .483 0.192 .848 0.598 .550 −0.235 .593 3.047 .001 4.144 .000
Japan 2.311 .021 −2.381 .017 −1.066 .286 3.043 .001 2.592 .005 2.375 .009
Portugal 1.755 .079 0.231 .817 0.993 .321 0.350 .363 2.469 .007 4.490 .000
Turkey 2.202 .028 −1.240 .215 −0.414 .679 −1.565 .941 1.541 .062 4.272 .000

Note. T denotes the test statistic of the Z tests with respective p-value denoted by p. Values displayed in

boldface indicate statistical significance on a 5 % alpha level.
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For Finland, Germany, and Portugal there is no significant indication for instability in

IPEs. For Austria, there were significant differences in the IPEs regarding position three

and four. For Turkey, the IPEs regarding position two and, for Japan those regarding po-

sition two and three seemed to vary significantly in magnitude when 2009 was compared

to 2012. In summary, there were indications of instabilities in the IPEs for individual

countries and specific positions. Therefore, Hypothesis 2 is only partly supported by the

data.

To answer Research Question 3, we investigated whether there were significant decreases

in IPEs from 2012 to 2015. Again,Z tests were conducted analogously as described in the

previous section, that is, separately for every country and every position. The respective

test statistics and p-values are presented in the right part of Table 4. Surprisingly, in

Austria, the IPEs regarding all positions increased from 2012 to 2015 and, of course,

there were no significant decreases. Regarding position four for all other countries, the

respective IPE decreased significantly from 2012 to 2015. Regarding position three,

this was true for all countries except Turkey. Japan was the only country for which the

IPE regarding position two decreased significantly in magnitude. Hypothesis 3 is thus

only partly supported by the data. Even though for the majority of comparisons there

was a significant decrease in the IPEs from 2012 to 2015, this trend was observed more

frequently in the later item positions.

Conclusion

We have introduced a flexible model for modeling nonlinear IPEs on the item side and

linear IPEs on the person side. A fully Bayesian estimation procedure was proposed

and its extension and application to data stemming from stratified clustered samples

has been described and demonstrated. Applying the model to data from six countries

from the PISA assessments in 2009, 2012, and 2015, we investigated (1) whether there

were violations to the linear pattern of IPEs, (2) the extent to which IPEs were stable

across two assessments when no substantial change in the assessment was obvious, and

(3) whether the change in the mode of assessment, that is, from PPT to CBA, caused a

decrease in the IPEs.

In ten of 18 cases, significant deviations from linearity were found. Therefore, we

conclude that linearity cannot always be assumed and nonlinear patterns might have to

be accounted for in IPEs in other contexts.

In 13 of 18 comparisons, we did not find significant change in the IPEs from 2009 to

2012. Therefore, it seems that IPEs function quite stably over time. However, we did

find significant differences in IPEs in seven cases. Future research should investigate

why these differences occurred in these cases in order to gain more insights into the

stability of IPEs.

All of the countries that we examined, except for Austria, seemed to have benefited

from the change to CBA, in that smaller IPEs were present, at least in the later parts
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of booklets. Four of the six countries showed significant decreases in IPEs regarding

positions three and four. The magnitude in the decrease was more than one fourth of a

SD for Turkey and position four. We were unable to find a reason for why this was not

the case in Austria. However, further research should investigate the reasons for this

contrasting pattern and aim to establish whether other countries show similar trends in

IPEs.

Limitations and future developments Of course, our findings are limited to the six

selected countries, the PISA assessment, the years 2009, 2012, and 2015, as well as

to the domain of reading. In order to make our findings generalizable, we recommend

further and deeper analyses of other countries, other assessments, other time points, and

especially of other domains.

Our proposed IRT model for IPEs is limited to dichotomous item responses. However,

an extension allowing for ordinal response data is possible. Further, we only investigated

one literacy domain (i.e., reading) to analyze IPEs with a two-dimensional IRT model

including the ability and the persistence factor. The model could be extended in order

to simultaneously investigate three literacy domains (i.e., reading, mathematics, and

science), which would result in three ability factors and three persistence factors.

