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Using Rasch model generalizations for
taking testees’ speed, in addition to their
power, into account

Christine Hohensinn' & Klaus D. Kubinger’

Abstract

It is common practice in several achievement and intelligence tests to credit quick solutions with
bonus points in order to gain more information about a testee’s ability. However, using models of
item response theory (IRT) for respective approaches is rather rare. Within IRT, the main question
is whether speed and power do actually measure unidimensionally, that is, the same ability. In this
paper, analyses were carried out in a sample of 9210 7 grade students, participants of an optional
assessment, Informal K[/C]ompetence Measurement (IKM), within the programme of the Austrian
Educational Standards. The following models were used: Rasch’s multi-dimensional polytomous
model as well as his unidimensional polytomous model (Rasch, 1961) (see also Fischer, 1974, and
Kubinger, 1989); and Fischer’s speed-and-power two-steps model (Fischer, 1973; see again also
Kubinger, 1989), which has never been applied since its introduction. The first one modelizes speed
and power in a joint measurement approach, meaning another ability/dimension is postulated for
several combinations of power performance and speed performance. The unidimensional model
additionally hypothesizes that the respective combinations, in other words “response categories”,
all refer to the same ability and differ only in a graded manner. Fischer’s model considers speed
and power as two completely independent abilities, for each of which the dichotomous Rasch
model applies. Apart from model tests, information criteria are applied in order to reveal which
model meets the best validness.
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Introduction

In psychological assessment, the speed-power-issue has existed almost since the begin-
nings of psychological testing. Most intelligence tests have a time-limit, which is often
only due to organizational reasons (to make test administration possible for a group of
testees, for instance). Apart from this, some intelligence and achievement tests involve
speed by scoring. For example, the commonly used Wechsler tests (e.g. Wechsler Adult
Intelligence Scale — Fourth Edition, WAIS IV; Wechsler, 2008) include subtests that
credit quick solutions with bonus points. The desirable advantage of such a scoring pro-
cedure is an attainment of information about a testee’s ability. The scores of the testees
are more differentiated and thus, measurement would take place in a more precise way.
Of course, the advantage of such information is only valid if the assumptions underlying
the scoring procedure are correct. Particularly, using bonus points assumes that “power”
and “speed” are confounded but not separated traits. This means the ability to solve an
item and speededness of a testee in finding the solution are assumed to be a manifesta-
tion of the same latent trait and reflect only gradual differences in the measured trait.
This assumption is to be scrutinized, as there are empirical results that show speed and
power are actually separated (Carroll, 1993; Partchev, De Boeck, & Steyer, 2011).
Partchev, De Boeck, and Steyer (2011) even remark that the current focus should be on
avoiding a mixture between speed and power. However, in practice, scoring procedures
combining speed and power do still exist, which makes the application of methods which
test the validness of such a scoring procedure important.

Nowadays, it is easy to record response times for each item and there are increasing
attempts to use these response times not only in psychological but also in educational
assessment. Large-scale tests that have been applied for years, are currently going
through a transition from paper-based administration to a computer-based one. In the
first part of the special topic “Current Methodological Issues in Educational Large-Scale
Assessments” by Stadler, Greiff, and Krolak-Schwerdt (2016) in this journal Biirger,
Krohne, and Goldhammer (2016) give a short overview which of the broad-based inter-
national large-scale assessments have already changed their administration mode or are
planning to change it in the near future. This transition to a computer-based administra-
tion provides the opportunity to record not only the response of the examinee but many
other variables including the item-specific response time. Response times provide an
additional information about how the testee did work on the test. So far, there are many
attempts to use response times to increase the measurement accuracy and to minimize
measurement errors in psychological and educational assessment. For example, a variety
of studies dealt with the detection of guessing in multiple-choice items by using the
response times (DeMars, 2007, 2010; Kong, Wise, & Bhola, 2007; Schnipke, & Scrams,
2007, Wise, Pastor, & Kong, 2009). Weeks, von Davier, and Yamamoto (2016) are using
response times to distinguish between missing responses which were skipped and those
the testee had tried on which but did not give a response.

Another option to use the information of response times in large-scale assessment is to
incorporate the response times into scoring; that is analogous to intelligence tests which
use some credit points for quick solutions. This approach is thought of as a means of



Using Rasch model generalizations for taking testees’ speed 95

increasing measurement accuracy which is of need especially in large-scale assessments
where the number of items is limited due to organizational restrictions.

