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A specialized confirmatory mixture IRT
modeling approach for multidimensional tests
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Abstract

Finite-mixture models are typically utilized in educational and psychological research to explore
potential latent classes that may be present in the data under investigation. However, mixture
models can also be applied to test out or confirm researchers’ theories or hypotheses about latent
classes. In this paper, we discuss a specialized confirmatory mixture IRT modeling approach
for multidimensional tests with a set of pre-arranged constraints on item parameters that are
devised to differentiate latent classes. Two types of multidimensional classification scenarios are
discussed: (1) a single membership case where subjects strictly have one latent class membership
for all test dimensions, and (2) a mixed membership case where subjects are allowed to have
different latent class memberships across test dimensions. We illustrate maximum likelihood
estimation of the two types of confirmatory mixture models with an empirical dataset.
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Finite mixture IRT models

Mixture item response theory (IRT) models have become a popular tool to investigate
various issues in educational and psychological assessment (Bolt et al., 2001; Cohen
& Bolt, 2005; Finch & French, 2012). Mixture IRT models postulate that subjects
are drawn from two or more unknown (or latent) populations that present systematic
differences in their item response behavior. Hence, mixture IRT models are usually
utilized to identify sub-populations of subjects whose differences are characterized or
captured based on differences in their item parameters.

Mixture IRT models are usually employed in an exploratory fashion because the num-
ber and nature of latent classes are unknown a priori; therefore, users of mixture IRT
models aim toexplorethe possible presence of latent classes in their data. Although
relatively less common compared with an exploratory approach, there have been con-
firmatory uses of mixture IRT modeling; in this case, the number and character of
latent classes are pre-specified by researchers based on their theory or hypothesis about
data. Therefore, researchers aim toconfirmthe presence and characteristics of the hy-
pothesized latent classes by applying the mixture model. For example, educational
researchers have applied a confirmatory mixture IRT model toinvestigate two different
types of item solving strategies that examinees may apply during speeded or non-speed
tests (e.g., guessing-based and ability-based strategiesas latent classes) (e.g., Mislevy
& Verhelst, 1990; Schnipke & Scrams, 1997; Yamamoto & Everson, 1997; Boughton
& Yamamoto, 2007). Molenaar et al. (2016) hypothesized two modes of intelligence as
latent classes based on differences in response times (i.e., slow and fast modes of intelli-
gence) and investigated how examinees apply different types of intelligence during tests.
Tijmstra et al. (in press) assumed and analyzed two kinds of response styles that respon-
dents may apply when responding to Likert-type rating scaleitems with confirmatory
mixture modeling. Jin et al. (2018) also applied a similar approach to rating-scale data
to differentiate an inattentive response behavior from normal response behavior.

A specialized confirmatory mixture IRT model

Another use of confirmatory mixture modeling is found in psychometrics literature (Wil-
son, 1989; Mislevy & Wilson, 1996; Draney, 2007; Draney & Wilson, 2008). This, the
so-calledSaltus modelingis unique in the sense that a special set of test items are uti-
lized to differentiate hypothesized latent classes. For instance, Wilson (1989) proposed
imposing a set of constraints on the item parameters of a confirmatory mixture Rasch
model to examine the developmental stages of children basedon their performance on
particular item sets of a cognitive test.

One may believe that such a confirmatory use of latent classesand test items is some-
what restrictive. However, in confirmatory factor analysis, which is a common practice
in applied research, we typically assume that the number of factors and a factor-item
relationship (or a factor structure) are known prior to dataanalysis. The goal of con-
firmatory factor analysis is to validate a factor structure that researchers hypothesize
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and further examine relationship between factors. This goal is clearly different from
exploratory factor analysis that aims to identify an unknown factor structure. Similarly,
we argue that it would be reasonable to adopt for a confirmatory approach for latent
classes and test items in mixture IRT modeling when researchers wish to corroborate a
hypothesis on the number and nature of latent classes and further examine relationships
between latent classes. For instance, suppose we have a behavior checklist that contains
a set of items that are designed to identify patients with severe depressive symptoms. In
this case, we are interested in differentiating patients with severe symptoms from those
with mild symptoms (i.e., two latent classes). In addition,it would be reasonable and
suitable to utilize those particular check-list items thatare designed to distinguish ex-
treme depression symptoms from mild symptoms. Hence, a confirmatory mixture IRT
model can be adopted in this situation for differentiating severely depressive patients
who need special care and treatments from regular patients.

Purpose

The purpose of this study is to introduce the specialized confirmatory mixture IRT mod-
eling and describe its extension and application for multidimensional tests. Educational
and psychological tests are often composed of multiple sub-tests that measure multiple
constructs that are related to each other. For example, the mathematics anxiety rat-
ing scale (Richardson & Suinn, 1972) is composed of multiplesub-tests that measure
situation-specific anxiety factors: (a) anxiety about performing mathematical calcula-
tions, (b) anxiety about solving a math problem in public, and (c) anxiety about taking
a math test (Lukowski et al., in press). In addition, in the Trends in International Mathe-
matics and Science Study (TIMSS), a well-known, large-scale international educational
assessment, mathematics tests are based on multiple dimensions based on three cogni-
tive domains (knowing, applying, and reasoning) as well as three cognitive domains
(numbers, geometric shapes and measures, and data display)of mathematics skillsets.
Hence, for the purpose of expanding the scope of the discussed confirmatory mixture
IRT model’s applications, it would be beneficial to considera multidimensional exten-
sion of the model.

To analyze multidimensional assessment data for classification, one may think of a
situation where subjects have the same latent class membership for different test di-
mensions. In this case, it is possible to predict a subject’sclass membership for one
dimension based on her class membership for another dimension. There may be an-
other situation, however, where subjects have different class memberships in different
dimensions of the test. For instance, suppose we have a reading test that consists of
two sub-tests (that measure vocabulary and comprehension,for instance) and we are
interested in classifying examinees into two latent classes that indicate mastery and
non-mastery of the skillset that each sub-test intends to measure. Even though the two
sub-traits are likely to be positively correlated, it is still possible that some examinees
who master one skillset (e.g., vocabulary) do not master theother skillset (e.g., com-
prehension); in this case, those examinees have different classification memberships for
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the two sub-tests (i.e., the mastery class for vocabulary and the non-mastery class for
comprehension). Therefore, it would be useful to think about a more general classifica-
tion scenario where examinees are allowed to have differentclass memberships across
multiple test dimensions. For convenience, we label the first classification type as single
membership and the second type as mixed membership classification.

Note that one may consider a type of classification where a single class membership
is assigned to subjects in a multidimensional trait space. In this case, a latent class
may be characterized with a lower score in one dimension but ahigher score in the
other dimension (this is likely to be the case if the two dimensions are negatively corre-
lated). Although such a classification method is reasonable, we discuss a different type
of classification where class membership is assigned to subjects for each test dimension
at a time. Note that this latter type of classification is typical in diagnostic classifica-
tion modeling (DCM; Rupp et al., 2010) where examinees are classified into one of
two classes (e.g., mastery or non-mastery as discussed above) for each of the multiple
attributes that are measured with a test. In fact, mixed membership classification (or
assigning class membership per dimension at a time) that we discuss in this paper can
be seen as a special case of the single classification of subjects into a multidimensional
trait space with an increased number of latent classes. Thispoint will be re-visited and
discussed later in the discussion section.

