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Abstract 

In recent years, cognitive diagnosis models (CDMs) have received a growing attention because of 

their potential to diagnose achievement on the level of sub-competencies. In the context of that 

development researchers have introduced relevant tools for the practical application of CDMs, as 

for example multiple group approaches and differential item functioning (DIF) detection. However, 

when applying CDMs and these related methods to large scale data, one has to overcome a diversi-

ty of obstacles: With a growing number of sub-competencies, the models may, due to a large num-

ber of parameters, become often (nearly) non-identifiable and thus extremely hard to estimate. 

Additionally, significance tests may become significant for the only reason of sample size necessi-

tating adequate effect sizes. The present article aims at two aspects: First, it summarizes existing 

CDM methods for multiple group models and DIF analyses. Second, it gives hints for their applica-

tion to large-scale assessment data, amongst others we introduce an adapted estimation routine and 

an appropriate effect size. Both aspects are illustrated by means of the Austrian educational stand-

ards test in mathematics 2012 containing a sample size of 71464 students and 72 items. 
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1 Introduction 

Over the last decade cognitive diagnosis models (CDMs; DiBello, Roussos, & Stout, 

2007; Rupp, Templin, & Henson, 2010) have been actively studied and the number of 

their applications to educational data has increased. One aim of CDMs is to classify 

individuals based on their item response patterns with respect to a certain number of so-

called sub-competencies, which are assumed to form the gross competency domain to be 

assessed. The discrete individual values on each such sub-competency establish a multi-

dimensional classification, which is said to provide more diagnostic information com-

pared to a single proficiency score and can therefore be used as empirical basis for the 

development of targeted feedback and support. 

Several specific and general CDMs of various formulations have been proposed in the 

psychometric literature: Examples of specific CDMs include the deterministic input, 

noisy “and” gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton, 

1977) model  and the reduced reparameterized unified model (R-RUM; Hartz, 2002; 

Roussos, Templin, & Henson, 2007); the general approaches divide into the generalized-

DINA framework (de la Torre, 2011), the log-linear CDM (Henson, Templin, & Willse, 

2009), and the general diagnostic model (GDM; von Davier, 2008). 

From a technical point of view, CDMs are restricted latent class models, which demand 

that students possessing the same combination of sub-competencies exhibit the same 

item response probabilities (Formann, 2007; Formann & Kohlmann, 1998). Results, 

which are comparable to those obtained through CDMs, may be achieved through item 

response theory (IRT; van der Linden & Hambleton, 1997) by joining students with 

similar trait locations on the latent continuum into a small number of classes (for details 

cf. Haberman, von Davier, & Lee, 2008). Following these arguments, researchers have 

argued that CDMs are not an entirely novel class of models, but should rather be seen as 

specific latent structure models (von Davier, 2009; von Davier & Haberman, 2014). 

Nonetheless we use the term “CDM”, because it is widespread in the research literature 

and facilitates readability. 

With respect to the practical application of CDMs researchers started to investigate rele-

vant methods for the analysis of educational data within the framework of CDMs: For 

example, multiple group approaches for CDMs have been suggested (e.g. Johnson et al., 

2013; Xu & von Davier, 2008b), which allow the comparison of achievement between 

different groups of students. In this context, one may also be interested in analyzing 

differential item functioning (DIF; Penfield & Camilli, 2006) on the level of sub-

competencies (Hou, de la Torre, & Nandakumar, 2014). Additional to these methods, a 

wide range of statistical procedures for checking model validity has been presented, as 

for example measures of global and local model fit (Chen, de la Torre, & Zhang, 2013), 

item fit (Kunina-Habenicht, Rupp, & Wilhelm, 2009), or classification accuracy (Cui, 

Gierl, & Chuang, 2012; DiBello et al., 2007). 

Despite these efforts to bring CDMs closer to practical needs, some methodological 

obstacles in applying these methods still remain, becoming even more severe when deal-

ing with large scale data. Probably the gravest problem is the estimation of CDMs as-
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suming a large number of sub-competencies leading to a high-dimensional model. The 

number of model parameters grows exponentially with the number of sub-competencies 

and thus the model soon becomes (almost) non-identifiable. Combining a large number 

of dimensions (sub-competencies) with a large sample size, as in the case of large scale 

assessments, memory overflow is likely to appear on current computer systems. Another 

commonly known problem with large sample sizes is that significance tests are over-

powered. In the context of CDMs one is confronted with this overpowerment when ap-

plying multiple group variants (see Section 2.2) of the models: Like multiple group mod-

els, multiple group CDMs often assume invariant item parameters across groups (Xu & 

von Davier, 2008a). It is argued that this assumption, which is equivalent to the absence 

of DIF items, should be ascertained prior to applying a multiple group CDM (Hou et al., 

2014). However, due to the aforementioned excessively high statistical power in large 

samples, significance tests are inadequate for identifying items exhibiting practically 

relevant DIF.  

For the Austrian educational standards test in mathematics 2012 (Breit & Schreiner, 

2012) it was decided to reanalyze the data using a multiple group CDM. In the first part 

of this article, we briefly present the idea of the statistical theory behind CDMs and 

review the existing methods for performing multiple group analysis and DIF detection 

within this framework. In each of these points special consideration is given to the appli-

cation of CDMs to large scale data with a concrete focus on  

1) an adaption of the estimation algorithm to prevent memory overflow (Section 2.4) 

and 

2) the development of an effect size measure for DIF (Section 2.5) 

 

In the second part, we illustrate the presented methods using the Austrian educational 

standards test in mathematics 2012 (Breit & Schreiner, 2012), a large scale assessment 

involving 71464 students and 72 items measuring 8 sub-competencies. More precisely, 

we discuss three models, one analyzing the mathematical sub-competencies of the whole 

student sample, the second comparing the possession of these sub-competencies between 

boys and girls, and a third model analyzing differences between upper and lower track 

students. Beyond the pure application of the CDM methods, we also promote some ideas 

for further handling and analysis of the results, e.g.  

3) We conduct analyses of variance to summarize the skill class probabilities and their 

interactions (Sections 5.2, 5.3 and 5.4).  

4) For reporting the differences in skill mastery between the groups we use differences 

in skill probabilities, which are afterwards transformed to the widely used Cohen’s d 

effect size (Sections 4.3 and 5.5).  

 

Our aim is to solve practical obstacles when applying CDMs to large scale data and to 

present an application, revealing some substantial findings going beyond the results 

obtained by unidimensional IRT models with continuous skills. 
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2 Theory 

We consider the gross competency domain maths, which is split up into a few sub-

competencies. In order to model this substantial structure by means of a CDM, we assign 

each sub-competency a so-called latent categorical skill variable, termed 𝛼𝑘 (i.e. 𝛼1 

corresponds to the first sub-competency and so on). It is assumed that each student pos-

sesses a subset out of a total of K skills 𝛼1, … , 𝛼𝐾.  