The central assumption underlying the proposed model was a bivariate normal distribu-

tion for ability and persistence. However, the persistence component in the bivariate

distribution could be assumed to follow a log-normal distribution multiplied by minus

one, which only allows negative values. This model is related to a performance-decline

item response model (Jin &Wang, 2014). Although the model is formulated to inves-

tigate declines in each item in a fixed-order test, the model could also be used for the

case of IPEs in our study (concerning a non fixed-order test) and student performance

declines could thus occur in the first, the second, third or the fourth position.

Implications Concerning the results for Austria and Finland, for instance, there is some

disagreement between researchers on how to interpret the findings. First, some re-

searchers argue that a comparison between these two countries is not valid because the

country difference is not invariant across positions and measurement invariance is a

requirement of the comparison of means (Kreiner & Christensen, 2014). However, IPEs

are a form of differential item functioning at the country level that can be seen as part of

the construct and should not be removed for cross-national comparisons (see Zwitser,

Glaser, & Maris, 2017).

Second, some researchers argue that IPEs induce a violation to the assumed unidimen-

sional scaling model because item parameters do not hold for items in all positions

and additional local dependence is introduced due to the persistence factor. Simulation

studies usually show that applying a model that ignores IPEs provides biased parameter

estimates, while the model that includes IPEs leads to unbiased estimates (see, for exam-

ple Debeer & Janssen, 2013). However, this reasoning is trivial as it simply shows that

estimating a statistical model, which is used for generating data, provides acceptable

estimates. In practice, the application of a statistical model to derive estimates of the



Modeling item position effects 259

ability distribution of a country requires the definition of factors that should be controlled

for (and included in the model) or just nuisance factors (not to be included in the model,

but to be taken note of as the reason for possible increases in standard errors). In the

case of treating IPEs as a nuisance factor not included in the model, the violation of local

dependence or the noninvariance of item parameters does not lead to biased parameter

estimates because IPEs are considered to be part of the construct and should thus not

be controlled for. Ability is seen as an index obtained as a summary of item responses

in a unidimensional scaling model rather than as a student trait that causally influences

manifest item responses (Borsboom &Wijsen, 2017). In this context, the well-defined

statistical theory of misspecified models (the so-called quasi-maximum likelihood; see

White, 1982) should be taken note of. Given the probability distribution of item responses

in the population, a well-defined optimal parameter of the (misspecified) statistical model

exists. Hence, the use of relatively simple IRT scaling models in large-scale assessments

can be reasonably defended, but standard errors have to be computed with sandwich

methods (see Ip, Molenberghs, Chen, Goegebeur, & De Boeck, 2013). Moreover, the

full modeling of dependencies in large-scale assessment data does not seem feasible

because of the existence of IPEs, differential item functioning (DIF) in subgroups such

as gender, local dependence due to testlets, or multilevel DIF due to the nested structure

of students within schools (see Robitzsch, 2009, for some applications).

Third, some researchers argue that using IRT models to analyze IPEs is helpful for the

data analysis of data obtained by less than optimal test designs. For example, Nagy et al.

(2017) described an application for investigating school-type differences in longitudinal

performance over two waves of measurement. In their study, the test designs varied

largely between the two waves, for example, the average position of the administered

items differed between the two waves. Applying a model with IPEs makes the com-

parison of school types in both waves possible in a standardized condition, which is

the consequence of including the control factor ”position” in the model (Nagy et al.,

2017). The standardized condition in the application of Nagy et al. (2017) is the first

position. Although the primary motivation behind this approach seems plausible to us,

we think that it is not clear why a comparison between groups should be made in the first

position and not in any other position in the test (or in an averaged position). Moreover,

the adjustment of observed group differences by a model with IPEs relies on statistical

assumptions. Maybe a better alternative could be to weight (or select or match) the data

from the two waves in such a way that the test designs would be very similar and no

statistical model with strong assumptions would have to be posed. Therefore, we believe

that many problems concerning IPEs in large-scale assessments can be circumvented by

using balanced test designs (Frey & Bernhardt, 2012) that represent IPEs in the ability

construct in such a way that they provide unbiased parameter estimates.
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