In this study, we discuss both single and mixed membership scenarios for a multidimen-
sional extension of the specialized confirmatory mixture IRT model. Although both
single and membership classifications have been utilized inthe mixture IRT modeling
literature (e.g., De Jong & Steenkamp, 2010; Choi & Wilson, 2015; H.-Y. Huang, 2016;
Molenaar et al., 2016), the two classification types have rarely been discussed jointly
and/or compared in the context of confirmatory mixture analysis.

Model

We first lay out the formulation of the specialized confirmatory mixture IRT model for
a unidimensional test. Subsequently, we describe a multidimensional extension of the
model in the case of single membership and mixed membership classification, respec-
tively. For all models, we focus on the one-parameter logistic (1PL) parameterization
for the sake of simplicity. Extensions to a two-parameter formulation are feasible as
illustrated below for a unidimensional case.

Specialized confirmatory mixture IRT model

Denoteyi j a binary response to itemi for personj andCj = g is a categorical latent vari-
able that indicates personj ’s class membershipg (= 1, ...,G). A standard exploratory,
mixture Rasch model can then be written as follows:

logit(Pr(yi j = 1|θ jg,Cj = g)) = θ jg −βig, (1)
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whereθ jg is a continuous latent variable that indicates personj ’s latent trait in classg
with class-specific mean and variance,θ jg ∼ N(µg,σ2

g ) whereµg = 0 is set for scale de-
terminacy and model identification. The item parameterβig represents the class-specific
difficulty for item i for latent classg. Note that the class-specific item parameters are
freely estimated in all latent classes, implying that no structure is imposed in the item
parameters. In addition, the number of latent classes (G) is unknown a priori for ordi-
nary exploratory mixture analysis; hence, it needs to be empirically determined based
on data analysis.

Suppose a researcher has a strong theory or hypothesis aboutthe number and nature
of latent classes for collected data and additionally has identified a particular set of
items (or ‘item groups’) that are designed to differentiatesubjects across the latent
classes. Let us further illustrate how ‘item groups’ can be utilized in such a scenario.
Suppose a researcher wants to classify children into one of two developmental stages
based on the children’s scores on a reasoning test. The test is developed based on a
design factor that characterizes the complexity or cognitive demand of the test items.
According to the test design, individual items belong to oneof two item groups: Con-
crete or Abstract/Counterfactual items (in the order of less to more cognitively demand-
ing items). The researcher hypothesizes that children onlyin the higher developmen-
tal stage are able to solve the more complex, Abstract/Counterfactual items correctly,
whereas children in the lower developmental stages can solve only the less complex,
Concrete items. In this scenario, it is sensible to use the item groups (Concrete vs. Ab-
stract/Counterfactual items) to differentiate children in the higher developmental stage
from those in the lower stage. Note that the specialized confirmatory mixture anal-
ysis is more optimal in this case than standard exploratory mixture analysis because
the number and nature of latent classes are already known andthe latent classes (two
developmental stages) would be sufficiently characterizedand differentiated based on
children’s performance on the two item groups (Concrete or Abstract/Counterfactual
items).

Suppose we haveG latent classes whose characteristics are already known andwe want
to useH item groups to differentiate the latent classes. We assumeG= H for the sake
of simplicity. Then model (1) can be revised as follows:

logit(Pr(yi j = 1|θ jg,Cj = g)) = θ jg −βi + τghIih. (2)

Note that in this formulation the item difficulty parameterβi is set equivalent across
all latent classes (hence,βi does not include subscriptg). Importantly, Equation (2)
includes an additional structural parameterτgh that indicates the effect of item group
Iih (h= 1, ...,G) on the probability of correctly solving the items in the item group for
subjects in classg. The structural parameterτgh represents how difficult or easy the
items in item grouph are for subjects in latent classg compared with subjects in the
reference latent class. In other words,τgh can also be interpreted as the amount of
advantage that subjects in latent classg have in solving the items in item grouph. For
the reference item group, it is assumed that there is no performance difference between
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latent classes.

To further illustrate this specification, Figure 1 is provided to display the item response
function (that represents the probability of a correct response as a function of latent
trait θ ) for two latent classes and for two item groups (the first latent class and the first
item group are set to the reference groups and all items in an item group are assumed
to have the same difficulty level for the sake of simplicity).This figure shows that for
item group 1 which is the reference item group (left panel), the item difficulty level is
equal between the two latent classes. For item group 2 (rightpanel), however, the items
are more difficult for latent class 2 than for latent class 1 (which is the reference person
group). The difference between the two class-specific curves is captured with theτ22

parameter, which also represents the difference in the difficulty level of item group 2
between the two latent classes (or the amount of disadvantage class 2 has in solving
item group 2 compared with class 1 subjects).

PrPr

θθ

0.50.5

βi βi′1 βi′2

τ22

Item group 1 Item group 2

Class 1

Class 1Class 2 Class 2

Figure 1:
Item response curves of two latent classes for item group 1 (left) and for item group 2 (right).βi
represents the item difficulty for item group 1 andβi′g (g= 1,2) represents the item difficulty for
item group 2 for latent classg. τ22 represents the difference in the item difficulty for item group

2 between latent class 1 and latent class 2.

Note that allτgh parameters in Equation (2) can be specified as aG×H matrix. For
instance, whenG = 2 andG = 3, the respective structural parameter matrices can be
specified as follows:

[
τ11 τ12

τ21 τ22

]

and





τ11 τ12 τ12

τ21 τ22 τ23

τ31 τ32 τ33



 . (3)

For identification of the model parameters, a set of constraints needs to be imposed
on these matrices (Wilson, 1989; Mislevy & Wilson, 1996), such that for the reference
latent classg′, we setτg′h = 0 for all h (or τg′. = 0) and for the reference item group
h′, we setτgh′ = 0 for all g (or τ.h′ = 0). These constraints indicate that we assume
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for the reference latent class, any item group does not show ahigher or lower difficulty
level and for the reference item group, there are no performance differences between
latent classes. For instance, suppose the first latent classand the first item group are
selected as reference groups; we then setτ1. = 0 andτ.1 = 0. Specifically, forG= 2,
we imposeτ11 = τ12 = τ21 = 0. The only to-be-estimated parameter in this case isτ22

which represents the amount of advantage (or disadvantage)that people in class 2 have
in solving item group 2 compared with people in latent class 1. ForG= 3, we impose
τ11 = τ12 = τ13 = 0 andτ21 = τ32 = 0. In this case, the structural parameters to be
estimated areτ22,τ23,τ32, andτ33. Hereτ22 indicates the amount of (dis)advantage that
subjects in class 2 have in solving item group 2 compared withpeople in latent class
1, τ32 indicates the amount of (dis)advantage that subjects in class 3 have in solving
item group 2 compared with people in latent class 1, andτ33 indicates the amount of
(dis)advantage that subjects in class 3 have in solving itemgroup 3 compared with
people in latent class 1.