In this article, we refer to CDMs for dichotomous responses and dichotomous skills, 

however, more general model variants allow for polytomous items and polytomous skills 

as well (e.g. Chen & de la Torre, 2013; von Davier, 2008). For specifying which skill is 

required to solve which item, domain experts have to define a binary 𝐽 × 𝐾 item-by-skill 

matrix 𝐐, in which the element 𝑞𝑗𝑘 in the j-th row and the k-th column indicates whether 

skill 𝑘 is needed (𝑞𝑗𝑘 = 1) or not (𝑞𝑗𝑘 = 0) for correctly responding to item 𝑗, 𝑗 =

1,… , 𝐽. Thus, the so called Q-matrix 𝐐 reflects the substantial theory of how skills con-

tribute to solving each item. Based on 𝐐, a CDM infers the possession of the K skills 

from the 𝐼 × 𝐽 response matrix of 𝑖 =  1, . . . , 𝐼 students. The K skills allow for a total of 

2𝐾 different skill patterns, which are termed skill classes 𝜶𝑙 ,  𝑙 = 1,… , 2𝐾, in the CDM 

context. 

The results obtained through a CDM analysis are twofold:  

1) We obtain the probability that a randomly chosen individual belongs to skill class 

𝜶𝑙, i.e. 2𝐾 skill class probabilities 𝑃(𝜶𝑙), representing the proportion of students in 

the population possessing a specific combination 𝜶𝑙 = [𝛼𝑙1, … , 𝛼𝑙𝐾] of skills. Be-

cause of the assumption ∑ 𝑃(𝜶𝑙) = 1 2𝐾

𝑙=1 , the vector of the 2𝐾 skill probabilities 

𝑃(𝜶𝑙) is the skill class distribution.  

2) For individual assessment, each individual 𝑖 is classified into exactly one of the 2𝐾 

skill classes and the dichotomous outcome vector 𝜶𝑖 = [𝛼𝑖1, … , 𝛼𝑖𝐾] is called the 

𝑖-th student’s skill profile. As a simple example, consider a CDM with 𝐾 = 4 skills. 

According to this model, each student is assigned one of the 24 = 16 skill classes 

𝜶𝑙. For example, the skill class 𝜶𝑙 = [1,1,0,0] includes students possessing the 

skills 𝛼1and 𝛼2 but not 𝛼3 and 𝛼4.  

2.1 The DINA Model Framework 

Because of its simplicity and parsimony in terms of model parameters, the Deterministic 

Input Noisy-And-Gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001; Macready & 

Dayton, 1977) model is one of the most commonly used CDMs. For the same reason it is 

used in this section to present the basic statistical concepts underlying CDMs.  

The DINA model asserts that students have to possess all skills assigned in Q to an item 

for successfully mastering it. To put it differently, the DINA model is non-compensatory, 

in that a lack in one required skill cannot be compensated for by another skill assumed to 

be present in this class. The i-th student’s probability to master the j-th item involves two 

components, namely a deterministic one and a probabilistic one. The former states 
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whether the student is expected to master the j-th item on the basis of his possessed 

skills. A student possessing all required skills for item j (or even more skills) is expected 

to master the item, whereas a student lacking at least one required skill is not expected to 

master the item. This deterministic component is expressed through the dichotomous 

latent response 𝜂𝑖𝑗 = 0,1 of student i to item j, with  

𝜂𝑖𝑗 = ∏ 𝛼𝑖𝑘
𝑞𝑗𝑘𝐾

𝑘=1 . 

In case of 𝜂𝑖𝑗 = 1, student 𝑖 is expected to master item 𝑗, in case of 𝜂𝑖𝑗 = 0 he is not.  

The probabilistic component represents the probability of student 𝑖 to actually respond 

correctly to item 𝑗: Students may slip, i.e. fail to produce the correct answer, although 

they are expected to master an item (i.e. 𝜂𝑖𝑗 = 1), e.g. due to lack of concentration, dis-

traction, or alike. Analoguously, students who are not expected to master an item (i.e. 

𝜂𝑖𝑗 = 0) may succeed by luckily guessing the correct response. The probabilities 𝛿𝑗0 for 

guessing item 𝑗 and (𝛿𝑗0 + 𝛿𝑗1) for not slipping item 𝑗 are modeled as item specific 

parameters. Including both components, the DINA model is expressed through 

𝑃 (𝑋𝑖𝑗 = 1 | 𝜶𝑖) =  𝑃(𝑋𝑖𝑗 = 1 | 𝜂𝑖𝑗 , 𝛿𝑗0, 𝛿𝑗1) = (𝛿𝑗0 + 𝛿𝑗1)
𝜂𝑖𝑗  𝛿𝑗0

1−𝜂𝑖𝑗 , 

denoting the probability of student 𝑖 to correctly respond item 𝑗 conditional on a skill 

profile 𝜶𝑖. Note that in DINA models with a simple loading structure (i.e. models in 

which each item measures exactly one skill) the latent response 𝜂𝑖𝑗 for an item j measur-

ing skill 𝑘′ = 1,… , 𝐾 reduces to 𝜂𝑖𝑗 =  𝛼𝑖𝑘′
𝑞𝑗𝑘′. This corresponds to a stepwise item 

response function, which can be seen as a multidimensional analogue of the probabilistic 

Guttman model (Proctor, 1970). 

2.2 Multiple group CDMs 

Multiple group CDMs (MG-CDMs) are an extension of CDMs for situations, in which 

more than one (manifest) group of students responds to the same test (e.g. gender 

groups). The objective of a MG-CDM is to compare the extent to which these groups 

differ in their skill possession. One simple approach for this purpose could be to estimate 

one model for all students and to compare the individual classifications of the students 

given their group membership. However, proceeding that way leads to biased estimation 

of the group differences (Bock & Zimowski, 1997). Thus, based on pertinent methods 

for latent trait models, multiple group approaches for CDMs have been suggested 

(Johnson et al., 2013; Xu & von Davier, 2008a) which incorporate some identification 

condition for assessing group differences (von Davier & von Davier, 2007). Following 

Xu and von Davier (2008a) and de la Torre & Lee (2010), the assumption of invariant 

item parameters across groups is the strongest identification condition. The validity of 

this assumption, i.e. the assumption that each item works in the same way in each group, 

should be tested prior to the estimation of a MG-CDM (see Section 2.5). 
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2.3 Parameter estimation 

Parameter estimation of (MG-)CDMs is performed by means of marginal maximum 

likelihood (MML) estimation. A pertinent way to implement this method is the expecta-

tion-maximization (EM; Dempster, Laird, & Rubin, 1977) algorithm (de la Torre, 2009; 

for one group). The EM algorithm iterates between an E-step and an M-step: In the E-

step, expected counts for each item and each group are calculated, which are a prerequi-

site for the calculation of the required statistics in the M-step. Then, the M-step updates 

the parameter estimates for the MG-CDM using maximization methods. Finally, the E-

step and M-Step alternate until a previously set convergence criterion is attained. 

We assume for the following presentation that groups 𝐺𝑖 = 𝑔, 𝑔 = 1,… , 𝐺, are exhaus-

tive and mutually disjunctive (i.e. each student 𝑖 belongs to exactly one group g). Fur-

thermore, the assumption of invariant item parameters across groups is posed. For rea-

sons of simplicity, the parameter estimation process is again presented for the example of 

the DINA model, but it may be extended to more complex CDMs in a straightforward 

manner (Xu & von Davier, 2008a).   