A variety of approaches were introduced for incorporating response times in assess-
ments. Van der Linden (2011) gives a fine overview of actual IRT methods modeling
response times. He distinguishes between models that include the distributions of re-
sponse times without any reference to the quality of the item response, and models that
integrate item responses and response times (e.g. Verhelst, Verstralen, and Jansen (1997)
and also Roskam (1997) introduce IRT models for time-limited tests). Van der Linden
(2007) derived a general model that is composed by a first submodel for taking the re-
sponses into account and a second one that takes the response time distribution into
account.

All proposed models have in common that they primarily aim to calibrate a test. In con-
trast, for the present study, we search for methods to evaluate the validness of given
scoring procedures and, additionally, to find out more about the relationship between
speed and power in a given test. As described above, many sorts of relationships between
these two aspects measured in psychological tests are possible: speed and power as sepa-
rate latent traits, speed and power that are confounded in such a way that quick responses
are to be qualitatively distinguished from slow item responses, and speed and power as
joint constructs that only reflect graduations of one and the same latent trait.

For the evaluation whether a scoring procedure with bonus points is appropriate, we
applied two approaches that are based on IRT methods. Both of them are described in the
following.

Multi-dimensional polytomous Rasch model / Unidimensional polytomous
Rasch model

The multi-dimensional polytomous Rasch model as a simple generalization of the well-
known, that is dichotomous Rasch model (Rasch, 1960/1980; see also Fischer, 1974, and
Kubinger, 2005) was introduced by Rasch (1961). It has a completely different model
formulation than the multi-dimensional IRT (MIRT) models that are applied very often
nowadays (a detailed overview of MIRT models is given in Reckase, 2009). The multi-
dimensional polytomous Rasch model handles & items, each of them having the same m
> 2 response categories. It assumes a different latent trait &, for each category 4. That is,
a person parameter vector &, = (&1, &, ..., &) results for each person v. Needless to say,
the number of latent dimensions is equal to the number of response categories. With
regard to the item parameters, a separate parameter is postulated for each item and each
category, resulting again in a vector of length m for each item i: 6, = (0,1, 0, ..., Oim).
Hereinafter, o;,1s referred to as “item category parameter”. That is, the multi-dimensional
polytomous Rasch model defines the probability that a person v responds at item i with
category h as a logistic function of the item category parameter o;, and the person param-
eter &,;, (Fischer, 1974):



96 C. Hohensinn & K. D. Kubinger
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It can easily be seen that in the case of m = 2, the multi-dimensional polytomous Rasch
model reduces to the dichotomous Rasch model. At any rate, it retains some important
properties well-known from that Rasch model: there are sufficient statistics for each type
of parameter. As a consequence, a conditional likelihood of the data can be derived and
this can be used for parameter estimation. Furthermore, Andersen’s Likelihood Ratio
Test (Andersen, 1973) can be applied. This model test refers to the model concept of
specific objective comparisons, which entails that parameter estimations have to be sta-
tistically the same, independent of the selected sub-sample of testees (or items). As a
consequence, the likelihood of the total sample is to be compared with the combined
likelihood of any sub-samples. If the difference between these likelihoods is negligibly
small, then the model holds. Apart from this test of model validness there obvioulsy are
some means of evaluating the goodness of model fit; we only refer to Rasch’s graphical
model check which corresponds to the concept of specific objective comparisons as well.
It opposes the item parameter estimations of two arbitrarily chosen sub-samples of tes-
tees in a graphical manner.

Moreover, Fischer (1974) deals with a statistical test as to whether the multi-dimensional
polytomous Rasch model can be reduced to a unidimensional polytomous model. In this
case, the item category parameters are linearly dependent: o;, = ¢, - ;. The response
categories are no longer manifestations of different latent traits, but rather graduations of
the same latent trait £ For each item i, only a single item parameter o; is estimated and
for each response category 4, an item-independent scoring parameter ¢, is estimated,
which reflects the graduations between the categories. Due to normalization constraints,
the scoring parameter of the lowest category is set to 0 and that of the highest category to
1 (Fischer, 1974).