Remarks on structural parameters The structural parameterτgh represents the dif-
ference in item difficulty for a particular item group (grouph) between the reference
latent class and latent classg. To see this more clearly, let us provide an additional
illustration (Jeon, 2018). In the simplest case withG = H = 2, the respective models
for latent classes 1 and 2 can be written as follows:

logit(Pr(yi j = 1|θ j1,Cj = 1)) = θ j1−βi + τ11Ii1
︸ ︷︷ ︸

=−β ∗
i1

,

logit(Pr(yi j = 1|θ j2,Cj = 2)) = θ j2−βi + τ11Ii1+ τ22Ii2
︸ ︷︷ ︸

=−β ∗
i2

.

When the first item group and the first latent class are used as reference groups,τ11 = 0
is imposed for identification; we then haveβ ∗

i1 = βi wheng= 1 andβ ∗
i2= βi−τ22Ii2 with

g= 2. Hence,τ22= β ∗
i1−β ∗

i2. This shows that the structural parameterτ22 is equivalent
to the difference between the item difficulty of latent class1 (β ∗

i1) and the item difficulty
of latent class 1 (β ∗

i2) for item i that belongs to item group 2 (h= 2). Therefore, ifτ22

is positive and significant, it means that the group 2 items are relatively easier for class
2 subjects than class 1 subjects. In other words, class 2 subjects have advantages in
solving the items in item group 2 compared with class 1 subjects.

Now let us consider a more complex scenario with three latentclasses (G= H = 3). In
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this case, we can specify three models for latent classes 1, 2and 3 as follows:

logit(Pr(yi j = 1|θ j1,Cj = 1)) = θ j1−βi + τ11Ii1+ τ12Ii2+ τ13Ii3
︸ ︷︷ ︸

=−β ∗
i1

,

logit(Pr(yi j = 1|θ j2,Cj = 2)) = θ j2−βi + τ21Ii1+ τ22Ii2+ τ23Ii3
︸ ︷︷ ︸

=−β ∗
i2

,

logit(Pr(yi j = 1|θ j3,Cj = 3)) = θ j3−βi + τ31Ii1+ τ32Ii2+ τ33Ii3
︸ ︷︷ ︸

=−β ∗
i3

.

When the first item group and the first latent class are used as reference groups,τ11 =
τ12 = τ13 = 0 andτ21 = τ31 = 0 are imposed for model identification; we then have
β ∗

i1 = βi wheng = 1, β ∗
i2 = βi − τ22− τ23 wheng = 2, andβ ∗

i3 = βi − τ32− τ33 when
g = 3. Therefore, for latent class 2 we can define two structural parameters asτ22 =
β ∗

i[2]1−β ∗
i[2]2, for item group 2 andτ23= β ∗

i[3]1−β ∗
i[3]2, for item group 3.1 These parame-

ters represent the amount of advantage that subjects in latent class 2 have in solving item
group 2 and item group 3, respectively, compared with subjects in latent class 1. Simi-
larly, we can define two structural parameters for latent class 3 asτ32= β ∗

i[2]1−β ∗
i[2]3 for

item group 2, andτ33 = β ∗
i[3]1−β ∗

i[3]3 and for item group 3, which present the amount
of advantage that subjects in latent class 3 have in solving item group 2 and item group
3, respectively, compared with subjects in latent class 1.2

Two-parameter formulation For a two-parameter extension, an additional item dis-
crimination parameter can be added to the specialized confirmatory mixture IRT model
(Jeon, 2018). For instance, model (2) can be re-written as:

logit(Pr(yi j = 1|θ jg,Cj = g)) = αigθ jg −βi + τghIih. (4)

whereαig is the discrimination parameter for itemi for latent classg. To further simplify
the model, one can set the item discrimination parameters tobe equal across latent
classes by replacingαig with αi . Note that with an inclusion of the item discrimination
parameters, we need to set the variances of theθ jg distributions to 1 per latent class
g.

Suppose one can hypothesize a structured difference in the items’ discriminating power
for a particular item group between latent classes. In this case, an additional structural

1To illustrate the three latent class cases, we additionallyintroduced subscript[k] for β ∗
i[k]h to represent the

i-th item’s group membership (k= 1, ...,H).
2To compare the performance between latent class 2 and latentclass 3, an additional data analysis needs

to be done with re-defined structural parameters (with latent class 2 or latent class 3 as the reference
group). This is similar to how dummy coding is used when a categorical covariate is utilized in regression
analysis.
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parameter can be introduced to the item discrimination parameters. Equation (4) can
then be re-written as

logit(Pr(yi j = 1|θ jg,Cj = g)) = (αi + τ(α)
gh )θ jh −βi + τ(β )hk Iih, (5)

where the new structural parameterτ(α)
gh represents a systematic difference in the dis-

crimination power of item grouph between subjects in latent classg and the refer-
ence latent class. For model identifiability, we need to impose a set of constraints to

the new structural parameters asτ(α)
1. = τ(α)

.1 = 0 in addition to the usual constraints

τ(β )1. = τ(β )
.1 = 0 (assuming that the first latent class and the first item groupare the

reference groups).

Multidimensional extension

For a multidimensional extension of the specialized mixture IRT model, we consider
two types of classification scenarios where: (1) subjects are classified into a single
latent class across all test dimensions; and (2) subjects are classified into multiple latent
classes across dimensions. We first formulate a single membership model that suits the
first case scenario and then formulate a mixed membership model for the second case
scenario.

Single membership model

Let us first consider the situation where subjects are classified into one ofG latent
classes acrossK dimensions of a test. A number of multidimensional mixture IRT mod-
els have been proposed based on such single membership classification (e.g., De Jong &
Steenkamp, 2010; Finch & Finch, 2013; Choi & Wilson, 2015; H.-Y. Huang, 2016). For
an illustration of single membership classification, see Table 1 for a two-dimensional
test with two latent classes. Note that only two possible places (in the diagonal) are
available in this case for subjects to be classified into.

Table 1:
Single membership classification for a two-dimensional test with two latent classes

P
P
P
P
P
P
PP

Dim1
Dim2

class1 class2

class1 [1] -
class2 - [2]

Suppose we haveH item groups to differentiate latent classes in each dimension of the
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test.3 Model (2) can be extended for single membership classification as follows:

logit(Pr(yi j = 1|θ jg,Cj = g)) =
K

∑
k=1

r ikθ jkg−βi +
K

∑
k=1

r ikτghkIihk, (6)

whereCj = g indicates subjectj ’s class membership (g = 1, ...,G) for the test. r ik

indicates the(i,k) element (that takes value 0 or 1) of theI ×K score matrixR and
denotes whether theith item is an indicator for thekth dimension. For instance, suppose
we have two items in each of two test dimensions; then the score matrixRcan be written
as: 





1 0
1 0
0 1
0 1






.

This matrix indicates that the first two items belong to the first dimension and the last
two items belong to the second dimension.

The latent traits for subjectj in classg are a vector,θ jg = (θ j1g, ...,θ jKg)
′ and assumed

to follow a multivariate normal distribution with mean vector µg and covariance matrix
Σg. For the identification of this multidimensional model, an additional set of con-
straints needs to be imposed; that is, the mean of a referencelatent class is fixed at 0
in all dimensions to set the reference points of the latent traits. For instance, when the
first latent class is the reference class for a two-dimensional test, we setµg=1 = (0,0)′,
while the means of the other latent classes are freely estimated.

