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A specializedconfirmatory mixture IRT
modeling approach for multidimensional tests
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Abstract

Finite-mixturemodelsaretypically utilizedin educationalandpsychologicaresearcho explore
potentiallatent classeshat may be presentin the dataunder investigation. However, mixture
modelscanalso be appliedto testout or confirmresearchergheoriesor hypothesegboutlatent
classes.In this paper,we discussa specializedconfirmatorymixture IRT modeling approach
for multidimensionaltestswith a setof pre-arrangectonstraintson item parameterghat are
devisedto differentiatelatentclassesTwo typesof multidimensionaklassificatiorscenariosre
discussed(1) asinglemembershigasewheresubjectsstrictly haveonelatentclassmembership
for al testdimensions,and (2) a mixed membershipcasewhere subjectsare allowedto have
different latent class membershipsacrosstest dimensions. We illustrate maximum likelihood
estimationof thetwo typesof confirmatorymixture modelswith anempirical dataset.
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Finite mixture IRT models

Mixture item response theory (IRT) models have become alpopapl to investigate
various issues in educational and psychological assesqiBelt et al., 2001; Cohen
& Bolt, 2005; Finch & French, 2012). Mixture IRT models pdstie that subjects
are drawn from two or more unknown (or latent) populatioret ffresent systematic
differences in their item response behavior. Hence, mét®T models are usually
utilized to identify sub-populations of subjects whosdeat#nces are characterized or
captured based on differences in their item parameters.

Mixture IRT models are usually employed in an exploratoshian because the num-
ber and nature of latent classes are unknown a priori; tbegglisers of mixture IRT
models aim teexplorethe possible presence of latent classes in their data. édmo
relatively less common compared with an exploratory apghpthere have been con-
firmatory uses of mixture IRT modeling; in this case, the neménd character of
latent classes are pre-specified by researchers basedmthéoey or hypothesis about
data. Therefore, researchers ainttmfirmthe presence and characteristics of the hy-
pothesized latent classes by applying the mixture model. ekample, educational
researchers have applied a confirmatory mixture IRT modeMestigate two different
types of item solving strategies that examinees may appingspeeded or non-speed
tests (e.g., guessing-based and ability-based stratagikdent classes) (e.g., Mislevy
& Verhelst, 1990; Schnipke & Scrams, 1997; Yamamoto & Everd®97; Boughton
& Yamamoto, 2007). Molenaar et al. (2016) hypothesized tveales of intelligence as
latent classes based on differences in response timeslk@w.and fast modes of intelli-
gence) and investigated how examinees apply differenstgpimtelligence during tests.
Tijmstra et al. (in press) assumed and analyzed two kindsspianse styles that respon-
dents may apply when responding to Likert-type rating sitafas with confirmatory
mixture modeling. Jin et al. (2018) also applied a similgora@ach to rating-scale data
to differentiate an inattentive response behavior frommadiresponse behavior.

A specialized confirmatory mixture IRT model

Another use of confirmatory mixture modeling is found in geymetrics literature (Wil-
son, 1989; Mislevy & Wilson, 1996; Draney, 2007; Draney & ¥dih, 2008). This, the
so-calledSaltus modelings unique in the sense that a special set of test items are uti-
lized to differentiate hypothesized latent classes. Fstaimce, Wilson (1989) proposed
imposing a set of constraints on the item parameters of arowetfory mixture Rasch
model to examine the developmental stages of children baséldeir performance on
particular item sets of a cognitive test.

One may believe that such a confirmatory use of latent classgsest items is some-
what restrictive. However, in confirmatory factor analysibich is a common practice
in applied research, we typically assume that the numbeaaibfs and a factor-item
relationship (or a factor structure) are known prior to datalysis. The goal of con-
firmatory factor analysis is to validate a factor structurattresearchers hypothesize
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and further examine relationship between factors. Thid oaearly different from
exploratory factor analysis that aims to identify an unkndactor structure. Similarly,
we argue that it would be reasonable to adopt for a confirmatpproach for latent
classes and test items in mixture IRT modeling when reseaschish to corroborate a
hypothesis on the number and nature of latent classes ahéf@xamine relationships
between latent classes. For instance, suppose we have\adsedeecklist that contains
a set of items that are designed to identify patients witlesedepressive symptoms. In
this case, we are interested in differentiating patientk sgvere symptoms from those
with mild symptoms (i.e., two latent classes). In additidmwyould be reasonable and
suitable to utilize those particular check-list items thet designed to distinguish ex-
treme depression symptoms from mild symptoms. Hence, arowatfiry mixture IRT
model can be adopted in this situation for differentiatirgesely depressive patients
who need special care and treatments from regular patients.

Purpose

The purpose of this study is to introduce the specializedicoatory mixture IRT mod-
eling and describe its extension and application for mimtehsional tests. Educational
and psychological tests are often composed of multipletests-that measure multiple
constructs that are related to each other. For example, githematics anxiety rat-
ing scale (Richardson & Suinn, 1972) is composed of multiple-tests that measure
situation-specific anxiety factors: (a) anxiety about parfing mathematical calcula-
tions, (b) anxiety about solving a math problem in publia &) anxiety about taking
a math test (Lukowski et al., in press). In addition, in therids in International Mathe-
matics and Science Study (TIMSS), a well-known, largeesitaernational educational
assessment, mathematics tests are based on multiple ddm&bssed on three cogni-
tive domains (knowing, applying, and reasoning) as wellhase cognitive domains
(numbers, geometric shapes and measures, and data disptagthematics skillsets.
Hence, for the purpose of expanding the scope of the disdussdirmatory mixture
IRT model's applications, it would be beneficial to considenultidimensional exten-
sion of the model.

To analyze multidimensional assessment data for clagsificaone may think of a
situation where subjects have the same latent class mehibéos different test di-
mensions. In this case, it is possible to predict a subjetdss membership for one
dimension based on her class membership for another dioren3ihere may be an-
other situation, however, where subjects have differaagscimemberships in different
dimensions of the test. For instance, suppose we have antetatit that consists of
two sub-tests (that measure vocabulary and compreherisioimstance) and we are
interested in classifying examinees into two latent clagbat indicate mastery and
non-mastery of the skillset that each sub-test intends &@sore. Even though the two
sub-traits are likely to be positively correlated, it idlgtiossible that some examinees
who master one skillset (e.g., vocabulary) do not masteother skillset (e.g., com-
prehension); in this case, those examinees have diffeleesgification memberships for
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the two sub-tests (i.e., the mastery class for vocabulagytia® non-mastery class for

comprehension). Therefore, it would be useful to think at@omore general classifica-
tion scenario where examinees are allowed to have diffetass memberships across
multiple test dimensions. For convenience, we label thediessification type as single

membership and the second type as mixed membership claseific

Note that one may consider a type of classification where glesiclass membership
is assigned to subjects in a multidimensional trait spacethis case, a latent class
may be characterized with a lower score in one dimension thiglaer score in the
other dimension (this is likely to be the case if the two disiens are negatively corre-
lated). Although such a classification method is reasona@ealiscuss a different type
of classification where class membership is assigned testgifor each test dimension
at a time. Note that this latter type of classification is tgbiin diagnostic classifica-
tion modeling (DCM; Rupp et al., 2010) where examinees asesified into one of
two classes (e.g., mastery or non-mastery as discusse@)diooeach of the multiple
attributes that are measured with a test. In fact, mixed neeshiip classification (or
assigning class membership per dimension at a time) thaisgess in this paper can
be seen as a special case of the single classification ofctsiloj¢o a multidimensional
trait space with an increased number of latent classes.pbig will be re-visited and
discussed later in the discussion section.