This reduction condition offers the opportunity to determine whether an assumed scoring
function is appropriate for a psychological test or not. If, in fact, quick solutions only
mean a quantitatively higher but not a qualitatively different ability, then the reduction
condition would hold for a psychological test. Furthermore, if an extra point for quick
solutions is due to the factual graduation of a higher ability, then the category parameters
would result to 0 for no solution, 0.5 for a slow solution and 1 for a quick solution.
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Speed-power-two-steps model

Fischer (1973) proposes a composite Rasch model: first, the ability (“power”) is scaled
by a dichotomous Rasch model and secondly, a Rasch model measuring the speed of a
testee, given that the item was solved, is applied. This results in the following model
equations (cf. Kubinger, 1989):

exp(&,—0;) exp(7, — K;)
l+exp(&,—0,) l+exp(7,—K)
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where the score X, =2 represents a correct and fast response, X, =1 a correct but
slow answer and X =0 an incorrect item response. The “speed” part of the formula
contains a second person parameter 7, that reflects the “speededness® of person v and a
second item parameter & that represents the time requirement of item i.

Whereas the speed-power-two-steps model was derived specifically for this purpose, the
multi-dimensional / unidimensional polytomous Rasch model is more general but can be
applied as well. Both approaches have very specific fundamental concepts: the poly-
tomous Rasch model confounds power and speed, but nevertheless separates the re-
sponses into quick and slow correct responses (as well as incorrect ones). In contrast, the
speed-power-two-steps model has the goal to yield separated measures of ability and
speededness of a person. We try to compare both approaches in the following.

Method

Sample and material

For the present study, data from the Informal K[/C]ompetence Measurement (IKM) were
used. IKM is a large-scale test that can be administered by school teachers in all Austrian
schools on a voluntary basis. The tests were administered online in the computer labora-
tories of the schools. Due to organizational reasons, the test was time-limited.

The sample consisted of 7 = 9210 7" grade students from all districts of Austria, who
worked on the mathematical test of IKM in 2010. 31.4 % of the sample were male, 32.9
% female and the remaining 35.7 % did not provide information regarding their sex. 53.8
% of the sample reported German as their mother tongue, 10.5 % stated a non-German
mother tongue and 35.7 % omitted this question. Because IKM was constructed as a self-
evaluating tool for teachers, the only socio-demographic variables which were gathered
were students’ sex and their mother-tongue. However, as a matter of fact the number of
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missing values for both of them is rather high. Response patterns and response times
reveal that students who denied to deliver the asked sociodemographic information
worked nevertheless with sufficient test motivation (that is they operated the items with a
reasonable long time and gave, at least partly, correct responses). Therefore it can be
assumed, that these students had just tried to save their anonymity: It was easy to omit
the respective questions. Coming to the point: there is no evidence at all that the
achievement motivation was peculiarly low.

The mathematical test consists of four subtests: (1) Modeling (7 items), (2) Calculating
and Operating (8 Items), (3) Interpreting (7 Items), (4) Explaining (8 items). The items
either have a multiple-choice or open-response format. In total, the test consists of 30
items which were administered in two versions — differing only in the sequence of the
items to avoid the testees copying answers. Computer-based administration allowed the
response time (in seconds) for each item to be recorded.

Analyses and results

According to the data’s check of meaningfulness, students with less than 10 item re-
sponses were excluded. The remaining n = 9066 students were taken for further analyses.
Exploration of the response times of the missing values indicated that the reason for not
answering an item was either due to a student’s omission or due to the fact, that he/she
did not reach the items at the end.

Taking the students’ response times for solving an item into account, the approaches
described in the introduction were compared. First, for both approaches the categorically
given item response times had to be polarized into quick and slow solutions. Therefore, a
cut-off point had to be determined. As the distribution of response times resulted as item-
specific in particular due to the amount of text which has to be read by the testees, the
cut-off points were based empirically, that is for each item individually according to the
median of the response times of correct given responses.

According to this polarization, the data was recoded in the following ways.

1) multi-dimensional polytomous Rasch model: For the estimation of the category spe-
cific person parameters, ¢, another data matrix X,, was constituted: quickly solved (x,;,=
0), slowly solved (x,;= 1) and not solved (x,;= 2). Labeling the three response catego-
ries in a different way would have been possible of course, for instance the other way
round.

2) speed-power-two-steps-model: For the estimation of the first person parameters, pow-
er &, a data matrix X was constituted which discloses whether student v has solved item i
(x,;= 1) or not (x,; = 0). For the estimation of the second person parameters z, which
describe the students’ speed (that is, whether item solutions are given rather quickly or
rather slowly), a second data matrix Xt was constituted; this one discloses whether a
student v has solved item i quickly (x,,= 1) or slowly (x,;= 0).