The structural parametersτghk are now defined for dimensionk. To explain the dimension-
specific structural parameters, let us consider a two-dimensional test where subjects are
classified into one of two latent classes (G = 2) based on two item groups (H = 2).
Equation (6) can then be expressed as follows:

logit(Pr(yi j = 1|θ jg,Cj = g)) = r i1θ j1g+ r i2θ j2g−βi + r i1τgh1Iih1+ r i2τgh2Iih2. (7)

Note that we have two sets of structural parametersτgh1 andτgh2 for dimension 1 and
dimension 2, respectively, each of which is in the two 2×2 matrix form:

[
τ111 τ121

τ211 τ221

]

and

[
τ112 τ212

τ212 τ222

]

. (8)

Assuming that the first latent class and the first item group are reference groups, we need
to impose identification constraints as follows:τ1.k = τ.1k = 0 for each dimensionk.
Therefore, we have two structural parameters to estimate:τ221 andτ222. They represent
the advantages (or disadvantages) that class 2 subjects have in solving item group 2 in

3As in the unidimensional model case, we assumeH = G. In addition, we assume that there are the same
number of item groups in each test dimension.
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dimension 1 and dimension 2, respectively. For example, suppose we obtain significant
parameter estimates andτ221> τ222> 0; this means that class 2 subjects have general
advantages in solving the second item group compared with class 1 subjects, while the
amount of advantages is greater in dimension 1 than in dimension 2. Figure 2 illustrates
this scenario by positioning the two item groups on theθ logit scale of each dimension
and for each of the two latent classes. This figure shows that (1) for item group 1, there
is no difference in performance between the two latent classes in both dimensions, and
(2) item group 2 is easier for class 2 in both dimensions, while the amount of advantage
(τ) that class 2 has is larger in dimension 1 than in dimension 2.

θ

θ

Dim 1

Dim 2

τ222

τ221

IG11

IG11

IG21

IG21

IG12

IG12

IG22

IG22
Class 1

Class 1

Class 2

Class 2

Figure 2:
Positions of two item groups on theθ logit scale (the solid line with an arrowhead on both ends)
per dimension. The upper panel is for dimension 1 (Dim1) and the lower panel is for dimension
2 (Dim2). The solid line differentiates two latent classes (the space below the line is for latent
class 1, while the space above the line is for latent class 2).Item groups located on the left side
of the scale are easier than item groups located on the right side of the scale.IGhk represents

item grouph in dimensionk. τ22k represents the amount of advantage that class 2 subjects have
in solving item group 2 items compared with the reference latent class subjects in dimensionk

Mixed membership model

We now consider the mixed membership scenario where subjects are allowed to have
different class memberships across multiple dimensions. Since we classify subjects
into G latent classes for each ofK dimensions, we need to consider a total ofT =
GK possible class membership combinations in the mixed membership situation. For
example, with two latent classes (G= 2) for two dimensions (K = 2), four classification
combinations are possible: [t = 1] class 1 in dimension 1 and class 1 in dimension 2;
[t = 2] class 2 in dimension 1 and class 1 in dimension 2; [t = 3] class 1 in dimension



102 M. Jeon

1 and class 2 in dimension 2; [t = 4] class 2 in dimension 1 and class 2 in dimension 2.
See also Table 2. Note that all places of the 2 by 2 table are allavailable as classification
possibilities. This contrasts with the single membership case where only the diagonal
places are available for classification (Table 1).

Table 2:
Multiple membership classification for a two-dimensional test with two latent classes per

dimension
P
P
P
P
P
P
PP

Dim1
Dim2

class1 class2

class1 [1] [3]
class2 [2] [4]

To allow for mixed classifications across dimensions, Equation (6) needs to be revised
with T = GK possible classification combinations as follows:

logit(Pr(yi j = 1|θ jt ,Cj = t)) =
K

∑
k=1

r ikθ jkt −βi +
K

∑
k=1

r ikτthkIihk. (9)

Note that the only difference of the mixed membership model (9) from the single mem-
bership model (6) is that latent classg is replaced with class membership combination
t (= 1, ...,T). As in the single membership model, the mean of a reference latent class
should be fixed at 0 for any dimension to set the reference points and identify the model.
For instance,µtk = 0 whent includes a reference latent class in dimensionk (this will
be further illustrated with an example later). As in the single membership model, the
structural parametersτthk are defined per dimension but in each oft latent class combi-
nation.

To explain the mixed membership model in a simpler scenario,let us assume that we
want to classify subjects into one of two latent classes (G= 2) based on two item groups
(H = 2) for a two-dimensional test (K = 2). Equation (9) can be expressed as follows:

logit(Pr(yi j = 1|θ jt ,Cj = t)) = r i1θ j1t + r i2θ j2t −βi + r i1τth1Iih1+ r i2τth2Iih2. (10)

In this case, the subjects’ latent traits are assumed to follow a bivariate normal dis-
tribution in each of four latent class combinations:θ jt ∼ N(µ t ,Σt). As in the single
membership model, the mean of a reference latent class should be fixed at 0 for any
dimension to set the reference points and identify the model. That is,µtk = 0 whent
includes a reference latent class in dimensionk. For example, suppose the first latent
class and the first item group are reference groups. We then impose the following iden-
tification constraints on the means of the latent trait distributions: µ1 = (0,0)′, when
t = 1 (class 1 both dimensions 1 and 2),µ2 = (µ12,0)′, whent = 2 (class 2 in dimension
1 and class 1 in dimension 2), andµ3 = (0,µ23)

′, whent = 3 (class 1 in dimension 1
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and class 2 in dimension 2). Whent = 4, subjects belong to class 2 in both dimensions;
thus,µ4 = (µ14,µ24)

′ are freely estimated without constraints.

We have two sets of structural parametersτth1 andτth2 for dimensions 1 and 2, each of
which is a 4×2 matrix as follows:







τ111 τ121

τ211 τ221

τ311 0
τ411 τ421







and







τ112 τ122

τ212 0
τ312 τ322

τ412 τ422






. (11)

When the first class and the first item group are reference groups in each dimension
k, the usual constraints for the structural parameters are imposed in each dimension as
follows: τ1.k = τ.1k = 0. Note that an additional set of constraints are imposed forthe
mixed membership model:τ321 = 0 in k = 1 andτ222= 0 in k = 2 (these are already
applied in the matrices above). This is because by definitionwhent = 2, subjects belong
to class 2 in dimension 1 and class 1 in dimension 2; whent = 3, subjects belong to
class 1 in dimension 1 and class 2 in dimension 2 (see Table 2).In other words, thet = 2
subjects do not differ in dimension 2 and thet = 3 subjects do not differ in dimension
1. Therefore, it make sense to setτ222= 0 for dimension 2 whent = 2 andτ321= 0 for
dimension 1 whent = 3.

Accordingly, we have a total of four structural parameters to estimate with the mixed
membership model:τ221, τ322, τ421 andτ422. Hereτ221 represents the advantage (or
disadvantage) that subjects have in solving item group 2 in dimension 1, andτ322 rep-
resents the advantage (or disadvantage) that subjects havein solving item group 2 in
dimension 2.τ421 andτ422 represent the amount of advantage (or disadvantage) that
subjects have in solving item group 2 in both dimensions (dimension 1 and dimension
2, respectively). Note that the single membership model estimates only two structural
parameters.