For estimating the DINA model the marginal log-likelihood  

 log 𝐿(𝜹, 𝜸) =  ∑ log 𝐿(𝑿𝑖 , 𝐺𝑖; 𝜹, 𝜸) =  ∑ log[∑ 𝑃(𝑿𝑖|𝜶𝑙; 𝜹)𝐿
𝑙=1 ⋅ 𝑃(𝜶𝑙|𝐺𝑖; 𝜸)]𝐼

𝑖=1
𝐼
𝑖=1  (1) 

is maximized. Here, the parameter vector 𝜹 = [𝜹0, 𝜹1] = [𝛿10, … , 𝛿𝐽0, 𝛿11, … , 𝛿𝐽1] in-

cludes all item parameters and 

𝑃(𝑿𝑖|𝜶𝑙; 𝜹) = ∏ 𝑃(𝑋𝑖𝑗 = 1|𝜶𝑙 , 𝛿𝑗0, 𝛿𝑗1)
𝑋𝑖𝑗

[1 − 𝑃(𝑋𝑖𝑗 = 1|𝜶𝑙  , 𝛿𝑗0, 𝛿𝑗1)]
1−𝑋𝑖𝑗𝐽

𝑗=1   

is the probability of a response vector 𝑿𝑖 if student 𝑖 possesses the skills of skill class 𝑙, 
𝑙 = 1,… , 𝐿. Note that 𝑃(𝑿𝑖|𝜶𝑙 , 𝜹) is independent of the group-membership since we 

assume invariant item parameters across groups. Furthermore, the unknown parameter 

vector 𝜸 = [𝜸1, … , 𝜸𝐺] describes all group specific distributions 𝑃(𝜶|𝑔; 𝜸𝑔) =

[𝑃(𝜶1|𝑔; 𝜸𝑔), … , 𝑃(𝜶𝐿|𝑔; 𝜸𝑔)]. While in case of a full skill space each 𝜸𝑔 =

 [𝛾1𝑔, … , 𝛾𝐿𝑔 ] contains all 𝐿 = 2𝐾 probabilities 𝛾𝑙𝑔 = 𝑃(𝜶𝑙|𝑔), in case of a reduced skill 

space the 𝜸𝑔 = [𝛾1𝑔, … , 𝛾𝐿𝑔 ]  are resulting vectors of a log-linear smoothed skill space 

with 𝐿 = 1 + 𝐾 + 𝐾 ⋅  
(𝐾+1)

2
< 2𝐾 parameters. For further details see Section 2.4.  

Before the first iteration of the EM algorithm, initial item parameters 𝜹 and skill distribu-

tion parameters 𝜸 have to be chosen. Then, the EM algorithm alternates between the E-

step and the M-step described in the following: 

 

E-Step: 

a. The individual posterior distribution can be deduced via Bayes’ theorem: 

𝑃(𝜶𝑙|𝑿𝑖 , 𝐺𝑖; 𝜹, 𝜸𝑔) =  
𝑃(𝑿𝑖|𝜶𝑙; 𝜹) 𝑃(𝜶𝑙|𝐺𝑖; 𝜸𝑔)

∑ 𝑃(𝑿𝑖|𝜶𝑙; 𝜹) 𝑃(𝜶𝑙|𝐺𝑖; 𝜸𝑔)𝐿
𝑙=1

 , 𝑙 = 1, … , 𝐿 
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b. Two types of expected counts are derived from the posterior: The first count is the 

expected number 

𝐼𝑙𝑗 = ∑ 𝑃(𝜶𝑙|𝑿𝑖 , 𝐺𝑖; 𝜹, 𝜸𝑔)𝐼
𝑖=𝐼   

of students which are classified into skill class 𝜶𝑙 for item 𝑗, 𝑗 = 1,… , 𝐽. Note that in 

case of no missing data 𝐼𝑙𝑗 = 𝐼𝑙𝑗′ for all 𝑗, 𝑗′ = 1,… , 𝐽. 

The second count 

𝑅𝑙𝑗 = ∑ 𝑋𝑖𝑗 ⋅ 𝑃(𝜶𝑙|𝑿𝑖 , 𝐺𝑖; 𝜹, 𝜸𝑔)𝐼
𝑖=𝐼   

describes the expected number of students classified in skill class 𝜶𝑙 while respond-

ing item 𝑗 correctly. 

 

M-Step: 

a. The set of item parameters [𝛅0, 𝛅1] is updated. The estimating equations are ob-

tained by setting the first derivative of the log-likelihood with respect to the item pa-

rameters equal to zero. The derivative only involves the two counts obtained in the 

E-step. Let  

𝐼𝑗
(0)

=  ∑ 𝐼𝑗𝑙
𝑙: 𝜂𝑙𝑗=0

 

be the expected number of students lacking at least one of the skills required for the 

mastery of item 𝑗 (i.e. 𝜂𝑙𝑗 = 0) and  

𝑅𝑗
(0)

=  ∑ 𝑋𝑖𝑗 ⋅ 𝐼𝑗𝑙
𝑙: 𝜂𝑙𝑗=0

 

be the expected number of students among 𝐼𝑗
(0)

 who correctly respond to item 𝑗. Fur-

thermore let  𝐼𝑗
(1)

 and 𝑅𝑗
(1)

 have the same interpretation except that they belong to 

students which possess all skills required for item 𝑗 (i.e. 𝜂𝑙𝑗 = 1). Based on this def-

initions the items parameters of item j are updated according to 

𝛿𝑗0 = 
𝑅𝑗

(0)

𝐼𝑗
(0)

    ,     𝛿𝑗0 + 𝛿𝑗1 = 
𝑅𝑗

(1)

𝐼𝑗
(1)

   . 

For details see de la Torre (2009). 

 

b. The group-wise skill class distributions 𝑃(𝜶𝑙|𝑔; 𝜸) are updated. For each group 𝑔, 

the expected number 𝑛𝑙𝑔 of students in group 𝑔 and skill class 𝜶𝑙 is calculated, 

namely 

𝑛𝑙𝑔 = ∑ 𝑃(𝜶𝑙|𝑿𝑖 , 𝐺𝑖; 𝜹, 𝜸𝑔).

𝑖 | 𝐺𝑖=𝑔
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Let 𝑁𝑔 be the number of students in group 𝑔, then the skill class distributions are 

updated by 

𝑃(𝜶𝑙|𝑔; 𝜸𝑔) =  
𝑛𝑙𝑔

𝑁𝑔

. 

In an optional step, these skill class distributions may be smoothed by using a log-

linear model. For details see the following Section 2.4. 

 

Finally, the E- and M-Step alternate until convergence. Convergence may be achieved if 

the maximal change between the parameter estimates or the relative change in the devi-

ance is below a specific predefined value or after a maximum number of iterations. Note 

that the estimation algorithm may also handle sampling weights, which is not presented 

here. 

2.4 Skill space reduction 

In cases where models have almost as many parameters as observations, which, conse-

quently, would lead to weakly or non-identifiable skill classes, Xu & von Davier (2008b) 

proposed to change from the unreduced skill space 𝑃(𝜶𝑙), 𝑙 = 1,… , 2𝐾 , to a log-linear 

smoothed form of the skill space  

log 𝑃(𝜶𝑙|𝑔) = 𝛾𝑔0 + ∑𝛾𝑘𝑔1

𝐾

𝑘=1

𝛼𝑙𝑘 + ∑ ∑ 𝛾𝑘𝑚𝑔2𝛼𝑙𝑘𝛼𝑙𝑚

𝐾

𝑚=𝑘+1

.