In this study, we discuss both single and mixed memberskipass for a multidimen-
sional extension of the specialized confirmatory mixturé HRodel. Although both

single and membership classifications have been utilizékdeinmixture IRT modeling

literature (e.g., De Jong & Steenkamp, 2010; Choi & Wilsdi 2, H.-Y. Huang, 2016;
Molenaar et al., 2016), the two classification types havelydveen discussed jointly
and/or compared in the context of confirmatory mixture asialy

Model

We first lay out the formulation of the specialized confirnmgtmixture IRT model for
a unidimensional test. Subsequently, we describe a mukidsional extension of the
model in the case of single membership and mixed memberspification, respec-
tively. For all models, we focus on the one-parameter lag{dtPL) parameterization
for the sake of simplicity. Extensions to a two-parametemfglation are feasible as
illustrated below for a unidimensional case.

Specialized confirmatory mixture IRT model

Denotey;; a binary response to iteifor personj andC; = g is a categorical latent vari-
able that indicates persgrs class membershig (= 1,...,G). A standard exploratory,
mixture Rasch model can then be written as follows:

logit(Pr(yij = 1/6jg,Cj = 9)) = 68jg — Big: (1)
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wherefjq is a continuous latent variable that indicates pergstatent trait in clasg

with class-specific mean and varian6g, ~ N(Lg, 05) wherepg = 0 is set for scale de-
terminacy and model identification. The item paramgigrepresents the class-specific
difficulty for item i for latent clasgy. Note that the class-specific item parameters are
freely estimated in all latent classes, implying that noaire is imposed in the item
parameters. In addition, the number of latent clas&s$g unknown a priori for ordi-
nary exploratory mixture analysis; hence, it needs to beigrafly determined based
on data analysis.

Suppose a researcher has a strong theory or hypothesistabautmber and nature
of latent classes for collected data and additionally hastifled a particular set of
items (or ‘item groups’) that are designed to differentiatdjects across the latent
classes. Let us further illustrate how ‘item groups’ can bkzad in such a scenario.
Suppose a researcher wants to classify children into onemftlevelopmental stages
based on the children’s scores on a reasoning test. Thestdswéloped based on a
design factor that characterizes the complexity or cogmitiemand of the test items.
According to the test design, individual items belong to ohewvo item groups: Con-
crete or Abstract/Counterfactual items (in the order of kesmore cognitively demand-
ing items). The researcher hypothesizes that children ionilye higher developmen-
tal stage are able to solve the more complex, Abstract/@ofaatual items correctly,
whereas children in the lower developmental stages care smily the less complex,
Concrete items. In this scenario, it is sensible to use #re groups (Concrete vs. Ab-
stract/Counterfactual items) to differentiate childrerihie higher developmental stage
from those in the lower stage. Note that the specialized oafory mixture anal-
ysis is more optimal in this case than standard exploratargume analysis because
the number and nature of latent classes are already knowtharidtent classes (two
developmental stages) would be sufficiently character&aretidifferentiated based on
children’s performance on the two item groups (Concrete lostfact/Counterfactual
items).

Suppose we hav@ latent classes whose characteristics are already knowwament
to useH item groups to differentiate the latent classes. We assbmeH for the sake
of simplicity. Then model (1) can be revised as follows:

logit(Pr(yij = 1|6jg,Cj = 9)) = 6jg — Bi + Tgnlin- (2)

Note that in this formulation the item difficulty paramef@ris set equivalent across
all latent classes (hencg, does not include subscrig). Importantly, Equation (2)
includes an additional structural parametgy that indicates the effect of item group
lin (h=1,...,G) on the probability of correctly solving the items in thenitgyroup for
subjects in clasg. The structural parameteg, represents how difficult or easy the
items in item grough are for subjects in latent clagscompared with subjects in the
reference latent class. In other wordg, can also be interpreted as the amount of
advantage that subjects in latent clgssave in solving the items in item groump For
the reference item group, it is assumed that there is no peaface difference between
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latent classes.

To further illustrate this specification, Figure 1 is praattko display the item response
function (that represents the probability of a correct s as a function of latent
trait 8) for two latent classes and for two item groups (the firstiaitdass and the first
item group are set to the reference groups and all items iteamgroup are assumed
to have the same difficulty level for the sake of simplicityhis figure shows that for
item group 1 which is the reference item group (left panéi,item difficulty level is
equal between the two latent classes. Foritem group 2 (oihel), however, the items
are more difficult for latent class 2 than for latent class hifh is the reference person
group). The difference between the two class-specific auisreaptured with the,,
parameter, which also represents the difference in thecdlif§i level of item group 2
between the two latent classes (or the amount of disadvarags 2 has in solving
item group 2 compared with class 1 subjects).

iClass 2

0.5 [ frmme o

T2

A o T e o
Item group 1 Item group 2
Figure 1:

Item response curves of two latent classes for item groueft) énd for item group 2 (right)5;

represents the item difficulty for item group 1 a8¢ (9 = 1,2) represents the item difficulty for

item group 2 for latent clasg 125 represents the difference in the item difficulty for itemgpo
2 between latent class 1 and latent class 2.

Note that alltg, parameters in Equation (2) can be specified &>aH matrix. For
instance, wheis = 2 andG = 3, the respective structural parameter matrices can be
specified as follows:

Ty Tio T1nz Ti2 T2
[ o1 Too ] and Toy T2 T3 |. (3
T31 T32 133

For identification of the model parameters, a set of conssaieeds to be imposed
on these matrices (Wilson, 1989; Mislevy & Wilson, 1996 tsthat for the reference
latent clasgy, we setryn = 0 for all h (or 7y, = 0) and for the reference item group
h', we settyy = 0 for all g (or Ty = 0). These constraints indicate that we assume
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for the reference latent class, any item group does not shagheer or lower difficulty
level and for the reference item group, there are no perfocaalifferences between
latent classes. For instance, suppose the first latent afasshe first item group are
selected as reference groups; we thernrset 0 andt; = 0. Specifically, forG = 2,

we imposer;; = Typ = T1 = 0. The only to-be-estimated parameter in this cageJs
which represents the amount of advantage (or disadvarttzatg)eople in class 2 have
in solving item group 2 compared with people in latent clasdr G = 3, we impose
711 = T1p = T13 = 0 and 11 = 132 = 0. In this case, the structural parameters to be
estimated are, T3, Tzp, andTsz. Herety; indicates the amount of (dis)advantage that
subjects in class 2 have in solving item group 2 compared pétbple in latent class
1, 13 indicates the amount of (dis)advantage that subjects ss@ahave in solving
item group 2 compared with people in latent class 1, sjadndicates the amount of
(dis)advantage that subjects in class 3 have in solving gemup 3 compared with
people in latent class 1.