Figure 3 illustrates a fictitious joint mixture distribution for a single membership model
and for a mixed membership model with two latent classes for atwo-dimensional test.
The figure shows that the two latent traits (θ1 andθ2) marginally follow a mixture of
normal distributions (on the x-axis and the y- axis, respectively). The single member-
ship model shows two subject clusters, while the mixed membership model shows four
subject clusters. Note that these clusters are created to visually illustrate and contrast a
single membership model with a mixed membership model in terms of possible latent
classes that each model can investigate with. It is worth mentioning that the reference
points of the scale should be fixed for discussing quantitative differences between latent
classes.



104 M. Jeon

Class 1

Class 2

µ12 µ22

µ11

µ21

θ1

θ2

Class 1 Class 3

Class 2 Class 4

µ12 µ22

µ11

µ21

θ1

θ2

Figure 3:
A hypothetical joint mixture distribution of the two latenttraits (θ1 andθ2) for Class 1 (C1) and

Class 2 (C2) for a single membership model (top) and a mixed membership model (bottom)
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Illustrations

Data

To illustrate the two types of confirmatory mixture models for a multidimensional test,
we utilize the verbal aggression dataset (Vansteelandt, 2000; De Boeck & Wilson, 2004).
This dataset has frequently been utilized in the literatureto introduce new IRT models
or procedures (e.g., De Boeck & Wilson, 2004; Braeken et al.,2007; Magis et al., 2010;
Choi & Wilson, 2015; Jeon & Rijmen, 2016). Hence, we selectedthis well-known
dataset for our illustration in the hope that interested researchers can readily apply the
proposed models.

In short, the verbal aggression dataset includes 24 items for 316 respondents (243 fe-
male and 73 male). The test items are designed to measure the source of verbal ag-
gression and its inhibition. Each item gives a situation related to one of two blaming
types (‘Other-to-blame’ and ‘Self-to-blame’), one of two behavioral modes (‘Want’ and
‘Do’), one of three types of verbally aggressive behavior (‘Curse’, ‘Scold’, and ‘Shout’)
and one of four frustrating situations (‘Bus’, ‘Train’, ‘Store’, and ‘Operator’). For ex-
ample, “A bus fails to stop for me. I would want to shout” involves the ‘Want’ behavior
mode, the ‘Shout’ behavior, the ‘Self-to-blame’ type, and the ‘Bus’ situation. Each item
asks respondents whether they would agree to give an aggressive verbal response in a
given situation. Three response options are provided: ‘No’, ‘Perhaps’, and ‘Yes’. For
current analysis, we dichotomized the item responses by combining ‘Perhaps’ and ‘Yes’
categories.

We apply the following rationale to construct a multidimensional confirmatory mixture
IRT model with a specialized set of constraints for the described verbal aggression data.
First, the to-be-measured trait, verbal aggression, is a multidimensional, rather than a
unidimensional construct. This is because the amount of angry behavior that a person
displays in a given situation is conceived as a function of the features of the situation
as well as the person (Vansteelandt & Van Mechelen, 2004). Weconsider two dimen-
sions of verbal aggression based on the ‘Other-to-blame’ and ‘Self-to-blame’ situation
types. These two situations differ in terms of the presence or absence of another person
in the situation and are likely to induce a different amount of frustrations to subjects
(Vansteelandt & Van Mechelen, 2004).

Second, the amount of subjects’ anger elicited by frustrating situations and their thresh-
olds to those situations are likely to differ across subjects (Vansteelandt & Van Meche-
len, 2004). This means that the subjects may come from different sub-populations (or
latent classes) that are characterized by a different orderof the situations and the behav-
iors in terms of the amount of angry behavior evoked.

Third, there are likely substantial individual differences in the way people express their
anger experience (Vansteelandt & Van Mechelen, 2004). In particular, ‘Do’ vs ‘Want’
behavior types may differ in terms of the ease with which a behavior is displayed.
Specifically, ‘Do’ behaviors are likely to show a higher response threshold than ‘Want’
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behaviors because the former implies a higher risk of causing actual damage to the
given situation. Hence, we utilize the ‘Do’ items to differentiate the types and levels of
verbal aggression that subjects possess. In other words, weassume two sub-populations
(or latent classes) of subjects are differentiable based ontheir response thresholds to the
‘Do’ vs. ‘Want’ behavior items.

Based on this rationale, we specify both single- and mixed-membership models for il-
lustrative purposes. With the single membership model, we hypothesize that subjects
belong to a single latent class across two dimensions of verbal aggression. That is, irre-
spective of situation types (that involve self or others), subjects are assumed to display
the same thresholds to the ‘Do’ behavior items. With the multiple membership model,
we relax the single membership assumption and allow subjects to belong to different
latent classes across two dimensions of verbal aggression.In other words, interactions
between behavior types and situations are allowed with the mixed-membership model.
Note that it is possible and perhaps more realistic to presume that subjects differ in their
thresholds to the ‘Do and ‘Want’ items depending on the situation types.

Estimation

For the estimation of the proposed models, we utilized Mplusversion 7.4 (Muthén &
Muthén, 2008) with full information maximum likelihood estimation. We provided an-
notated Mplus code for both single- and mixed-membership models in Appendix A.
To ensure that the parameter estimates were not obtained at local maxima of the log-
likelihood function, we utilized multiple random startingvalues and monitored the con-
vergence. Both the single- and mixed-membership models were successfully converged
and estimated for this dataset. To verify parameter recovery of the two models, we ad-
ditionally conducted a small simulation study. We found that the model parameters
were generally well recovered for both types of models underthe considered condi-
tions, assuring the reliability of the parameter estimates. Details of the simulation study
procedure and results are provided in the supplementary material.

For illustrative purposes, we describe the results obtained from both single- and mixed-
membership models although in practice, a researcher may want to choose a single,
better-suited model based on theoretical and/or practicalconsiderations as well as rela-
tive fit statistics such as Akaike information criterion (AIC) and Bayesian information
criterion (BIC). In theory, it would also be informative to evaluate absolute model fit
statistics for the two models; however, Mplus currently does not provide absolute fit
statistics for complex models including mixture IRT models. In addition, developing
absolute fit measures for complex IRT models is an ongoing area of research. Therefore,
we leave investigating the absolute fit of the models that we discuss in this article for
future studies.
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Results: Single membership analysis

The single membership model showed a log-likelihood of -4059.240 (p=35, wherep is
the number of parameters) with a AIC of 8188.480 and a sample-size adjusted BIC of
8208.920. The model classified approximately 21.8 % subjects into class 1 and 78.2 %
subjects into class 2. The performance difference between the two latent classes was
quantified with the dimension-specific structural parameters, withτ221=−0.927 (SE=
0.331) andτ222=−0.787 (SE= 0.219). This means that the class 2 subjects had a lower
probability of endorsing the ‘Do’ items compared with class1 in both dimensions (i.e.,
for the items that involve ‘Other-to-blame’ situations (dimension 1) and ‘Self-to-blame’
situation (dimension 2)).