𝐾−1

𝑘=1

 

Here, the 𝛾𝑔0 is an intercept parameter, the parameter 𝛾𝑘𝑔1 summarizes the main effects 

of skill 𝑘 in group 𝑔 (allowing for different marginal skill probabilities of the K skills) 

and 𝛾𝑘𝑚𝑔2 captures the interaction of skills 𝑘 and 𝑚 in group 𝑔. The unknown 𝜸𝑔 pa-

rameters can be estimated by a generalized least squares estimation within the M-step 

(Xu & von Davier, 2008b). Within this log-linear parameterization 1 + 𝐾 + 𝐾 ⋅
(𝐾+1)

2
 

parameters are estimated for each group (instead of 2𝐾 − 1 parameters in the full skill 

space). 

Additionally, forming the log-likelihood over 𝐿 = 2𝐾 skill classes is computationally 

demanding for a large number of skills. In applications of large scale assessment data, 

the representation of the appropriate high-dimensional posterior distributions may lead to 

problems of memory overflow (e.g. performing an analysis with 𝐾 = 16 skills and 

𝐼 = 72000 students leads to two matrices of size 216 × 71464 =  65536 × 71464 for 

storing the values of the individual likelihood and the posterior). Hence, we propose an 

alternative approach which uses a much smaller number of skill classes than 2𝐾: We 

assume that the multidimensional distribution of dichotomous skills 𝜶 is obtained by 

discretizing an underlying multivariate normal distribution 𝜶∗ at appropriate thresholds 

(Templin & Henson, 2006). In adopting ideas from item response models with continu-

ous traits, we approximate the continuous distribution 𝜶∗ by a discrete grid 𝜶1
∗  with 𝐿 

grid points via quasi Monte Carlo integration (Pan & Thompson, 2007). The discrete grid 
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𝜶1
∗  is finally split into a grid of dichotomous skill classes 𝜶1. Thus, choosing a sufficient-

ly high number of grid points 𝐿 (say 𝐿 = 2000 or 𝐿 = 4000) can adequately represent 

the log-likelihood (which only depends on the lower dimensional 𝜸 parameters).  

2.5 Differential Item Functioning 

As mentioned before, the application of a MG-CDM assumes invariant item parameters 

across the different groups (Xu & von Davier, 2008a). To assure this assumption one 

may test each item for parameters differences between the groups, i.e. differential item 

functioning (DIF; Penfield & Camilli, 2006), and in case of significance one may decide 

to leave out the item in the MG-model. Another aspect in the investigation of DIF items 

is to analyze the reasons for DIF on the level of skills.  

For conducting a DIF-test in the CDM framework (Hou et al., 2014) the item parameters 

are estimated sequentially: In the estimation process of an item j, the item parameters of 

this item 𝑗 are freed to vary between groups whereas the item parameters of all remaining 

𝐽 − 1 items are constrained to be invariant between groups (cf. the procedure of the 

likelihood ratio test for detecting DIF in IRT; Penfield & Camilli, 2006). Proceeding that 

way, we obtain for each group 𝑔 and each item 𝑗 in the DINA model a vector of item 

parameters 𝜹𝑗|𝑔  =  [𝛿𝑗0|𝑔, 𝛿𝑗1|𝑔], where for two groups 𝑔1 and 𝑔2 the equation 𝜹𝑗|𝑔1
=

 𝜹𝑗|𝑔2
 can be violated. Then each item j may be tested for exhibiting DIF (de la Torre & 

Lee, 2013) using the null hypothesis  

𝐻0: 𝜹𝑗|1 = 𝜹𝑗|2 =,… =  𝜹𝑗|𝐺  . 

This null hypothesis can equivalently be written as 𝐻0: 𝐶𝑗 ⋅ 𝜹𝑗 = 0, with 

𝐶𝑗 = 

[
 
 
 
 
 
 
1 0 −1 0 0 0 0 …
0 0 1 0 −1 0 0 …
0 0 0 0 1 0 −1 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 1 0 −1 0 0 0 …
0 0 0 1 0 −1 0 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

 
 
 
 
 
 

. 

By adapting of the Wald statistic of the G-DINA model (de la Torre, 2011; Hou et al., 

2014), the Wald Statistic W for the DINA model is formed as  

𝑊 = [ 𝐶𝑗 ⋅  𝜹𝑗  ]
′
{ 𝐶𝑗  ⋅ Var(𝜹𝑗) ⋅  𝐶𝑗′ }

−1 
[ 𝐶𝑗  ⋅  𝜹𝑗  ] 

where 𝜹𝑗 = [𝜹𝑗|1, 𝜹𝑗|2 , … , 𝜹𝑗|𝐺 ]′ and  Var(𝜹𝑗) =  [

Var(𝜹𝑗|1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ Var(𝜹𝑗|𝐺)

]. 

If 𝐻0 holds, the test statistic W is assumed to be asymptotically 𝜒2 distributed with 

2 ⋅ (𝐺 − 1) degrees of freedom (de la Torre & Lee, 2013). For implementing the Wald 

test,  𝜹𝑗   and Var(𝜹𝑗)  are replaced by their sample counterparts  𝜹̂𝑗   and Var̂(𝜹𝑗).  
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For illustrational purposes consider 𝐺 = 2 groups with, for example, group 𝑔1 = 1 rep-

resenting boys and group 𝑔2 = 2 the girls. Then the null hypothesis “item j exhibits no 

DIF between boys and girls” is  

𝐻0: 𝜹𝑗|1 = 𝜹𝑗|2 , 

which means that  𝛿𝑗0|1 = 𝛿𝑗0|2 and  𝛿𝑗1|1 = 𝛿𝑗1|2. 

For computing the Wald statistic we define 

𝜹𝑗 = [𝜹𝑗|1, 𝜹𝑗|2 ]
′
= [𝛿𝑗0|1, 𝛿𝑗1|1, 𝛿𝑗0|2, 𝛿𝑗1|2]

′
, 

Var(𝜹𝑗) = [
Var(𝜹𝑗|1) 0

0 Var(𝜹𝑗|2)
]    and 

𝐶𝑗 = [
 1 0 −1 0
0 1 0 −1

]. 

Note that we have presented a method for analyzing DIF separately for each item. An-

other approach, which is not considered here, is to simultaneously analyze DIF for all 

items of the test, i.e. to assume non-invariant item parameters across groups (Johnson et 

al., 2013).  

In large sample sizes, the Wald statistic may become significant for items exhibiting 

small DIF effects considered irrelevant from a substantial point of view. Hence, we pro-

pose to use an effect size measure in addition, which is based on the difference of the 

item response functions between groups: 

UA𝑗 =  ∑𝑤(𝜶𝑙) ⋅ |𝑃(𝑋𝑗 = 1|𝜶𝑙 , 𝑔1) − 𝑃(𝑋𝑗 = 1|𝜶𝑙 , 𝑔2)|

𝐿

𝑙=1

, 

where  

𝑤(𝜶𝑙) =  
1

2
 [𝑃(𝜶𝑙|𝐺 = 𝑔1) +  𝑃(𝜶𝑙|𝐺 = 𝑔2)]. 

This DIF effect size measure UA𝑗 is an adoption of the unsigned area (UA) originally 

introduced by Raju (1990) and novel to the framework of cognitive diagnosis modeling. 

In context of the three parameter IRT model, Jodoin and Gierl (2001) suggest as a rule of 

thumb values of .059 to distinguish negligible from moderate DIF and .088 to distinguish 

moderate from large DIF. We suggest adapting this rule for the UA measure in the 

framework of CDMs, too. 