Remarks on structural parameters  The structural parametegy, represents the dif-
ference in item difficulty for a particular item group (grobpbetween the reference
latent class and latent clags To see this more clearly, let us provide an additional
illustration (Jeon, 2018). In the simplest case Wih- H = 2, the respective models
for latent classes 1 and 2 can be written as follows:

logit(Pr(yij = 1/6j1,Cj = 1)) = 8j1 —Bi + T11li,
—_———
—B
logit (Pr(yij = 1/6j2,Cj = 2)) = 0j2 — i + T1ali1 + T22liz.

— *

—Fi2

When the first item group and the first latent class are useefeasence groupg;; =0

is imposed for identification; we then ha@§ = 3 wheng = 1 andf3, = 5 — 122li> with
g=2. HenceJ = B3 — B%. This shows that the structural parameteris equivalent
to the difference between the item difficulty of latent clag$;;) and the item difficulty
of latent class 1f£5) for itemi that belongs to item group & & 2). Therefore, ifto,

is positive and significant, it means that the group 2 iteregalatively easier for class
2 subjects than class 1 subjects. In other words, class 2dslijave advantages in
solving the items in item group 2 compared with class 1 subjec

Now let us consider a more complex scenario with three latlisses@ = H = 3). In
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this case, we can specify three models for latent classearid 3 as follows:

logit(Pr(yij = 1|6j1,Cj = 1)) = 6j1 —fi + Taalia + T12liz + Taglis,

=-B1

logit(Pr(yij = 1|6j2,Cj = 2)) = 8j2 — B + Toali1 + T22li2 + T23lis,
==B5

logit(Pr(yij = 1/6j3,Cj = 3)) = 8j3 — i + Ta1li1 + T32liz + Ta3liz-
=-B3

When the first item group and the first latent class are usedfasence groups1 =

712 = 113 = 0 and 11 = 137 = 0 are imposed for model identification; we then have
B3 = Bi wheng=1, 35 = i — Too— T;3 wheng = 2, andf3 = i — 132 — 133 when

g = 3. Therefore, for latent class 2 we can define two structusedupeters asy, =
BiTz}l — Bi*[Z]Z’ foritem group 2 andy3 = Bi*[3]l — Bi’f3]2, for item group 3! These parame-
ters represent the amount of advantage that subjects m &éess 2 have in solving item
group 2 and item group 3, respectively, compared with sttbjedatent class 1. Simi-
larly, we can define two structural parameters for latereacBags, = Bffzu — Bi’fz}g for
item group 2, andsz = Bi’f3]1 — Bi’f3]3 and for item group 3, which present the amount
of advantage that subjects in latent class 3 have in soltemg group 2 and item group
3, respectively, compared with subjects in latent clags 1.

Two-parameter formulation  For a two-parameter extension, an additional item dis-
crimination parameter can be added to the specialized ocvetfiry mixture IRT model
(Jeon, 2018). For instance, model (2) can be re-written as:

logit(Pr(yij = 1|6jg,Cj = 9)) = digBjg — Bi + Tgnlin- (4)

wheredg is the discrimination parameter for itérfor latent clasg). To further simplify
the model, one can set the item discrimination parametetgetequal across latent
classes by replacingjg with a;. Note that with an inclusion of the item discrimination
parameters, we need to set the variances oBfhelistributions to 1 per latent class
g.

Suppose one can hypothesize a structured difference iteths’idiscriminating power
for a particular item group between latent classes. In thigcan additional structural

To illustrate the three latent class cases, we additionalipduced subscrigk] for Bffk]h to represent the
i-th item’s group membershix & 1,...,H).

To compare the performance between latent class 2 and gt 3, an additional data analysis needs
to be done with re-defined structural parameters (with tatéass 2 or latent class 3 as the reference
group). This is similar to how dummy coding is used when agzieal covariate is utilized in regression
analysis.
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parameter can be introduced to the item discriminationrpaters. Equation (4) can
then be re-written as

Iogit(Pr(yij = 1|9jg,Cj = g)) = (Gi + Té?)ejh — Bi + Tr(]f)hh, (5)

where the new structural parametéﬁ) represents a systematic difference in the dis-
crimination power of item grouf between subjects in latent clagsand the refer-
ence latent class. For model identifiability, we need to iegpa set of constraints to

the new structural parameters Efg) = T'<1°’) = 0 in addition to the usual constraints

riﬁ) = T.(f) = 0 (assuming that the first latent class and the first item gerepthe

reference groups).

Multidimensional extension

For a multidimensional extension of the specialized mixtiRT model, we consider
two types of classification scenarios where: (1) subjeatsctassified into a single
latent class across all test dimensions; and (2) subjeetdassified into multiple latent
classes across dimensions. We first formulate a single nrsinipanodel that suits the
first case scenario and then formulate a mixed membershiglnfadthe second case
scenario.

Single membership model

Let us first consider the situation where subjects are ¢ledsinto one ofG latent
classes across dimensions of a test. A number of multidimensional mixtiR& mod-
els have been proposed based on such single membershificdtiss (e.g., De Jong &
Steenkamp, 2010; Finch & Finch, 2013; Choi & Wilson, 2015M4Huang, 2016). For
an illustration of single membership classification, sebldd for a two-dimensional
test with two latent classes. Note that only two possiblegda(in the diagonal) are
available in this case for subjects to be classified into.

Table 1:
Single membership classification for a two-dimensionaluéth two latent classes
Dim2
Dim1 classl class2
classl [1] -
class2 - [2]

Suppose we havd item groups to differentiate latent classes in each dinoensi the
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test®> Model (2) can be extended for single membership classifinats follows:

K K
logit (Pr(y;j = 1/0j9,Cj = 9)) = 3 TikBikg—Bi+ Y TikTgnidink, (6)
& S

whereCj = g indicates subjeci’s class membershipg(= 1,...,G) for the test. r
indicates the(i,k) element (that takes value O or 1) of thex K score matrixR and
denotes whether thigh item is an indicator for thieth dimension. For instance, suppose
we have two items in each of two test dimensions; then theesoatrixR can be written
as:

oOR Rk
N eNe)

01

This matrix indicates that the first two items belong to thstfitimension and the last
two items belong to the second dimension.