There were also some differences in the latent trait distributions between the two latent
classes. For class 2, the estimated means were 0.960 (SE=0.427) and -0.215 (SE=0.296)
for dimensions 1 and 2, respectively (for class 1, the means were fixed at 0 in both di-
mensions since class 1 was set as the reference group). That is, class 2 subjects showed
a higher overall mean in their latent trait distribution of dimension 1 compared to class
1 subjects. The standard deviations were 1.243 (dimension 1) and 0.442 (dimension
2) for class 1, while they were 1.289 (dimension 1) and 2.032 (dimension 2) for class
2. The correlation between the two dimensions was 0.980 and 0.787 for class 1 and
class 2, respectively. These results suggest that (1) between-class differences existed
in the latent trait variation. In particular, class 1 showeda relatively smaller variation
in dimension 2 (which involves ‘Self-to-blame’ situations) compared with class 1; and
(2) the between-dimension correlation was quite large in both classes, although the cor-
relation was slightly larger in class 1 than in class 2. The latter may be interpreted as
that verbal aggression levels were generally consistent across situation types, while the
consistency was a little stronger for class 1 subjects than class 2. Note that this kind
of heterogeneity in subjects’ latent trait distributions would not be found if a unidimen-
sional mixture model or a regular multidimensional model was applied to analyze the
data.4

Figure 4 displays the estimated item difficulty parameter (βi) values from the single-
membership model. Clearly, there were systematic differences in theβi parameter es-
timates between class 1 and class 2. Specifically, the ‘Do’ items were more difficult
for class 2 subjects than class 1 subjects in dimension 1 (items 7 to 12) and dimen-
sion 2 (items 19 to 24). Those differences amount to the dimension-specific structural
parameter estimates,τ221 andτ222 for dimensions 1 and 2, respectively.

4Both uni- and multi-dimensional exploratory 1PL mixture models (with 2 classes) were not converged un-
less additional constraints were imposed. A regular (non-mixture) 1PL multidimensional model showed
AIC and BIC values (log-likelihood=-4080.149 (p=27), AIC= 8214.298 BIC= 8230.066) which were
worse than those of the single-membership model.
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Figure 4:
Estimated item difficulty parameter (βi ) values from the single-membership model for the verbal

aggression data. b1 to b24 represent theβi parameters fori = 1, ...,24.

Results: Mixed Membership Analysis

The mixed membership model showed a log-likelihood of -4049.377 (p=46) with a
AIC of 8190.755 and a sample-size adjusted BIC of 8217.619. The mixed membership
model showed similar fit to the single membership model in thecurrent example.

From the mixed membership analysis results, we first checkedthe estimated struc-
tural parameter values. They wereτ221 = 0.769 (SE=0.336) for class 2 (dimension
1),τ322=−0.528 (SE=0.491) for class 3 (dimension 2),τ421=−1.570 (SE= 0.661) for
class 4 (dimension 1), andτ422= −1.291 (SE=0.484 ) for class 4 (dimension 2). The
estimates were all significant at the 5 % level exceptτ322 for class 3. This result sug-
gests that (1) class 2 had a higher probability of endorsing the ‘Do’ items that involve
the ‘Other-to-blame ’ situations (dimension 1) compared with class 1; (2) there was in-
sufficient evidence that class 3 had a lower probability of endorsing for the ‘Do’ items
involved with the ‘Self-to-blame ’ situations (dimension 2) compared with class 1; and
(3) class 4 showed a lower probability of endorsing the ‘Do’ items compared with class
1, irrespective of situation types (‘Other-to-blame’ vs. ‘Self-to-blame ’ situations). This
is a quite intriguing result in that the ‘Do’ items were foundto be easier only in ‘Other-
to-blame’ situations for some group of subjects (class 2). This implies that there may
be interactions between situations and behavior types in terms of the amount of anger
evoked by subjects.
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We found that the participants were classified into four latent groups, approximately
43.0 % in class 1, 29.8 % in class 2, 11.1 % in class 3, and 16.1 % in class 4. It is
interesting to see that there were a non-negligible number of subjects (about 40.9 %)
who showed a mixed membership profile across two dimensions (class 1 in dimension
1 but class 2 in dimension 2 or vice versa). Note that such mixed membership people
could not be identified with the single membership analysis that forces subjects to have
only one class membership across all dimensions.

In addition, the four latent classes presented some differences in their latent trait distri-
butions. Table 3 lists the estimated means, standard deviations, and between-dimension
correlation for the two latent traits in each latent class.

Table 3:
The estimated means, standard deviations (SD), correlation between the two latent traits (Dim1

and Dim2) from the mixed membership model.

Mean (SE) SD Cor
Dim1 Dim2 Dim1 Dim2

Class 1 0 0 1.378 1.196 1.00
Class 2 -1.287(0.332) 0 1.550 3.108 0.99
Class 3 0 -1.096(0.631) 1.372 0.425 0.53
Class 4 0.938(0.473) 0.687(0.522) 0.968 1.096 1.00

From Table 3, we found that (1) the latent trait means varied across the four latent class
combinations. For instance, class 2 subjects showed a smaller mean than class 1 in
dimension 1; class 3 subjects showed a smaller mean than class 1 in dimension 2; and
class 4 subjects showed a larger mean than class 1 in dimension 1, (2) the latent trait
standard deviations also varied across the latent classes.Interestingly, class 2 showed a
larger variation but class 3 showed a smaller variation thanclass 1 in dimension 2; and
(3) the correlation between the two dimensions was close to 1.0 in all classes except
class 3 that showed a correlation of 0.53. Note that in the single membership analysis,
we found that (1) the mean difference in dimension 2 between latent classes 1 and 2
was not significantly different from 0, (2) the subject heterogeneity of the latent trait
distribution was larger in dimension 2 than in dimension 1 for class 2, and (3) class
2 showed a relatively smaller between-dimension correlation than class 1. These dif-
ferences in the results might stem from that the mixed membership model relaxes a
somewhat stringent assumption taken by the single membership model.

Figure 5 displays the estimated item difficulty parameter (βi) values from the mixed
membership model. Observe that theβi parameter estimates were structurally different
for the ‘Do’ items across three latent classes. For the ‘Want’ items, there were no
differences in the difficulty parameter estimates between latent classes. For class 2
subjects, the ‘Do’ items in dimension 2 (items 19 to 24) were easier than class 1 subjects.
For class 4 subjects, the ‘Do’ items were harder in both dimensions (items 7 to 12,
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Figure 5:
Estimated item difficulty parameter (βi) values from the mixed membership model for the verbal

aggression data. b1 to b24 represent theβi parameters fori = 1, ...,24.

items 19 to 24) than class 1 subjects. This analysis result confirms that systematic
class differences across dimensions could be successfullyidentified with the mixed
membership model.

Discussion

In this paper, we discussed specialized confirmatory mixture IRT modeling for multidi-
mensional assessments. The model is confirmatory in two senses: (1) the number/nature
of latent classes is known prior to data analysis, and (2) prior knowledge on items (and
their characteristics) is used to hypothesize the item-class relationship and to differen-
tiate latent classes. Researchers who are more accustomed to an ordinary, exploratory
use of mixture IRT modeling may feel that such a confirmatory approach seems some-
what unnatural. However, we would like to stress that a confirmatory approach could be
introduced in mixture modeling as in confirmatory factor analysis, because it can serve
for the purpose of verifying a researcher’s hypothesis on the nature of the postulated
latent classes and latent class differentiation.

For multidimensional extensions, we discussed two types ofclassification scenarios: (1)
a single membership case where subjects have only one latentclass membership across
all dimensions, and (2) a mixed membership case where subjects can have different
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memberships across multiple dimensions. We discussed and illustrated with an em-
pirical example how these two classification methods could be adopted for specialized
confirmatory mixture IRT modeling.