The speed-power-two-steps model was analyzed sequentially: the item parameters for
the dichotomous Rasch model were estimated for each of the two data matrices, X and
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Xr. To get the likelihood of the model as a whole, the likelihoods of the two models were
multiplied. The Rasch model parameters and the data’s likelihood were estimated with
the eRm package (Mair, Hatzinger, & Maier, 2015). For the multi-dimensional poly-
tomous Rasch models, the pcIRT package (Hohensinn, 2015) was used; both software
packages are included in R (R Core Team, 2015; for the analyses R version 3.1.3 was
used).

As described above, data matrix Xy only refers to the correct responses; the incorrect
ones are treated as missing values. Students with only one or no correct response had to
be excluded. The sample sizes after respective deletion were as follows: for subtest 1 n =
8165, for subtest 2 n = 8678, for subtest 3 n = 7601, and for subtest 4 n = 7363. These
reduced data sets were used for all further analyses (for the multi-dimensional and the
unidimensional polytomous Rasch model, too).

The first research question deals with the appropriateness of the unidimensional poly-
tomous Rasch model. However, it is to be tested in advance whether the multi-
dimensional polytomous model holds at all. Finally, even if the unidimensional model
suffices, the question is whether the category parameters, ¢, ¢,, @3, for a quick solution
(0), a slow solution (1), and no solution (2) are actually equidistantly scaled: Obviously,
an extra point is only justified if this is true, but of course the three parameters could
result completely differently, that is non-equidistantly.

First, the multi-dimensional polytomous IRT model was applied. As pointed out above,
Andersen's Likelihood Ratio test can be used for testing this model. However, for the
interpretation of the numerical result, the sample size has to be taken into account. Re-
cently, the discussion arose that the application of pertinent model tests within IRT tradi-
tionally suffers from controlling for the type-II-risk. Planning a study statistically always
means determining the sample size according to a given type-I- and type-II-risk, and
according to a certain effect which is of practical relevance (cf. e.g. Rasch, Kubinger, &
Yanagida, 2011). However, this approach hardly applies within IRT analyses (but see
Kubinger, Rasch, & Yanagida, 2009, 2011, and Yanagida, Kubinger, & Rasch, 2015, as
well as Draxler, 2010, Draxler & Alexandrowicz, 2015; and finally Draxler & Kubinger,
2017, in print): as a consequence of determining the sample size arbitrarily, particularly
IRT applications regularly result in significance, although the effects are rather minimal,
or of an irrelevant extent — and this also implies a rather senseless type-II-risk of almost
zero. For this reason, our applied model tests based on more than 7000 students were
expected to result in significance anyway. Therefore, rather descriptive measures are of
interest, most notably, Rasch’s graphical model check. This is true concerning the multi-
dimensional polytomous Rasch model as well as the other applied models.

The graphical model check of the multi-dimensional polytomous Rasch model opposes
the item category parameters estimated for two sub-samples, that is, students with a score
greater than the median and students with a score lower or equal to the median of the raw
score. The sum of solved items of the original data matrix was used as a raw score — that
is, no scoring with bonus points was applied at this point. Andersen’s Likelihood-Ratio
test resulted as follows: Subtest 1: ,1; =222.18, df =12, p = .000; Subtest 2: ;f =205.66,
df =14, p = .000; Subtest 3: > = 243. 80, df = 12, p = .000; Subtest 4: ¥ = 153.34, df =
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14, p =.000. As the graphical model tests look relatively good — ideally, every dot would
lie on the 45-degree line — we decided for a model fit (see the results in Figures 1a to 1d).

Secondly, for testing the unidimensional Rasch model, we also applied a graphical model
check. This time the multi-dimensional category parameter estimations were opposed to
the restricted but unidimensional category parameter estimations. The results of the
respective Likelihood-Ratio test (cf. Andersen, 1980) are as follows: Subtest 1: % =
409.44, df =5, p = .000; Subtest 2: 7 = 65.42, df = 6, p = .000; Subtest 3: 3> =260.04, df
=5, p =.000; Subtest 4: y* = 188.46, df = 6, p = .000. In addition, Table 1 presents the
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subsample median <= raw score
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Figure 1 (a to d):
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Graphical model checks for the multi-dimensional polytomous Rasch model for each subtest.
The first number of the labels indicate the item number, the second number the category (1 for
quick solution, 2 for slow solution). For example ,,15-2 means the item category parameter