From a theoretical point of view, Roussos and Stout (1996) distinguish two dimensions 

which may cause DIF: Firstly, an auxiliary dimension, which is intended to be measured 

in the test (i.e. which is construct relevant) and secondly, a nuisance dimension, which is 

not intended to be measured (i.e. construct irrelevant). In our analyses, educational ex-

perts decide for each empirically detected DIF item, if the DIF is caused by construct 

relevant or construct irrelevant factors. Only in case the expert identifies construct irrele-

vant DIF, the respective items are removed from further analyses.    
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3 Data 

The data reanalyzed in this article consists of 71464 Austrian grade 8 students’ responses 

to a mathematics test, which was employed in the framework of educational standards 

testing in 2012 (Bildungsstandards-Mathematik 8; BIST-M8; Breit & Schreiner, 2012). 

The test population splits into 51 % boys and 49 % girls. One third of the students are 

attending the academic school (AHS), and the remaining 67 % are attending the general 

secondary school (HS, NMS). 

The test comprises 72 items arranged in 6 test booklets according to a partially balanced 

incomplete block design (for BIST test designs: Kuhn & Kiefer, 2013). Each individual 

student responded to 48 items in one of the test booklets. The test booklets are mutually 

comparable concerning length, difficulty and content of the items. 

Following the competence model of Peschek and Heugl (2007), mathematical compe-

tence in the eighth grade can be divided into four operational sub-competencies “Repre-

sentation” (𝛼1), “Calculation” (𝛼2), “Interpretation” (𝛼3), and “Argumentation” (𝛼4) 

and four content sub-competencies namely “Numbers and Measures” (𝛼5), “Variables 

and functional Dependencies” (𝛼6), “Geometry” (𝛼7), and “Statistics” (𝛼8). In the pre-

sent study, the four operational and four content sub-competencies are used as the K = 8 

basic skills underlying the tested mathematical competence in the eighth grade. Accord-

ing to educational experts, the mastery of each item in the standards test requires exactly 

one operational and one content skill. As a summary, Table 1 shows the number of items 

in each of the 6 test booklets requesting the 16 possible combinations of one content and 

one operational skill: For example the operational skill 𝛼1 is required in combination 

with the content skill 𝛼5 for the mastery of 3 items in the first test booklet. 

 

 

Table 1:  

Number of items requiring a specific combination of operational and content skills in each of 

the 6 test booklets and for the whole item pool 

test- 

booklet 

𝛼1 and 𝛼2 and 𝛼3 and 𝛼4 and  

𝛼5 𝛼6 𝛼7 𝛼8 𝛼5 𝛼6 𝛼7 𝛼8 𝛼5 𝛼6 𝛼7 𝛼8 𝛼5 𝛼6 𝛼7 𝛼8 ∑ 

1 3 3 3 3 3 4 2 3 2 1 6 3 4 4 1 3 48 

2 3 4 2 3 2 3 3 4 4 1 4 3 3 4 3 2 48 

3 3 3 3 3 4 5 1 2 3 1 5 3 2 3 3 4 48 

4 3 3 3 3 3 4 2 3 4 2 3 3 2 3 4 3 48 

5 4 4 2 2 2 4 2 4 4 1 5 2 2 3 3 4 48 

6 4 3 3 2 2 4 2 4 3 2 5 2 3 3 2 4 48 

item pool 5 5 4 4 4 6 3 5 5 2 7 4 4 5 4 5 72 
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4 Methods 

Remember that our goal is to estimate and discuss three models for the BIST-M8 data: 

One model analyzing the eight mathematical skills of the whole student sample and two 

models emphasizing differences in the skill possession between subgroups of students, 

i.e. boys compared to girls and students of the academic school type compared to stu-

dents attending the general school type. 

4.1 Q-matrix 

The first three rows of the original Q-matrix which is underlying the assignment of the 8 

skills 𝛼1, … , 𝛼8 to the items is given in Table 2.  

However, this Q-matrix would lead to non-identifiable skill class distribution, i.e. the mar-

ginal skill probabilities of the operational skills could be estimated independently of the 

content skills (see also Carstensen & Rost, 2007). As a simplified heuristic explanation for 

the non-identifiability of the skill classes in the original Q-matrix one may again consider 

the Likelihood in (1). For every skill class 𝜶𝑙 the second term may also be written as 

𝑃(𝜶𝑙|𝐺𝑖 , 𝛾) = 𝑃(𝛼𝑜𝑐|𝐺𝑖 , 𝛾) =  𝑝(𝛼𝑜|𝐺𝑖) ⋅ 𝑝(𝛼𝑐|𝐺𝑖) ⋅ 𝜌𝑜𝑐 = 𝑝𝑜 ⋅ 𝑝𝑐 ⋅ 𝜌𝑜𝑐 , 

where 𝛼𝑜 represents the operational skill included in skill class 𝜶𝑙 and 𝛼𝑐 represents the 

content skill and 𝜌𝑜𝑐 the correlation between both. Because we only estimated the joint 

probability 𝑃(𝛼𝑜𝑐|𝐺𝑖 , 𝛾), with an appropriate constant 𝑏 it may also hold 

𝑃(𝜶𝑙|𝐺𝑖 , 𝛾) =
1

𝑏
𝑝(𝛼𝑜|𝐺𝑖) ⋅ 𝑏 𝑝(𝛼𝑐|𝐺𝑖) ⋅ 𝜌𝑜𝑐 =  𝑝̃𝑜 ⋅ 𝑝̃𝑐 ⋅ 𝜌𝑜𝑐 =  𝑃(𝜶𝑙|𝐺𝑖 , 𝛾̃) 

Since the first term 𝑃(𝑿𝑖|𝜶𝑙; 𝜹) of the likelihood in (1) depends only on the item parame-

ters 𝜹, the value of the Likelihood does not change even though the skill probabilities 

𝑝(𝛼𝑜|𝐺𝑖) and 𝑝(𝛼𝑐|𝐺𝑖) were redefined. Therefore, not all parameters of the skill class 

distribution can be uniquely identified. 

We therefore apply an alternative matrix 𝐐 (Table 3). In this 16-columns matrix each 

combination between an original operational skill 𝛼𝑜 (i.e., 𝛼1, … , 𝛼4) and an original 

content skill 𝛼𝑐 (i.e., 𝛼5, … , 𝛼8) is established as a combined skill 𝛼𝑜𝛼𝑐. For example, 

items which load on the original combination α1 and α5 have a one in the first column of 

the redefined 16-columns Q-matrix; for further examples compare Tables 2 and 3. 

 

Table 2: 

Original Q-matrix 

 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 

Item 1 1 0 0 0 1 0 0 0 

Item 2 1 0 0 0 0 0 1 0 

Item 3 0 1 0 0 0 0 0 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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Table 3: 

Redefined Q-matrix 𝐐 

 𝛼1𝛼5 𝛼1𝛼6 𝛼1𝛼7 𝛼1𝛼8 𝛼2𝛼5 𝛼2𝛼6 𝛼2𝛼7 𝛼2𝛼8 𝛼3𝛼5 𝛼3𝛼6 𝛼3𝛼7 𝛼3𝛼8 𝛼4𝛼5 𝛼4𝛼6 𝛼4𝛼7 𝛼4𝛼8 

Item 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Item 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Item 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

 

 

Even though an application of the new Q-matrix solves the methodological problem of 

non-identifiability, this application also changes the skills employed in the models. 