We would like to make a few points regarding mixed membershipanalysis in contrast
to single membership analysis. First, mixed membership models become exponentially
complicated as the number of dimensions and/or latent classes increase. For instance,
with two latent classes for a two-dimensional test, we have four latent class combina-
tions to consider, while when we have four latent class for a three-dimensional test,
we need to consider 16 latent class combinations. With such alarge number of latent
classes, an extremely large sample size may be needed for reliable estimation of mixed
membership models.

Second, from mixed membership analysis, a group of subjectswith different class mem-
berships across dimensions may be captured because of the difference in the moments
(mean and standard deviation) of their latent trait distributions rather than difference in
their performance on the chosen item groups. This may be the case especially when
the underlying latent trait distribution is not normal in the data (e.g., Sen et al., 2015).
Hence, researchers should be aware of this issue when interpreting results from mixed
membership analysis.

Third, mixed membership analysis can be viewed as a special case of single member-
ship analysis when subjects are simultaneously classified into a multidimensional latent
space. With a larger number of latent classes (than for usualsingle membership analy-
sis), all latent class combinations (that mixed membershipanalysis considers) may be
captured with this special single membership analysis, although the estimation of this
model is likely to be more challenging than the mixed membership model. Hence, if
these two types of analysis procedures produce the same classification results, it may
be sensible to choose the mixed membership model because of its relative simplicity.

Note that from a modeling perspective, our model can be seen as a multidimensional
extension of the Saltus model (Wilson, 1989; Mislevy & Wilson, 1996). The original
Saltus model was proposed for unidimensional assessments and has been extended for
polytomous item responses (Draney, 2007) and with item covariates (Draney & Wilson,
2008). Jeon (2018) presented several extensions of the Saltus model with item discrim-
ination parameters, person predictors, and ordinal item responses. Recently, Jeon et al.
(in press) presented an application of a multidimensional extension of the Saltus model
with item covariates, for analyzing developmental stages of children for a deductive
reasoning test. However, those authors focused on single membership classification. A
unique contribution of the current work is that we differentiate, formulate, and compare
single and mixed classification scenarios that are sensiblefor the analysis of multidi-
mensional assessments and discuss how these two different classification scenarios can
be applied in the context of confirmatory mixture modeling.

The specialized confirmatory mixture modeling approach that we discussed in this paper
has merits both in technical and substantive aspects (e.g.,for computation and result
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interpretation) because of its parsimony. In addition, theproposed multidimensional
extensions have a variety of applications; for instance, they can be applied to scenarios
where a researcher would like to test a hypothesis on structural differences between
latent classes with multidimensional assessments. Suppose we have a mathematics test
that consists of multiple sub-tests (e.g., algebra, geometry, and number theory) where
each sub-test includes a key item set that are designed to identify students who would
need extra support to improve their mathematics skills in each content area. In this case,
the proposed modeling can successfully be applied to differentiate those students who
are in need of special assistance (from students without needing extra support) as well
as to evaluate whether the designed test items function effectively as expected in terms
of differentiating a potentially disadvantaged group of students.

On a final note, we would like to mention that it may be beneficial to incorporate
additional item discrimination parameters into the discussed models, in order to im-
prove classification precision. This is because applying a one-parameter model to two-
parameter data can possibly lead to identifying spurious latent classes (Alexeev et al.,
2011). In addition, including person predictors into the model for classification can
also be useful to prevent possible misclassification of latent classes (G.-H. Huang &
Bandeen-Roche, 2004). We will leave further investigations on the impacts of model
misidentification and possible remedies for future studies.

Appendix A

Here we provide example Mplus code for fitting single membership and mixed mem-
bership models for the verbal aggression data.

<Single membership model>

!! Header of input file
TITLE: Single membership model for verbal aggression data

!! Data file specification
DATA: FILE = verbal.dat;

!! Define variables and specify number of latent classes
VARIABLE:
NAMES = u1-u24;
CATEGORICAL = u1-u24; ! binary item responses
MISSING = ALL(99); ! missing data are coded as 99
CLASSES = c (2) ; ! define number of latent classes

!! Estimation settings
ANALYSIS: TYPE = MIXTURE; ! estimate finite mixture model
ALGORITHM = INTEGRATION; ! 15 default quadrature points
STARTS = 500 10 ; ! use multiple random start (can be increased if needed)

!! Model specification
MODEL:
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! Overall model
%OVERALL%
f1 BY u1-u12@1; ! item loading parameters in dim 1
f2 By u13-u24@1; ! item loading parameters in dim 2

! Model for class 1
%c#1%
f1 BY u1-u12@1;
f2 By u13-u24@1;
[f1@0]; [f@02]; ! factor means fixed at 0 (reference group)
f1; f2;
f1 with f2;
[u1$1-u12$1](a1-a12 ) ; !difficulty parameters in dim 1
[u13$1-u24$1](a13-a24); !difficulty parameters in dim 2

! Model for class 2
%c#2%
f1 BY u1-u12@1;
f2 By u13-u24@1;
[f1]; [f2];
f1; f2; ! factor means freely estimated
f1 with f2;

! Use different difficulty parameter labels for ‘Do’ items
[u1$1-u12$1] (a1-a6 b7-b12 ); !i7-i12 in dim 1
[u13$1-u24$1](a13-a18 b19-b24); !i19-i24 in dim 2

! Set model constraints
MODEL CONSTRAINT:

NEW(tau1 tau2); ! define structural parameters in dim 1 and din 2

!! Define structural parameter for dim 1 as difference
!! in difficulty parameters for ‘Do’ items
!! between class 1 and class 2 (i7-i12)
tau1 = a7-b7;
tau1 = a8-b8;
tau1 = a9-b9;
tau1 = a10-b10;
tau1 = a11-b11;
tau1 = a12-b12;

!! Define structural parameter for dim 2 as difference
!! in difficulty parameters for ‘Do’ items
!! between class 1 and class 2 (i19-i24)
tau2 = a19-b19;
tau2 = a20-b20;
tau2 = a21-b21;
tau2 = a22-b22;
tau2 = a23-b23;
tau2 = a24-b24;

!! Save posterior probabilities for latent class membership
Savedata:
file is prob1_single.txt ;
save is cprob;
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<Mixed membership model>

!! Header of input file
TITLE: Mixed membership model for verbal aggression data

!! Data file specification
DATA: FILE = verbal.dat;

!! Define variables and specify number of latent classes
VARIABLE:
NAMES = u1-u24;
CATEGORICAL = u1-u24; ! binary item responses
MISSING = ALL(99); ! missing data are coded as 99
CLASSES = c1 (2) c2(2); ! define two latent classes for dim 1 and dim 2

!! Estimation settings
ANALYSIS: TYPE = MIXTURE; ! estimate finite mixture model
ALGORITHM = INTEGRATION; ! 15 default quadrature points
STARTS = 500 10; ! use multiple random start (can be increased if needed)

!! Model specification
MODEL:
! Overall model
%OVERALL%
f1 BY u1-u12@1; ! item loading parameters in dim 1
f2 By u13-u24@1; ! item loading parameters in dim 2