The latent traits for subjegtin classg are a vecto@jg = (619, ..., Ojkg)’ and assumed
to follow a multivariate normal distribution with mean vecp, and covariance matrix
Zg. For the identification of this multidimensional model, asdaional set of con-
straints needs to be imposed; that is, the mean of a refetater# class is fixed at 0
in all dimensions to set the reference points of the latexitstr For instance, when the
first latent class is the reference class for a two-dimemsiw@st, we setiy—; = (0,0)’,
while the means of the other latent classes are freely etgtina

The structural parameterg, are now defined for dimensidn To explain the dimension-
specific structural parameters, let us consider a two-dsmeal test where subjects are
classified into one of two latent classé3 £ 2) based on two item groupsi(= 2).
Equation (6) can then be expressed as follows:

logit(Pr(yij = 1|0g,Cj = 9)) = ri16j1g+ ri26j2g — Bi + i1 Tghalina + ri2Tgrelinz.  (7)

Note that we have two sets of structural parametgysand 1y for dimension 1 and
dimension 2, respectively, each of which is in the twe 2 matrix form:

T T T T
111 T121 and 12 T2 | 8)
211 To21 212 T222

Assuming that the first latent class and the first item groepeference groups, we need
to impose identification constraints as follows:x = 7.1k = O for each dimensiok.
Therefore, we have two structural parameters to estintatgandt,,. They represent
the advantages (or disadvantages) that class 2 subje&srhselving item group 2 in

3As in the unidimensional model case, we assitne G. In addition, we assume that there are the same
number of item groups in each test dimension.
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dimension 1 and dimension 2, respectively. For examplgy@sgwe obtain significant
parameter estimates amgh; > 1222 > 0; this means that class 2 subjects have general
advantages in solving the second item group compared va#sd subjects, while the
amount of advantages is greater in dimension 1 than in dilmegs Figure 2 illustrates
this scenario by positioning the two item groups on@legit scale of each dimension
and for each of the two latent classes. This figure shows )& item group 1, there

is no difference in performance between the two latent emssboth dimensions, and
(2) item group 2 is easier for class 2 in both dimensions, euhie amount of advantage
(1) that class 2 has is larger in dimension 1 than in dimension 2.

Dim1
Class 2 ; T221 ‘
; D ————
: ; 6
Class 1 ‘ :
Dim 2
IG
Class 2 Too
| — :
Class 1 : :
1G12 1G22

Figure 2:

Positions of two item groups on tttelogit scale (the solid line with an arrowhead on both ends)
per dimension. The upper panel is for dimension 1 (Dim1) &eddwer panel is for dimension

2 (Dim2). The solid line differentiates two latent classtte (space below the line is for latent
class 1, while the space above the line is for latent claske2h groups located on the left side

of the scale are easier than item groups located on the idgb$the scalelGyy represents
item grouph in dimensiork. T,y represents the amount of advantage that class 2 subjeé&s hav
in solving item group 2 items compared with the referencenfatlass subjects in dimensikn

Mixed membership model

We now consider the mixed membership scenario where sshieetallowed to have
different class memberships across multiple dimensiorisceSve classify subjects
into G latent classes for each &f dimensions, we need to consider a totalTof=

GK possible class membership combinations in the mixed meshigesituation. For
example, with two latent classes & 2) for two dimensionsk = 2), four classification
combinations are possiblet £ 1] class 1 in dimension 1 and class 1 in dimension 2;
[t = 2] class 2 in dimension 1 and class 1 in dimensiort 2; B] class 1 in dimension
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1 and class 2 in dimension 2;+ 4] class 2 in dimension 1 and class 2 in dimension 2.
See also Table 2. Note that all places of the 2 by 2 table aavailable as classification
possibilities. This contrasts with the single membershigecwhere only the diagonal
places are available for classification (Table 1).

Table 2:
Multiple membership classification for a two-dimensioresttwith two latent classes per
dimension
Dim2
Dim1 classl class2
classl [1] [3]
class2 [2] [4]

To allow for mixed classifications across dimensions, Eiguai6) needs to be revised
with T = GX possible classification combinations as follows:

K K
logit(Pr(yij = 1|6jt,Cj =t)) = > ribjc — B+ TikTenilink- 9)
& =]

Note that the only difference of the mixed membership mo8lefrom the single mem-
bership model (6) is that latent clagss replaced with class membership combination
t (=1,...,T). Asin the single membership model, the mean of a refereateat class
should be fixed at 0 for any dimension to set the referenceapaind identify the model.
For instancepyk = 0 whent includes a reference latent class in dimendidthis will

be further illustrated with an example later). As in the sngembership model, the
structural parametems, are defined per dimension but in each ¢dtent class combi-
nation.

To explain the mixed membership model in a simpler scensgiays assume that we
want to classify subjects into one of two latent clas§gs-(2) based on two item groups
(H = 2) for a two-dimensional tesk(= 2). Equation (9) can be expressed as follows:

logit(Pr(yij = 1|6jt,Cj =t)) = ri160jat + ri26j2t — Bi +riaTtnaliny + rizTenzlin2. (10)

In this case, the subjects’ latent traits are assumed towadl bivariate normal dis-
tribution in each of four latent class combinatiortg; ~ N(1;,2t). As in the single
membership model, the mean of a reference latent classdheuixed at 0 for any
dimension to set the reference points and identify the motlet is, L, = 0 whent
includes a reference latent class in dimensiofror example, suppose the first latent
class and the first item group are reference groups. We thgosethe following iden-
tification constraints on the means of the latent trait #igtions: p; = (0,0)’, when

t =1 (class 1 both dimensions 1 and @},= (t12,0)’, whent = 2 (class 2 in dimension
1 and class 1 in dimension 2), apd = (0, ti23)’, whent = 3 (class 1 in dimension 1
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and class 2 in dimension 2). Whee: 4, subjects belong to class 2 in both dimensions;
thus,u, = (14, 2a)’ are freely estimated without constraints.

We have two sets of structural parametgys and e for dimensions 1 and 2, each of
which is a 4x 2 matrix as follows:

7111 T121 T112 T122
11 T221 and 12 O (11)
7311 O Ta12 T3p2
T411 T421 T412  T422

When the first class and the first item group are referencepgroueach dimension
k, the usual constraints for the structural parameters agoesed in each dimension as
follows: 11 = 7.1« = 0. Note that an additional set of constraints are imposethfor
mixed membership modeksz>; = 0ink =1 andty, = 0 in k = 2 (these are already
applied in the matrices above). This is because by definitloent = 2, subjects belong
to class 2 in dimension 1 and class 1 in dimension 2; wther8, subjects belong to
class 1 in dimension 1 and class 2 in dimension 2 (see Tabla @her words, thé= 2
subjects do not differ in dimension 2 and the 3 subjects do not differ in dimension
1. Therefore, it make sense to $gi, = 0 for dimension 2 wheh= 2 andtz; = O for
dimension 1 wheh= 3.

Accordingly, we have a total of four structural parametersstimate with the mixed
membership modelty,1, T322, Ta21 and T420. Here1po1 represents the advantage (or
disadvantage) that subjects have in solving item group 2medsion 1, andsyo rep-
resents the advantage (or disadvantage) that subjectsrhawé/ing item group 2 in
dimension 2. 1421 and 1422 represent the amount of advantage (or disadvantage) that
subjects have in solving item group 2 in both dimensions édision 1 and dimension

2, respectively). Note that the single membership modéhasés only two structural
parameters.

Figure 3 illustrates a fictitious joint mixture distributidor a single membership model
and for a mixed membership model with two latent classes famadimensional test.
The figure shows that the two latent trai @nd 8,) marginally follow a mixture of
normal distributions (on the x-axis and the y- axis, respelf). The single member-
ship model shows two subject clusters, while the mixed mesfityg model shows four
subject clusters. Note that these clusters are createdualiy illustrate and contrast a
single membership model with a mixed membership model ims$esf possible latent
classes that each model can investigate with. It is worthtimeing that the reference
points of the scale should be fixed for discussing quantéatifferences between latent
classes.
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Figure 3:
A hypothetical joint mixture distribution of the two latemaits (6; and6,) for Class 1 (C1) and
Class 2 (C2) for a single membership model (top) and a mixadimeship model (bottom)
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lllustrations

Data

To illustrate the two types of confirmatory mixture modelsdamultidimensional test,
we utilize the verbal aggression dataset (Vansteelan@@;2e Boeck & Wilson, 2004).
This dataset has frequently been utilized in the literatarietroduce new IRT models
or procedures (e.g., De Boeck & Wilson, 2004; Braeken e2@Dy; Magis et al., 2010;
Choi & Wilson, 2015; Jeon & Rijmen, 2016). Hence, we seledtad well-known
dataset for our illustration in the hope that interesteéaeshers can readily apply the
proposed models.