While our goal is to emphasize relationships between the students’ manifest response 

behavior and the eight original skills, the models applied in the following yield results in 

the level of the newly defined skills αoαc. Section 4.3 describes how we establish the 

link between the 8 original and the 16 new skills. 

The presented strategy of estimating two skill facets (i.e. operational and content) 

through building all combinations between the two facets is also applied by Carstensen 

and Rost (2007) and recently by Harks, Klieme, Hartig, and Leiss (2014) for multidi-

mensional item response models with continuous variables. Alternatively one may apply 

a hierarchical factor model involving the two facets (Rijmen, 2011), which is a special 

case of a multitrait-multimethod model (Eid, Lischetzke, & Nussbeck, 2006) .  

4.2 Estimation  

In the following, (MG-)DINA models are fitted to the data. This seems to be adequate as 

(a) the redefined Q-matrix 𝐐 holds a simple loading structure (between item dimension-

ality), and (b) the DINA model provides a simple partitioning of students into masters 

and non-masters for each skill. In both multiple group variants, i.e. the gender and the 

school track comparison, the full model would require the estimation of 2 ⋅ (216 − 1) =
 131070 skill class parameters and 2 ⋅ 72 = 144 item parameters. Because the number 

of model parameters in these full models exceeds the number of students (𝐼 = 71464), 

we only estimate 2 ⋅ (1 + 16 + 16 ⋅
(16−1)

2
) = 274 parameters of the skill class probabil-

ity distribution by log-linear smoothed form of the skill space (see Section 2.4). For 

avoiding memory overflow, we also approximated the original 216 skill classes by 

𝐿 = 4000 skill classes determined by a quasi Monte Carlo integration (see also Section 

2.4). All statistical models and DIF tests are estimated with the R (R Core Team, 2014) 

package CDM (George, Robitzsch, Kiefer, Groß, & Ünlü, submitted; Robitzsch, Kiefer, 

George, & Ünlü, 2014). Here, we do not report standard errors for the skill class proba-

bilities (cf. Johnson et al., 2013), and leave their calculation as an aspect of future re-

search.  
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4.3 Summary and overview of measures 

The global mathematics ability (see Figure 1, Level 1) has been split into the eight origi-

nal skills reflecting the underlying competence concept (Figure 1, Level 2). A further 

partition into the sixteen new skills was necessary because of methodological reasons 

(Figure 1, Level 3). As a consequence, the results obtained by the (MG-)CDMs applied 

in the following are located on the level of the sixteen new skills (Level 3).  On this 

level, differences in skill mastery between two groups 𝑔1 and 𝑔2  are reported using the 

appropriate differences Δ𝑃𝛼𝑜𝛼𝑐
= 𝑃(𝛼𝑜𝛼𝑐|𝑔1) −  𝑃(𝛼𝑜𝛼𝑐|𝑔2) = 𝑃1 − 𝑃2 in the skill 

probabilities between the two groups. These differences are transformed into the widely 

accepted Cohen’s 𝑑 effect size (Cohen, 1988) by 

𝑑 =  
Δ𝑃

𝑠∗
  , 

where 𝑠∗ = √ [𝑃1 ⋅ (1 − 𝑃1) + 𝑃2 ⋅ (1 − 𝑃2)]/2 denotes the pooled standard deviation. 

Comparing Cohen’s 𝑑 to Δ𝑃, one can show for medium 𝑃1 ≈ 𝑃2 ≈ .5 that 𝑑 = 2 ⋅ Δ𝑃 

and for extreme 𝑝, say 𝑃1 ≈ 𝑃2 ≈ .1 (or = .9), that 𝑑 = 3.33 ⋅ Δ𝑃. 

Despite the detailedness of the results obtained on Level 3, our main interest is still to 

find relationships between the students’ manifest response behavior, the eight original 

skills, and the two domains (i.e. operation and content) they belong to (Level 2). We 

establish the link between Level 3 and Level 2 with the help of two alternative methods:  

Firstly, in retransforming the sixteen marginal skill probabilities 𝑃(𝛼𝑜𝛼𝑐|𝑔) to the eight 

original skills, we back-reference from Level 3 to Level 2. In detail, we define the skill 

mastery probability of an original skill 𝛼𝑘 for group 𝑔 as the mean of the four combined 

skill mastery probabilities 𝑃(𝛼𝑜𝛼𝑐|𝑔) including 𝛼𝑘. For example for skill 𝛼1 Statistics in 

group 𝑔 it holds 

𝑃(𝛼1|𝑔) =
1

4
[ 𝑃(𝛼1𝛼5|𝑔) + 𝑃(𝛼1𝛼6|𝑔) +  𝑃(𝛼1𝛼7|𝑔) + 𝑃(𝛼1𝛼8|𝑔) ], 

which means that the four content skills 𝛼5 to 𝛼8 are equally weighted. Note that every 

other linear combination of 𝑃(𝛼1𝛼5|𝑔) to 𝑃(𝛼1𝛼8|𝑔) would also be possible. The sum-

mary of skill mastery probabilities we have chosen is compensatory: It allows students to 

compensate a lack in one combined skill mastery probability (say  𝑃(𝛼1𝛼5|𝑔) = .12) 

through a large probability in another combined skill (say 𝑃(𝛼1𝛼8|𝑔) = .78). One could 

also apply a completely compensatory rule, i.e. an original skill 𝛼𝑘 is mastered if at least 

one of the combined skills 𝛼𝑜𝛼𝑐 including 𝛼𝑘 is mastered, or a completely non-

compensatory rule, i.e. an original skill 𝛼𝑘 is mastered if all new skills 𝛼𝑜𝛼𝑐 including 

𝛼𝑘 are mastered. Due to their strictness, completely compensatory or non-compensatory 

rules generally require a strong theoretical fundament. 

Secondly, we analyze the impact of the operational and content domain on the sixteen 

skill mastery probabilities 𝑃(𝛼𝑜𝛼𝑐) and their group-differences Δ𝑃𝛼𝑜𝛼𝑐
. In conducting 

analyses of variance, we can describe, if the variability in the skill mastery probabilities 

(Level 3) is mostly attributed to the operational domain, to the content domain or the  
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Figure 1: 

Relations between levels of analysis 

 

interaction of both domains (Level 2). In the analyses of variance, the operational and 

content domains are treated as factors and the skill mastery probabilities (or their differ-

ences) as dependent variable.  

5 Results 

5.1 Item parameters 

In Figure 1 the item parameters of the DINA model analyzing the eight mathematical 

skills of the whole test population are presented. The plots on the diagonal of Figure 2 

show the distributions of the item p-values (relative frequencies of solving), the guessing 

parameters and the slipping parameters. In the lower panels pairwise scatterplots with 

smoothed regression lines between the three variables are presented. The associated 

correlation coefficients are in the upper panels. 