! Model for class 1
%c1#1.c2#1% ! class 1 in dim 1 and class 1 in dim 2
f1 BY u1-u12@1;
f2 By u13-u24@1;
[f1@0]; [f2@0]; ! factor means fixed at 0 (reference group)
f1 (v11); f2 (v12);
f1 with f2 (cov1);

[u1$1-u12$1](a1-a12 ) ; ! difficulty parameters in dim 1
[u13$1-u24$1](a13-a24); ! difficulty parameters in dim 2

! Model for class 2
%c1#2.c2#1% ! class 2 in dim 1 and class 1 in dim 2
f1 BY u1-u12@1;
f2 By u13-u24@1;
[f1]; [f2@0];
f1 (v21); f2 (v22);
f1 with f2 (cov2);

! Use different difficulty parameter labels for ‘Do’ items in dim 1
[u1$1-u12$1] (a1-a6 d7-d12 ); ! i7-i12 in dim 1
[u13$1-u24$1](a13-a24);

! Model for class 3
%c1#1.c2#2% ! class 1 in dim 1 and class 2 in dim 2
f1 BY u1-u12@1;
f2 By u13-u24@1;
[f1@0]; [f2];
f1 (v31); f2 (v32);
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f1 with f2 (cov3);

! Use different difficulty parameter labels for ‘Do’ items in dim 2
[u1$1-u12$1] (a1-a12 );
[u13$1-u24$1](a13-a18 d19-d24); ! i19-i24 in dim 2

! Model for class 4
%c1#2.c2#2% ! class 2 in dim 1 and class 2 in dim 2
f1 BY u1-u12@1;
f2 By u13-u24@1;
[f1]; [f2]; ! factor means freely estimated
f1 (v41); f2 (v42);
f1 with f2 (cov4);

! Use different difficulty parameter labels
! for ‘Do’ items in dim 1 and dim 2
[u1$1-u12$1] (a1-a6 b7-b12 ); !i7-i12 in dim 1
[u13$1-u24$1](a13-a18 b19-b24); !i19-i24 in dim 2

! Set model constraints
MODEL CONSTRAINT:

! define structural parameters for classes 2, 3, and 4
NEW(tau1 tau2 tau3 tau4);

!! For class 2, define structural parameter for dim 1 as difference
!! in difficulty parameters for ‘Do’ items
!! between class 1 and class 2 (i7-i12)
tau1 = a7-d7;
tau1 = a8-d8;
tau1 = a9-d9;
tau1 = a10-d10;
tau1 = a11-d11;
tau1 = a12-d12;

!! For class 3, define structural parameter for dim 1 as difference
!! in difficulty parameters for ‘Do’ items
!! between class 1 and class2 (i19-i24)
tau2 = a19-d19;
tau2 = a20-d20;
tau2 = a21-d21;
tau2 = a22-d22;
tau2 = a23-d23;
tau2 = a24-d24;

!! For class 4, define structural parameter for dim 1 as difference
!! in difficulty parameters for ‘Do’ items
!! between class 1 and class 2 (i7-i12)
tau3 = a7-b7;
tau3 = a8-b8;
tau3 = a9-b9;
tau3 = a10-b10;
tau3 = a11-b11;
tau3 = a12-b12;

!! For class 4, define structural parameter for dim 2 as difference
!! in difficulty parameters for ‘Do’ items
!! between class 1 and class 2 (i19-i24)
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tau4 = a19-b19;
tau4 = a20-b20;
tau4 = a21-b21;
tau4 = a22-b22;
tau4 = a23-b23;
tau4 = a24-b24;

!! Save posterior probabilities for latent class membership
Savedata:
file is prob2_mixed.txt ;
save is cprob;
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Supplementary material

Here we discuss the simulation study that we conducted to evaluate parameter recov-
ery of the two types of models that we discussed in the manuscript. To this end, we
considered a testing situation analogous to the empirical data setting utilized in Sec-
tion 3. Specifically, 24 test items of a two-dimensional testwere considered with two
item groups (6 items per item group in each dimension) with two latent classes. We
then considered two sample size conditionsN = 500 andN = 1000 (with equal mix-
ing proportions across latent classes for each model). Showing parameters recovery in
relatively small sample size situations is meaningful because one can expect generally
improved recovery accuracy in larger sample sizes.

The data generating parameter values were set similar to theparameter estimates ob-
tained from each model fitted to the verbal aggression data. For each model, 100
datasets were generated and estimated with Mplus, with the same maximum likelihood
estimation setting as in the empirical study. Potential label switching between runs were
checked for the two fitted models.

Figures 6 to 9 display the bias and root mean square error (RMSE) of the estimated
model parameters for the models in the two sample size conditions.

For the single membership model with 32 parameters, the biaswas not significantly
different from 0 at the 5% level except for the two parameters, σ2

21 (t = -2.78, p<0.01)
andβ10 (t = -2.37, p = 0.02) whenN = 500. WhenN = 1000, the bias was insignificant
for all model parameters. The RMSE ranged from 0.02 to 0.23 for all model parameters
whenN = 500 and ranged from 0.01 to 0.16 whenN = 1000.

For the mixed membership model with 40 parameters, the bias was not significantly
different from zero at the 5% significance level, exceptσ2

41 (t = −2.23, p= 0.03) and
β10 (t = −2.69, p= 0.01) whenN = 500. WhenN = 1000, the bias was insignificant
exceptτ322 (t =−2.18, p= 0.03) andβ11 (t =−2.15, p= 0.03). For all model param-
eters, The RMSE ranged from 0.07 to 0.31 whenN = 500 and ranged from 0.03 to 0.19
whenN = 1000.

These results assure that the model parameters could generally be well recovered for
both types of models under the considered conditions. The bias and RMSE tended to
be slightly larger for the mixed membership model than the single membership model.
This makes sense given that the mixed membership model is a more complex model
and contains more parameters to estimate than the single membership model. For both
models, the bias and RMSE tended to decrease when the sample size isN = 1000 than
N= 500. This result suggests that the estimation accuracy can indeed be improved with
larger sample sizes.
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Figure 6:
Bias and RMSE of the estimated model parameters for the single membership model when

N = 500.τg, σ2
1g, σ2

2g, σ12g, andβi indicate the structural parameters, the factor variances for
dimensions 1 and 2, covariance for classg (g= 1,2) and the item difficulty parametersbi

(i = 1, ...,24), respectively.
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Figure 7:
Bias and RMSE of the estimated model parameters for the single membership model when

N = 1000.τg, σ2
1g, σ2

2g, σ12g, andβi indicate the structural parameters, the factor variances for
dimensions 1 and 2, covariance for classg (g= 1,2) and the item difficulty parametersbi

(i = 1, ...,24), respectively.
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Figure 8:
Bias and RMSE of the estimated model parameters for the mixedmembership model when

N = 500.τg, σ2
1g, σ2

2g, σ12g, andβi indicate the structural parameters, the factor variances for
dimensions 1 and 2, covariance for classg (g= 1, ...,4) and the item difficulty parametersbi

(i = 1, ...,24), respectively.
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Figure 9:
Bias and RMSE of the estimated model parameters for the mixedmembership model when

N = 1000.τg, σ2
1g, σ2

2g, σ12g, andβi indicate the structural parameters, the factor variances for
dimensions 1 and 2, covariance for classg (g= 1, ...,4) and the item difficulty parametersbi

(i = 1, ...,24), respectively.