In short, the verbal aggression dataset includes 24 item31f6 respondents (243 fe-
male and 73 male). The test items are designed to measureuheesof verbal ag-
gression and its inhibition. Each item gives a situatioatesl to one of two blaming
types (‘Other-to-blame’ and ‘Self-to-blame’), one of tweHavioral modes (‘Want’ and
‘Do’), one of three types of verbally aggressive behavi@ufse’, ‘Scold’, and ‘Shout’)
and one of four frustrating situations (‘Bus’, ‘Train’, ‘@e’, and ‘Operator’). For ex-
ample, “A bus fails to stop for me. | would want to shout” inves the ‘Want’ behavior
mode, the ‘Shout’ behavior, the ‘Self-to-blame’ type, anel Bus’ situation. Each item
asks respondents whether they would agree to give an aggressbal response in a
given situation. Three response options are provided:,'NRerhaps’, and ‘Yes'. For
current analysis, we dichotomized the item responses bypiong ‘Perhaps’ and ‘Yes’
categories.

We apply the following rationale to construct a multidimemsl confirmatory mixture
IRT model with a specialized set of constraints for the dbescrverbal aggression data.
First, the to-be-measured trait, verbal aggression, is liidimensional, rather than a
unidimensional construct. This is because the amount afydmehavior that a person
displays in a given situation is conceived as a function effdatures of the situation
as well as the person (Vansteelandt & Van Mechelen, 2004)cMisider two dimen-
sions of verbal aggression based on the ‘Other-to-blanm*&elf-to-blame’ situation
types. These two situations differ in terms of the presem@bsence of another person
in the situation and are likely to induce a different amoufnfrostrations to subjects
(Vansteelandt & Van Mechelen, 2004).

Second, the amount of subjects’ anger elicited by frustgagituations and their thresh-
olds to those situations are likely to differ across sulgj¢eansteelandt & Van Meche-
len, 2004). This means that the subjects may come from diftesub-populations (or
latent classes) that are characterized by a different afdae situations and the behav-
iors in terms of the amount of angry behavior evoked.

Third, there are likely substantial individual differesda the way people express their
anger experience (Vansteelandt & Van Mechelen, 2004). iiticpdar, ‘Do’ vs ‘Want’
behavior types may differ in terms of the ease with which aab@ir is displayed.
Specifically, ‘Do’ behaviors are likely to show a higher respe threshold than ‘Want’
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behaviors because the former implies a higher risk of cguagiual damage to the

given situation. Hence, we utilize the ‘Do’ items to diffatite the types and levels of

verbal aggression that subjects possess. In other wordsssuene two sub-populations
(or latent classes) of subjects are differentiable basedanresponse thresholds to the
‘Do’ vs. ‘Want’ behavior items.

Based on this rationale, we specify both single- and mixedrimership models for il-
lustrative purposes. With the single membership model, yaothesize that subjects
belong to a single latent class across two dimensions obvadgression. That is, irre-
spective of situation types (that involve self or othergpjscts are assumed to display
the same thresholds to the ‘Do’ behavior items. With the ipleltmembership model,
we relax the single membership assumption and allow subjedbelong to different
latent classes across two dimensions of verbal aggredsiather words, interactions
between behavior types and situations are allowed with tixedrmembership model.
Note that it is possible and perhaps more realistic to preshat subjects differ in their
thresholds to the ‘Do and ‘Want’ items depending on the ituaypes.

Estimation

For the estimation of the proposed models, we utilized Mplision 7.4 (Muthén &
Muthén, 2008) with full information maximum likelihood @siation. We provided an-
notated Mplus code for both single- and mixed-membershidetsoin Appendix A.
To ensure that the parameter estimates were not obtainedadtrhaxima of the log-
likelihood function, we utilized multiple random startinglues and monitored the con-
vergence. Both the single- and mixed-membership models stercessfully converged
and estimated for this dataset. To verify parameter regoykthe two models, we ad-
ditionally conducted a small simulation study. We foundtttiee model parameters
were generally well recovered for both types of models uriderconsidered condi-
tions, assuring the reliability of the parameter estimabegtails of the simulation study
procedure and results are provided in the supplementamriait

For illustrative purposes, we describe the results obtkireem both single- and mixed-
membership models although in practice, a researcher may twachoose a single,
better-suited model based on theoretical and/or practaradiderations as well as rela-
tive fit statistics such as Akaike information criterion Bland Bayesian information
criterion (BIC). In theory, it would also be informative teauate absolute model fit
statistics for the two models; however, Mplus currently €loet provide absolute fit
statistics for complex models including mixture IRT modelis addition, developing
absolute fit measures for complex IRT models is an ongoirg@freesearch. Therefore,
we leave investigating the absolute fit of the models that iseuds in this article for
future studies.
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Results: Single membership analysis

The single membership model showed a log-likelihood of #R80 (=35, wherep is

the number of parameters) with a AIC of 8188.480 and a sasipeadjusted BIC of
8208.920. The model classified approximately 21.8 % subjatd class 1 and 78.2 %
subjects into class 2. The performance difference betweetvwto latent classes was
guantified with the dimension-specific structural paramseteith 1001 = —0.927 (SE=
0.331) and22 = —0.787 (SE=0.219). This means that the class 2 subjects hadea low
probability of endorsing the ‘Do’ items compared with cldsis both dimensions (i.e.,
for the items that involve ‘Other-to-blame’ situationsr(ainsion 1) and ‘Self-to-blame’
situation (dimension 2)).

There were also some differences in the latent trait digiobs between the two latent
classes. For class 2, the estimated means were 0.960 (ZE¥ant -0.215 (SE=0.296)
for dimensions 1 and 2, respectively (for class 1, the mears fixed at O in both di-
mensions since class 1 was set as the reference group) sTblatsis 2 subjects showed
a higher overall mean in their latent trait distribution a@hension 1 compared to class
1 subjects. The standard deviations were 1.243 (dimengi@md. 0.442 (dimension
2) for class 1, while they were 1.289 (dimension 1) and 2.@@2énsion 2) for class
2. The correlation between the two dimensions was 0.980 afi7Gor class 1 and
class 2, respectively. These results suggest that (1) batelass differences existed
in the latent trait variation. In particular, class 1 shoveecklatively smaller variation
in dimension 2 (which involves ‘Self-to-blame’ situatiQreompared with class 1; and
(2) the between-dimension correlation was quite large th btasses, although the cor-
relation was slightly larger in class 1 than in class 2. Thietanay be interpreted as
that verbal aggression levels were generally consistensacituation types, while the
consistency was a little stronger for class 1 subjects thess@. Note that this kind
of heterogeneity in subjects’ latent trait distributionsuld not be found if a unidimen-
sional mixture model or a regular multidimensional modeswaaplied to analyze the
data?