for item number 5 and category 2 (slow solution).
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Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the
multi-dimensional and the unidimensional model. Both information criteria are indices
that provide a relative comparison of goodness-of-fit of different models. From the re-
sults, it is shown that except for Subtest 2, the unidimensional model has a lower fit than
the multi-dimensional one. However, the graphical model checks (Figure 2 a to d) offer a
good concordance of the unidimensional item category parameter estimates to those of
the multi-dimensional model. As described in the introduction, the item category
parameters of the unidimensional model are estimated by ¢;, = ¢, - 0;. For each subtest,
one scoring parameter ¢, was estimated (¢, = 0 and ¢, = 1 due to normalization con-

straints). The estimated scoring parameters for the four subtests are as follows: (ﬁ(l):

A

0.81, ¢ =0.89, 9'=0.77, Y =0.79.
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Figure 2 (a to d):
Estimated item category parameters according to the multi-dimensional and the
unidimensional Rasch model. The labels are the same as in Figure 1.
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Thirdly, another graphical model check was used to test the hypothesis that a quick solu-
tion actually credits an additional point, that is, instead of 1 point, 2 points. As already
indicated, if this scoring reflects the empirical difference between a quick and a slow
solution, the item category parameters for a quick solution must have a ratio of 2:1 to the
item category parameters for a slow solution. In this case the unidimensional item-
category parameters for a slow solution opposed to those for a quick solution should lie
on a line with a slope of 1:2, i.e. 0.5. See the results in Figures 3a to 3d.

Apparently the item category parameters of the four subtests are quite compatible with
each other. With only a few exceptions (item 5 in Subtest 1 or item 4 in Subtest 4), the

Subtest 1 Subtest 2
oM -~ o
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= =
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Figure 3 (a to d):
Estimated parameters of categories ,,quickly solved and ,,slowly solved* for the items of
each subtest. In each plot, the dotted line represents the implicated slope of 0.5, the dashed
line discloses the empirically resulted scoring parameter.
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relation between the item category parameters of the categories “quickly” and “slowly
solved” is the same for all items. As a matter of fact, the estimated scoring parameters
come close to 1 which means that both categories, “slow” and “fast solution”, are almost
equally difficult. As a consequence, a differentiation between quick and slow solutions
seems to not be very important.

As described above, the speed-and-power-two-steps model is composed of two Rasch
models, one for power and the other for speed, given the power (see Equation 3). The
speed-and-power-two-steps model was tested in the same way as the multi-dimensional
polytomous Rasch model, that is, by applying Andersen’s Likelihood Ratio test using the

Subtest 1 Subtest 2

subsample median > raw score
o
subsample median > raw score
o
»

T T T T T T T T T T
-4 -2 ] 2 4 -4 -2 ] 2 4

subsample median ¢= raw score subsample median <= raw score

Subtest 3 Subtest 4

subsample median > raw score
o

subsample median > raw score
o

T T T T T T T T T T
-4 -2 ] 2 4 -4 -2 ] 2 4

subsample median <= raw score subsample median <= raw score
Figure 4 (a — d):
Graphical model checks for the power component of the speed-and-power-two-steps model
for each subtest.
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common partition criterion “score”; in addition, the graphical model check was applied.
For Andersen’s Likelihood Ratio test, the likelihoods of the two Rasch models (power
and speed) were combined. The results are as follows: 3 = 224.71, df = 10, p = .000;
=231.77,df =12, p = .000; 1’ =237.94, df = 10, p = .000; 7 = 131.90, df = 12, p = .000.
For the graphical model checks, the item parameters for the subsamples high scorers and
low scorers were opposed in a plot. Because the item parameters were estimated sepa-
rately for the speed and power, the graphical model checks are displayed in two different
figures as well (see Figures 4a to 4d and 5a to 5d). The plots offer good model fits. For

Subtest 1 Subtest 2

subsample median > raw score
0
=

subsample median > raw score
0
>

T T T T T T T T T T
-4 2 0 2 4 -4 -2 0 2 4
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-4 -2 0 2 4 -4 -2 0 2 4

subsample median <= raw score subsample median <= raw score

Figure 5 (a - d):
Graphical model checks for the speed component of the speed-and-power-two-steps model for
each subtest.
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speed, the item parameter estimations evidently only show a small variance. This indi-
cates that there is almost no difference between a fast and a slow solution for every item.