The item p-values ranged from 0.11 to 0.94 with a mean of 0.48 and a standard deviation 

of 0.24. The guessing (min=0.01, max=0.90, M=0.30, SD=0.23) and slipping parameter  
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Figure 2: 

Item p-values, guessing and slipping parameters for the DINA model on the whole sample: 

Histograms in the diagonal elements, pairwise scatterplots with smoothed regression lines in 

the lower panels and appropriate correlations in the upper panels 

 

(min=0.09, max=0.67, M=0.37, SD=0.15) distributions are both skewed to the left and 

the parameters were highly correlated with 𝜌 = .82. The correlations between the item p-

values and the guessing parameters (𝜌 = .94) as well as between the item p-values and 

the slipping parameters (𝜌 = .96) were also very large. These high correlations were 

expectable given the derived relationships in de la Torre and Karelitz (2009) between the 

item p-values, the guessing and slipping parameters when a uni-dimensional IRT model 

with a continuous latent trait holds.  

The three parameter distributions and correlations between the parameters may be seen 

as approximately representative for the two following multiple group models, even if the 

item p-values in these models of course differ between groups.  

5.2 Skill parameters 

A CDM based on the four operational skills 𝛼1 to 𝛼4 the four content skills 𝛼5 to 𝛼8 for 

the whole sample of 71464 eight-graders yields the following results (cf. Figure 3): In 

mean, the operational and the content skills are both mastered with a probability of . 492. 

With regard to the marginal skill mastery probabilities, the operational skill Calculation  
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Figure 3: 

Representation of skill probabilities for whole sample: Skill probabilities for content skills 

conditioned on operational skills (top), marginal skill mastery probabilities for operational 

(middle) and content skills (bottom). The dotted line in the graphic on the top illustrates the 

mean probability of skill possession 



A. C. George & A. Robitzsch 422 

(𝑃𝛼2
= .536) and the content skill Geometry (𝑃𝛼7

= .505) are mastered most often, 

whereas the operational skill Argumentation (𝑃𝛼4
= .416) and the content skill Variables 

(𝑃𝛼6
= .490) are the most difficult ones. In general, the content skills are mastered ho-

mogeneously, whereas the mastery of the operational skills is more unbalanced.  

In more detail, the mastery of the operational skills shows most variability in the content 

domain of Statistics (cf. Figure 3 top), ranging from 𝑃𝛼4𝛼8
= .370 to 𝑃𝛼3𝛼8

= .596. On 

the contrary, the mastery of the operational skills is, with a range from 𝑃𝛼3𝛼6
= .437 to 

𝑃𝛼2𝛼6
= .525, most homogenous in the content domain of Variables (𝛼6). Concerning the 

operational skills, it can be seen that Representation is mastered most homogeneously 

(𝑃𝛼1𝛼8
= .490 to 𝑃𝛼1𝛼5

= .522) with regard to the content domains, whereas the mastery 

of Interpretation (𝛼3) yields a large range from 𝑃𝛼3𝛼6
= .437 to 𝑃𝛼3𝛼8

= .596, again 

because of being easier in Statistics (𝛼8). 

To analyze the impact of the operational and content domain on the sixteen skill mastery 

probabilities 𝑃(𝛼𝑜𝛼𝑐) we conducted an analysis of variance: Accordingly, most variabil-

ity in the skill probabilities can be attributed to the operational skills (𝜂2 = .542) and the 

interaction of both factors (𝜂2 = .406). The amount of the explained variance of the 

content skills is negligible (𝜂2 = .052). In this line, it can be stated that the mastery of 

the content skills is equally difficult for the students, which may be explained by the 

curriculum giving teachers guidelines about contents of mathematical education in the 

eighth grade. On the contrary, for the operational skills a rough hierarchy of difficulty 

may be derived: Calculation seems to be easier than Representation, followed by Inter-

pretation and Argumentation.   

5.3 Gender comparisons 

Prior to conducting a multiple group model for analyzing the differences in the achieve-

ment of mathematical skills between boys and girls, we tested the 72 items for exhibiting 

gender DIF at the level of skills. In the Wald test 40 out of 72 items turned out to be signif-

icant at the 5 % significance level. As we already had the reasonable suspicion that this 

result is due to the large sample size, we also calculated the UA effect size measure for all 

significant items (cf. Table 4). It was found that 4 items exhibit moderate gender DIF (.059 

< UA < .088) and 2 items show large DIF (UA  > .088). These 6 items are unsystematically 

spread over the different content and operational skills and an educational expert consid-

ered these items relevant for the construct (cf. Roussos & Stout, 1996). Thus, the multiple 

group model for assessing gender differences is conducted with all items. 

With a sample size of 35133 female students (49.1 %) and 36331 male students (50.9 %) 

the multiple group DINA model yields the following results: In mean the difference in 

the possession of mathematical skills between boys and girls is . 029 favoring boys. With 

regard to the marginal skill mastery probabilities (cf. Figure 4), the gender differences in 

the operational skill Calculation (Δ𝑃𝛼2
= .016) and the content skill Variables (Δ𝑃𝛼6

=

−.010) are the smallest, whereas the differences in the operational skill Representation 

(Δ𝑃𝛼1
= .043) and the content skill Statistics (Δ𝑃𝛼8

= .055) are the largest.  
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Table 4: 

Number of items exhibiting no significant gender DIF and UA effect measure for significant 

items 

 Non- 

significant 
Significant 

  negligible 

UA<.059 

moderate 

.059 < UA < .088 

large 

UA >.088 

Gender 32 34 4 2 

School form 25 30 5 10 

 

 

Going into detail, two specific aspects are noticeable: The first thing to be mentioned is 

the content skill Variables (Figure 4, top left): If Variables (𝛼6) is combined with the 

operational skills Calculation (Δ𝑃𝛼2𝛼6
= −.044), Argumentation (Δ𝑃𝛼4𝛼6

= −.037) or 

Representation (Δ𝑃𝛼1𝛼6
= −.007) girls achieve better results than boys. On the contrary, 

if Variables is combined with Interpretation (Δ𝑃𝛼3𝛼6
= .049) boys performed better. 

Second, as counterpart to the content skill Variables, in the content skill Statistics (𝛼8) 

boys outperformed girls, independently of the operational skill. All of these differences 

are ranging from Δ𝑃𝛼3𝛼8
= .043 to Δ𝑃𝛼4𝛼8

= .079 and thus are larger than the mean 

difference between boys and girls (0.029). 

Apart from that, the differences exhibit a relatively wide range from Δ𝑃𝛼2𝛼6
= −.044 to 

Δ𝑃𝛼1𝛼5
= .089 and seem to show no systematic effect for neither content nor operational 

skills. This finding is also confirmed by the analysis of variance, according to which most 

variability in the skill probabilities can be attributed to the interaction between operational 

and content skills (𝜂2 = .773). In contrast, the amount of the explained variance of only 

the content skills (𝜂2 = .082) or of only the operational skills (𝜂2 = .143) is very small. 

In summary: the size of the gender differences seems to be neither explainable only by 

operational nor only by content skills, but only by the interaction between both skill 

domains. Noticeable is the girls’ strength in Variables: In three out of four combinations 

of Variables with one content skill girls have slight advantages. We also found that girls 

possess Calculation to approximately the same extent than boys (cf. also Budde, 2009).  