Figure 4 displays the estimated item difficulty paramefgy yalues from the single-
membership model. Clearly, there were systematic difiezeiin the3 parameter es-
timates between class 1 and class 2. Specifically, the ‘@ost were more difficult
for class 2 subjects than class 1 subjects in dimension thgité to 12) and dimen-
sion 2 (items 19 to 24). Those differences amount to the démenspecific structural
parameter estimates;»; andtzy, for dimensions 1 and 2, respectively.

4Both uni- and multi-dimensional exploratory 1PL mixture aiets (with 2 classes) were not converged un-
less additional constraints were imposed. A regular (noxure) 1PL multidimensional model showed
AIC and BIC values (log-likelihood=-4080.14%%27), AIC= 8214.298 BIC= 8230.066) which were
worse than those of the single-membership model.
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Single membership

< - ® Classl "Other-td-blame’ | 'Self-torhlame’
= Class2 ! |

- "Want' 'Do’ "Want Do’
T T T T T T T T T T 1 T T T T T T T T T T T T
bl b2 b3 b4 b5 b6 b7 b8 b9 blO bll bl2 bl3 bl4 bl5 bl6 bl7 b18 bl9 b20 b2l b22 b23 b24

Figure 4:
Estimated item difficulty parameteg;) values from the single-membership model for the verbal
aggression data. b1 to b24 representghearameters for=1,...,24.

Results: Mixed Membership Analysis

The mixed membership model showed a log-likelihood of -4849 (p=46) with a
AIC of 8190.755 and a sample-size adjusted BIC of 8217.6h@.1ixed membership
model showed similar fit to the single membership model incimeent example.

From the mixed membership analysis results, we first chetlkedestimated struc-
tural parameter values. They werg = 0.769 (SE=0.336) for class 2 (dimension
1), 1320 = —0.528 (SE=0.491) for class 3 (dimension 2)z1 = —1.570 (SE= 0.661) for
class 4 (dimension 1), ard,, = —1.291 (SE=0.484) for class 4 (dimension 2). The
estimates were all significant at the 5 % level except for class 3. This result sug-
gests that (1) class 2 had a higher probability of endorgiaddo’ items that involve
the ‘Other-to-blame ’ situations (dimension 1) comparethwlass 1; (2) there was in-
sufficient evidence that class 3 had a lower probability afogsing for the ‘Do’ items
involved with the ‘Self-to-blame ’ situations (dimensiop@mpared with class 1; and
(3) class 4 showed a lower probability of endorsing the ‘Defris compared with class
1, irrespective of situation types (‘Other-to-blame’ vSelf-to-blame ' situations). This
is a quite intriguing result in that the ‘Do’ items were foutadbe easier only in ‘Other-
to-blame’ situations for some group of subjects (class 2jis implies that there may
be interactions between situations and behavior typeginstef the amount of anger
evoked by subjects.
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We found that the participants were classified into fourrlagroups, approximately
43.0 % in class 1, 29.8 % in class 2, 11.1 % in class 3, and 16.4 &ass 4. It is
interesting to see that there were a non-negligible numbeulgects (about 40.9 %)
who showed a mixed membership profile across two dimensaasy 1 in dimension
1 but class 2 in dimension 2 or vice versa). Note that such animembership people
could not be identified with the single membership analyss torces subjects to have
only one class membership across all dimensions.

In addition, the four latent classes presented some difée®in their latent trait distri-
butions. Table 3 lists the estimated means, standard d@wsaand between-dimension
correlation for the two latent traits in each latent class.

Table 3:
The estimated means, standard deviations (SD), correlaétween the two latent traits (Dim1
and Dim2) from the mixed membership model.

Mean (SE) SD Cor
Dim1 Dim2 Diml1 Dim2
Class 1 0 0 1.378 1.196 1.00
Class2 -1.287(0.332) 0 1.550 3.108 0.99
Class 3 0 -1.096(0.631) 1.372 0.425 0.53

Class4 0.938(0.473) 0.687(0.522) 0.968 1.096 1.00

From Table 3, we found that (1) the latent trait means var@dss the four latent class
combinations. For instance, class 2 subjects showed aemmadlan than class 1 in
dimension 1; class 3 subjects showed a smaller mean thaklasdimension 2; and
class 4 subjects showed a larger mean than class 1 in dimehs(@) the latent trait
standard deviations also varied across the latent clalsgesestingly, class 2 showed a
larger variation but class 3 showed a smaller variation tass 1 in dimension 2; and
(3) the correlation between the two dimensions was closeGanlall classes except
class 3 that showed a correlation of 0.53. Note that in thglsimembership analysis,
we found that (1) the mean difference in dimension 2 betwatnt classes 1 and 2
was not significantly different from 0, (2) the subject hetgneity of the latent trait
distribution was larger in dimension 2 than in dimension ddiass 2, and (3) class
2 showed a relatively smaller between-dimension cortatian class 1. These dif-
ferences in the results might stem from that the mixed meshiigmmodel relaxes a
somewhat stringent assumption taken by the single memipersidel.

Figure 5 displays the estimated item difficulty paramefg) yalues from the mixed
membership model. Observe that {hgarameter estimates were structurally different
for the ‘Do’ items across three latent classes. For the ‘Wéeins, there were no
differences in the difficulty parameter estimates betwesent classes. For class 2
subjects, the ‘Do’ items in dimension 2 (items 19 to 24) wexsier than class 1 subjects.
For class 4 subjects, the ‘Do’ items were harder in both dsims (items 7 to 12,
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Figure 5:

Estimated item difficulty paramete;] values from the mixed membership model for the verbal
aggression data. b1 to b24 representghearameters for=1,...,24.

items 19 to 24) than class 1 subjects. This analysis resaulftirots that systematic
class differences across dimensions could be succes#elhtified with the mixed
membership model.

Discussion

In this paper, we discussed specialized confirmatory mixite™ modeling for multidi-
mensional assessments. The model is confirmatory in twese(s the number/nature
of latent classes is known prior to data analysis, and (2 friowledge on items (and
their characteristics) is used to hypothesize the iterasctalationship and to differen-
tiate latent classes. Researchers who are more accustoraadtdinary, exploratory
use of mixture IRT modeling may feel that such a confirmatgyraach seems some-
what unnatural. However, we would like to stress that a coratory approach could be
introduced in mixture modeling as in confirmatory factor g, because it can serve
for the purpose of verifying a researcher’s hypothesis enntéiture of the postulated
latent classes and latent class differentiation.

For multidimensional extensions, we discussed two typekasskification scenarios: (1)
a single membership case where subjects have only one tdésstmembership across
all dimensions, and (2) a mixed membership case where sghjao have different
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memberships across multiple dimensions. We discussedllastidted with an em-
pirical example how these two classification methods cosalddopted for specialized
confirmatory mixture IRT modeling.