The second research question aims to compare the two approaches chosen here when
speed of solving an item is incorporated into scoring, that is, the polytomous Rasch mod-
els on the one side and the speed-and-power-two-steps model on the other side. As de-
scribed above, the data sets for these models are different which makes a model compari-
son very difficult. Neither a likelihood ratio test nor the information criteria AIC and BIC
can be applied in this context.

However, to get at least some descriptive impression of the fit of these two approaches,
the probabilities of the given item responses were calculated — one time given the multi-
dimensional polytomous Rasch model, the other time given the speed-and-power-two-
steps model. The product of the item response probabilities, which is the likelihood of
the given response vector, was calculated for each person v. To get a rough comparison
of the two models, we compared the likelihoods of the two response vectors for each
person v. The response vector likelihood in Subtest 1, given the multi-dimensional poly-

Table 1:
-2-Loglikelihood, the number of estimated parameters (n,,), AIC and BIC subtest-wise for the
two models.
-2- LogLikelihood m, AIC BIC
Subtest I  multi-dimensional 59545.7 12 59569.7 59653.8
Rasch model
uni-dimensional 59955.2 7 59969.2 60018.2
Rasch model
Subtest 2 multi-dimensional 81709.3 14 81737.3 81836.3
Rasch model
uni-dimensional 81774.7 8 81790.7 81847.3
Rasch model
Subtest 3 multi-dimensional 54917.9 12 54941.9 55025.1
Rasch model
uni-dimensional 55177.9 7 55191.9 55240.5
Rasch model
Subtest 4 multi-dimensional 57981.7 14 58009.7 58106.3
Rasch model
uni-dimensional 58170.1 8 58186.1 58241.4

Rasch model
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tomous Rasch model, was in 93.42 percent of the times greater than that given the speed-
power-steps model. For Subtest 2, in 88.23 percent of the observations it was greater; for
Subtest 3, 91.33 percent; and for Subtest 4, 94.06 percent.

Discussion

In the present study two IRT-based approaches, which incorporate the item solutions’
speed into scoring, were compared. Before our research, there were some empirical results
that suggest to take power and speed as separate traits. The speed-power-two-steps model is
based on this assumption and models speed as a power independent, separate trait. Never-
theless, our results show that the speed-power-two-steps model seems to have a lower
model fit compared to the multi-dimensional polytomous Rasch model. Of course, a direct
comparison of the two approaches is difficult and only a descriptive impression using a
comparison of the likelihoods of the item response vectors could be used. However, estima-
tion of the item category parameters shows that it is approximately equally difficult to solve
an item quickly as it is to solve it slowly. Moreover, a reduction of the multi-dimensional
polytomous Rasch model to a unidimensional one is (according to the information criteria)
not appropriate, though we decided at first (due to the graphical model check) that even this
model holds: the multi-dimensional category parameter estimations of “quickly” vs. “slow-
ly” solved differed too much in the end with respect to the items that they could not be
explained by a linear function over all items. Incidentally, the scoring parameters are not at
all 0.5 as indicated by the apodictically chosen scoring rule. This shows, at least, that the
scoring of 2 points for quick correct responses and 1 point for slow correct responses does
not at all reflect actual performances.

Of course, our results only refer to the particular given tests. There might be other tests
for which our results do not hold. However, this does not necessarily mean that any
scoring rule which provides bonus points for speed is not to be justified according to our
analyses.

There are further limitations of this study: first, the categorization into quick and slow
solutions was set by the median of the response times. We repeated the analysis by set-
ting the cut-off point between quick and slow solutions in the first quartile of the re-
sponse times. This means that a quick solution discloses a more “excellent” achievement
than before. The results only differ marginally, the overall conclusions of the study re-
main the same. This indicates that the results hardly depend on the cut-off point of speed
categorization. Another limitation is that the majority of the items in the mathematical
tests use a multiple-choice format. For this response format, the occurrence of rapid
lucky guessing is well-known: students give a very quick item response without really
“solving” the item. Of course, these effects could have taken place as well and could
have led to a distortion of the distribution of the response times. Excluding students that
probably solved items with lucky guessing could have led to a shift in the cut-off point of
the response time. Again, the results of our second analysis with the cut-off point set at
the first quartile should be taken with great caution as an indicator that a shift in the cut-
off point should not have led to dramatically different results.
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