We would like to make a few points regarding mixed membershiglysis in contrast
to single membership analysis. First, mixed membershipatsdaecome exponentially
complicated as the number of dimensions and/or latentedaserease. For instance,
with two latent classes for a two-dimensional test, we hawe fatent class combina-
tions to consider, while when we have four latent class fonrad-dimensional test,
we need to consider 16 latent class combinations. With sualga number of latent
classes, an extremely large sample size may be neededifdnleedstimation of mixed
membership models.

Second, from mixed membership analysis, a group of subjétiglifferent class mem-
berships across dimensions may be captured because offérentie in the moments
(mean and standard deviation) of their latent trait distidns rather than difference in
their performance on the chosen item groups. This may beabe especially when
the underlying latent trait distribution is not normal iretbata (e.g., Sen et al., 2015).
Hence, researchers should be aware of this issue whenngtiegpresults from mixed
membership analysis.

Third, mixed membership analysis can be viewed as a spexsel af single member-
ship analysis when subjects are simultaneously classiftechimultidimensional latent
space. With a larger number of latent classes (than for ssngle membership analy-
sis), all latent class combinations (that mixed memberahgdysis considers) may be
captured with this special single membership analysibpalgh the estimation of this
model is likely to be more challenging than the mixed mentiierenodel. Hence, if
these two types of analysis procedures produce the sansificlatson results, it may
be sensible to choose the mixed membership model becausaelgitive simplicity.

Note that from a modeling perspective, our model can be ssennaultidimensional
extension of the Saltus model (Wilson, 1989; Mislevy & Wilsd996). The original
Saltus model was proposed for unidimensional assessmethtsas been extended for
polytomous item responses (Draney, 2007) and with itemréates (Draney & Wilson,
2008). Jeon (2018) presented several extensions of thesSatidel with item discrim-
ination parameters, person predictors, and ordinal itespareses. Recently, Jeon et al.
(in press) presented an application of a multidimensioxigresion of the Saltus model
with item covariates, for analyzing developmental stageshddren for a deductive
reasoning test. However, those authors focused on singtgership classification. A
unique contribution of the current work is that we diffeliate, formulate, and compare
single and mixed classification scenarios that are senfiblthe analysis of multidi-
mensional assessments and discuss how these two difféassification scenarios can
be applied in the context of confirmatory mixture modeling.

The specialized confirmatory mixture modeling approachuigediscussed in this paper
has merits both in technical and substantive aspects fergcpmputation and result
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interpretation) because of its parsimony. In addition, ghe@posed multidimensional
extensions have a variety of applications; for instanagy ttan be applied to scenarios
where a researcher would like to test a hypothesis on stalatifferences between
latent classes with multidimensional assessments. Seppefiave a mathematics test
that consists of multiple sub-tests (e.g., algebra, gegmend number theory) where
each sub-test includes a key item set that are designedritfidstudents who would
need extra support to improve their mathematics skills ahe@ntent area. In this case,
the proposed modeling can successfully be applied to difféate those students who
are in need of special assistance (from students withoulingextra support) as well
as to evaluate whether the designed test items functiooteity as expected in terms
of differentiating a potentially disadvantaged group ofdgnts.

On a final note, we would like to mention that it may be benefithaincorporate
additional item discrimination parameters into the diseasmodels, in order to im-
prove classification precision. This is because applyingexparameter model to two-
parameter data can possibly lead to identifying spuriotenteclasses (Alexeev et al.,
2011). In addition, including person predictors into thed®lofor classification can
also be useful to prevent possible misclassification ohlatéasses (G.-H. Huang &
Bandeen-Roche, 2004). We will leave further investigation the impacts of model
misidentification and possible remedies for future studies

Appendix A

Here we provide example Mplus code for fitting single memibigrand mixed mem-
bership models for the verbal aggression data.

<Single membership model>

!! Header of input file
TITLE: Single membership model for verbal aggression data

!l Data file specification
DATA: FILE = verbal.dat;

!'! Define variables and specify number of latent classes
VARIABLE:

NAMES = ul-u24;

CATEGORICAL = ul-u24; ! binary item responses

MISSING = ALL(99); ! missing data are coded as 99
CLASSES = ¢ (2) ; ! define number of latent classes

'l Estimation settings
ANALYSIS: TYPE = MIXTURE; ! estimate finite mixture model
ALGORITHM = INTEGRATION; ! 15 default quadrature points

STARTS = 500 10 ; ! use multiple random start (can be increased if needed)

!l Model specification
MODEL:
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! Overall model

%OVERALLY

£f1 BY ul-ul2@l; ! item loading parameters in dim 1
£f2 By ul3-u24@1; ! item loading parameters in dim 2

! Model for class 1

%he#1d,

f1 BY ul-ul201;

£2 By ul3-u2401;

[f1@0]; [f@02]; ! factor means fixed at O (reference group)
f1; ;

f1 with £2;

[ul$1-u12$1] (a1l-a12 ) ; !difficulty parameters in dim 1
[u13$1-u24$1] (a13-a24); !difficulty parameters in dim 2

! Model for class 2
%cH#2%
f1 BY ul-ul2e@1;
£2 By ul3-u2401;
[£f11; [f2];
1; £2; ! factor means freely estimated
f1 with £2;

! Use different difficulty parameter labels for ‘Do’ items
[u1$1-u12%$1] (a1-ab6 b7-b12 ); !i7-i12 in dim 1
[u13$1-u24$1] (a13-a18 b19-b24); !'i19-i24 in dim 2

! Set model constraints
MODEL CONSTRAINT:

NEW(taul tau2); ! define structural parameters in dim 1 and din 2

!l Define structural parameter for dim 1 as difference
'l in difficulty parameters for ‘Do’ items

Il between class 1 and class 2 (i7-112)

taul = a7-b7;
taul = a8-b8;
taul = a9-b9;
taul = al0-b10;
taul = all-bll;
taul = al2-b12;

!l Define structural parameter for dim 2 as difference
'l in difficulty parameters for ‘Do’ items

!l between class 1 and class 2 (i19-i24)

tau2 = al19-b19;
tau2 = a20-b20;
tau2 = a21-b21;
tau2 = a22-b22;
tau2 = a23-b23;
tau2 = a24-b24;

!l Save posterior probabilities for latent class membership
Savedata:

file is probl_single.txt ;

save is cprob;
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<Mixed membership model>

!l Header of input file
TITLE: Mixed membership model for verbal aggression data

!'! Data file specification
DATA: FILE = verbal.dat;

!! Define variables and specify number of latent classes

VARIABLE:

NAMES = ul-u24;

CATEGORICAL = ul-u24; ! binary item responses

MISSING = ALL(99); ! missing data are coded as 99

CLASSES = c1 (2) c2(2); ! define two latent classes for dim 1 and dim 2

'l Estimation settings
ANALYSIS: TYPE = MIXTURE; ! estimate finite mixture model
ALGORITHM = INTEGRATION; ! 15 default quadrature points

STARTS = 500 10; ! use multiple random start (can be increased if needed)

!'! Model specification

MODEL:

! Overall model

%OVERALLY

£f1 BY ul-ul2@l; ! item loading parameters in dim 1
£f2 By ul3-u24@1; ! item loading parameters in dim 2

! Model for class 1

%hci#l.c2#1% ! class 1 in dim 1 and class 1 in dim 2

f1 BY ul-ul2e@1;

£2 By ul3-u2401;

[f1@0]; [£f2@0]; ! factor means fixed at O (reference group)

f1 (vi1); £2 (v12);
f1 with f2 (covl);

[ul$1-u12$1] (a1l-a12 ) ; ! difficulty parameters in dim 1
[u13$1-u243$1] (a13-a24); ! difficulty parameters in dim 2

! Model for class 2

%cl#2.c2#1% ! class 2 in dim 1 and class 1 in dim 2
f1 BY ul-ul1201;

£f2 By ul3-u2401;

[£f1]; [f20];

f1 (v21); £2 (v22);

f1 with £2 (cov2);

! Use different difficulty parameter labels for ‘Do’ items in dim 1

[u1$1-u12$1] (al-a6 d7-d12 ); ! i7-i12 in dim 1
[u13$1-u24%$1] (a13-a24);

! Model for class 3

%cl#l.c2#2), ! class 1 in dim 1 and class 2 in dim 2
f1 BY ul-ul1201;

£f2 By ul3-u2401;

[f1e0]; [f2];

f1 (v31); f2 (v32);
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f1 with f2 (cov3);

! Use different difficulty parameter labels for ‘Do’ items in dim 2
[ul$1-u12$1] (a1l-al2 );
[u13$1-u243$1] (a13-a18 d19-d24); ! i19-i24 in dim 2

! Model for class 4

%hcl#2.c2#2), ! class 2 in dim 1 and class 2 in dim 2
f1 BY ul-u1201;

£2 By ul3-u2401;

[£1]; [£f2]; ! factor means freely estimated

f1 (v41); £f2 (v42);

f1 with £f2 (covd);

! Use different difficulty parameter labels
! for ‘Do’ items in dim ¥ and dim 2

[u1$1-u12%$1] (a1-ab6 b7-b12 ); !i7-i12 in dim 1
[u13$1-u24$1] (a13-a18 b19-b24); 'i19-i24 in dim 2

! Set model constraints
MODEL CONSTRAINT:

! define structural parameters for classes 2, 3, and 4
NEW(taul tau2 tau3 tau4);

!'l For class 2, define structural parameter for dim 1 as difference
'l in difficulty parameters for ‘Do’ items

!l between class 1 and class 2 (i7-112)

taul = a7-d7;
taul = a8-ds8;
taul = a9-d9;
taul = al0-d10;
taul = al1-dii1;
taul = al12-di12;

'l For class 3, define structural parameter for dim 1 as difference
'l in difficulty parameters for ‘Do’ items

!l between class 1 and class2 (i19-i24)

tau2 = a19-d19;
tau2 = a20-d20;
tau2 = a21-d21;
tau2 = a22-d22;
tau2 = a23-d23;
tau2 = a24-d24;

'l For class 4, define structural parameter for dim 1 as difference
'l in difficulty parameters for ‘Do’ items

!l between class 1 and class 2 (i7-112)

tau3 = a7-b7;
tau3 = a8-b8;
tau3d = a9-b9;
tau3d = al0-b10;
tau3d = all-blil;
tau3d = al2-b12;

'l For class 4, define structural parameter for dim 2 as difference
'l in difficulty parameters for ‘Do’ items

!l between class 1 and class 2 (i19-i24)
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taud = al19-b19;
taud = a20-b20;
taud = a21-b21;
taud = a22-b22;
taud = a23-b23;
taud = a24-b24;

! Save posterior probabilities for latent class membership
Savedata:

file is prob2_mixed.txt ;

save is cprob;
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Supplementary material

Here we discuss the simulation study that we conducted tin&eaparameter recov-
ery of the two types of models that we discussed in the maipiscro this end, we
considered a testing situation analogous to the empiriata detting utilized in Sec-
tion 3. Specifically, 24 test items of a two-dimensional teste considered with two
item groups (6 items per item group in each dimension) with katent classes. We
then considered two sample size conditibhs- 500 andN = 1000 (with equal mix-
ing proportions across latent classes for each model). Blggvarameters recovery in
relatively small sample size situations is meaningful lisezone can expect generally
improved recovery accuracy in larger sample sizes.

The data generating parameter values were set similar tpatameter estimates ob-
tained from each model fitted to the verbal aggression datar. ekch model, 100
datasets were generated and estimated with Mplus, withatihe snaximum likelihood
estimation setting as in the empirical study. Potentiadlalvitching between runs were
checked for the two fitted models.

Figures 6 to 9 display the bias and root mean square error E§MSEthe estimated
model parameters for the models in the two sample size gondit

For the single membership model with 32 parameters, thewvedasnot significantly
different from 0 at the 5% level except for the two parametess (t = -2.78, p<0.01)
andfi (t =-2.37, p =0.02) wheh = 500. WherN = 1000, the bias was insignificant
for all model parameters. The RMSE ranged from 0.02 to 0.238lfanodel parameters
whenN = 500 and ranged from 0.01 to 0.16 whidn= 1000.

For the mixed membership model with 40 parameters, the béasnet significantly
different from zero at the 5% significance level, exceﬁlt (t=-2.23,p=0.03) and
Bio (t = —2.69, p = 0.01) whenN = 500. WhenN = 1000, the bias was insignificant
exceptrsys (t = —2.18,p = 0.03) andfB1; (t = —2.15, p = 0.03). For all model param-
eters, The RMSE ranged from 0.07 to 0.31 whea 500 and ranged from 0.03t0 0.19
whenN = 1000.

These results assure that the model parameters could fgmeravell recovered for
both types of models under the considered conditions. Ta® dmd RMSE tended to
be slightly larger for the mixed membership model than thelsimembership model.
This makes sense given that the mixed membership model isra complex model
and contains more parameters to estimate than the singléearship model. For both
models, the bias and RMSE tended to decrease when the sangpigls = 1000 than
N = 500. This result suggests that the estimation accuracycked be improved with
larger sample sizes.
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Bias when N=500
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Figure 6:
Bias and RMSE of the estimated model parameters for theesingimbership model when

N = 500. 1, 0129, 02?9, 0129, andf; indicate the structural parameters, the factor varianges f

dimensions 1 and 2, covariance for clgqg = 1,2) and the item difficulty parametebs
(i=1,...,24), respectively.
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Bias and RMSE of the estimated model parameters for theesingimbership model when
N = 1000. 1, 0129, 0229, 0129, andf; indicate the structural parameters, the factor varianoes f

dimensions 1 and 2, covariance for clgqg = 1,2) and the item difficulty parametebs
(i=1,...,24), respectively.
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Bias when N=500
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Figure 8:
Bias and RMSE of the estimated model parameters for the nmdadbership model when

N = 500. 1, olzg, 02?9, 0129, andf; indicate the structural parameters, the factor varianges f
dimensions 1 and 2, covariance for cladg = 1, ...,4) and the item difficulty parametebs

(i=1,...,24), respectively.
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Bias when N=1000
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Figure 9:
Bias and RMSE of the estimated model parameters for the nmdadbership model when

N = 1000. 1, 0129, 0229, 0129, andf; indicate the structural parameters, the factor varianoes f
dimensions 1 and 2, covariance for cladg = 1, ...,4) and the item difficulty parametebs

(i=1,...,24), respectively.