5.4 School type comparisons 

Again, prior to conducting the multiple group model for analyzing differences between 

students in academic and general school types, we tested the 𝐽 = 72 items for exhibiting 

school form DIF at the level of skills. The Wald test found 45 to be significant (cf. Table 

4), out of which 30 items show negligible school form DIF (UA < .059), 5 items exhibit 

moderate (.059 < UA < .088) and 10 items large DIF (UA > .088). An educational expert 

of mathematics again analyzed the latter 15 items concerning the involved content and  
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Figure 4:  

Representation of differences in skill probabilities between boys and girls: Differences Δ𝑃 of 

skill probabilities for content skills conditioned on operational skills (top), differences of 

marginal skill mastery probabilities for operational (middle) and content skills (bottom). The 

dotted line in the graphic on the top illustrates the mean difference in skill possession 
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Figure 5: 

Representation of differences in skill probabilities between academic and general school type: 

Differences Δ𝑃 of skill probabilities for content skills conditioned on operational skills (top), 

differences of marginal skill mastery probabilities for operational (middle) and content skills 

(bottom). The dotted line in the top graphic illustrates the mean difference in skill possession 
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operational skills and concerning possible construct irrelevant DIF. Because no conspic-

uous or common characteristics of the items were found, the multiple group model for 

school form differences is also conducted with all items.  

On average, the difference in the possession of mathematical skills between the 23491 

students in the academic school type (33 %) and the 47973 students (67 %) in the general 

school type is . 416 favoring the academic type. This difference is considerably larger 

than the mean difference of . 029 between boys and girls. The differences between stu-

dents of the academic and the general school type in the possession of the operational 

skills are rather homogeneous (cf. Figure 5 top right), ranging from a difference of 

Δ𝑃𝛼2
= .405 in Calculation to Δ𝑃𝛼4

= .432 in Argumentation. On the contrary, in the 

differences of the content skill probabilities a larger variance can be seen (cf. Figure 5 

bottom left): Whereas the difference in the mastery of Geometry is with a value of 

Δ𝑃𝛼7
= .375 smaller than the mean difference between academic and the general school 

type, the difference in Variables Δ𝑃𝛼6
= .447 is larger than the mean difference. 

Closer inspection shows a rough hierarchy in the possession of the content skills condi-

tional on the operational skills (cf. Figure 5, top left): Whereas Variables seems to exhib-

it a large school type difference (independently of the combined operational skill), the 

differences in the skill mastery probabilities of the content skill Geometry (all four com-

binations of operational skills) are smaller than the mean difference between the school 

types. On the contrary, the size of the differences in each of the operational skills (cf. 

Figure 5 bottom right) varies unsystematically around the mean difference. The analysis 

of variance is in line with this result, as most of the variance in the skill probabilities is 

explained by the content skills (𝜂2 = .545). The remaining part of the variance is almost 

explained by the interaction between operational and content skills (𝜂2 = .378), whereas 

the part explained by the operational skills (𝜂2 = .007) is negligible.  

5.5 Summary 

In transforming the Δ𝑃 values to Cohen’s 𝑑 effect size (cf. Table 5), one determines 

small (𝑑 values between −.02 and . 11) differences between genders, but quite large (𝑑 

values between . 82  and 1.01) differences between school types. The maximal gender 

difference in skill possession is observed in the content skill Statistics (𝑑 = .11), whereas 

the maximal difference for the comparison of school types is observed in the content 

skill Variables (𝑑 = 1.01). The differences between the skill probabilities show more 

variability in the comparison of school types than the differences in the gender compari-

son. A large part of this variability can by ascribed to the content skills. 
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6 Discussion 

In the present article we proposed some methods for applying multiple group CDMs to 

large scale data and illustrated these by applying multiple group DINA models to the 

Austrian educational standards test in mathematics 2012 (71464 students, 72 items, 16 

skills).  

1) First, because of problems in identifying all 2 ⋅ (216 − 1) =  131070 skill class 

parameters, we used a log-linear approach for modeling the skill space (Xu & von 

Davier, 2008b) and thus reduced the number of skill class parameters to 2 ⋅ (1 +
16 + 16 ⋅ (16 − 1)/2) = 274. Nonetheless, even this representation of the appro-

priate high-dimensional posterior distributions did not prevent from memory over-

flow problems in the R software when applying the multiple group model to large 

scale assessment data. Therefore, we proposed to approximate the original  216 =
65536 skill classes by 𝐿 = 4000 skill classes determined by a quasi Monte Carlo 

integration (Pan & Thompson, 2007).  

2) Second, for applying multiple group CDMs, one has to assure the assumption of 

item parameter invariance between the groups, i.e. the items must not exhibit DIF 

on the level of skills. In large sample sizes, the appropriate Wald statistic for detect-

ing DIF (de la Torre & Lee, 2013) may become significant even for very small DIF 

effects. Thus, we introduced a DIF effect size measure which is based on the un-

signed area originally introduced by Raju (1990).  

 

Because of methodological reasons (non-identifiability of skill classes) the Q-matrix with 

originally defined 8 mathematical skills in two domains (operation and content), had to be 

changed to a redefined Q-matrix incorporating all 16 combinations between the 4 opera-

tional and the four content skills (cf. Table 3). As a side effect, this step changes the  

 

 

Table 5:  

Skill mastery probabilities for whole population (𝑃M8), differences in skill probabilities for 

gender (𝛥𝑃gender) and school track model (𝛥𝑃school) with associated Cohen's d values 

(𝑑gender and 𝑑school). 

  PM8 ΔPgender 𝑑gender ΔPschool 𝑑school 

Operational 

Skills 

Representation (𝛼1) .507 .043 .09 .414 .92 

Calculation (𝛼2) .536 .016 .03 .405 .91 

Interpretation (𝛼3) .508 .035 .07 .417 .93 

Argumentation (𝛼4) .416 .023 .05 .432 .96 

Content 

Skills 

Numbers (𝛼5) .470 .047 .10 .429 .96 

Variables (𝛼6) .490 -.010 -.02 .447 1.01 

Geometry (𝛼7) .505 .026 .05 .375 .82 

Statistics (𝛼8) .503 .055 .11 .416 .93 
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skills employed in conducted CDM models (cf. Figure 1). For establishing the link be-

tween the original 8 skills and the new 16 skills we  

3) conducted analyses of variance to analyze the impact of the operational and content 

domain on the 16 skill mastery probabilities. 

4) Furthermore, we retransformed the sixteen marginal skill probabilities to skill 

mastery probabilities of the eight original skills. For reporting the differences in skill 

mastery between the groups (on the level of the 8 and the 16 skills) we used 

differences in skill probabilities, which are afterwards transformed to the widely 

used Cohen’s 𝑑 effect size. 

 

Apart from these methodological aspects, the chosen example of the Austrian education-

al standards test also showed an interesting substantial finding: Considering the  

MG-CDM for gender comparison we found neither the operational nor the content skills 

to sufficiently explain the differences between boys and girls, but only the interaction 

between both (the 16 skills). If we trace back the results in skill possession of the 16 

skills to the original eight skills, we notice that in general boys exhibit higher skill mas-

tery probabilities. However, two skills, Variables (𝛼6) and Calculation (𝛼2), formed an 

exception: Their effect size measures were close to zero (thus indicating no gender dif-

ference), in case of Variables (𝛼6) even of opposite sign. One could, therefore, argue that 

girls possess these two skills to the same extent as boys, or, as regards Variables, even to 

a larger extent. Hence, gender differences manifest themselves on the skill level rather 

than on the global mathematics domain. This differentiation may explain the diverging 

results of the PISA 2009 (target population: fifteen year old students in OECD countries) 

and the TIMSS 2003 (target population: eight graders in OECD countries) studies. While 

the former obtained an effect size of 𝑑 = .12 (favoring boys overall mathematical capa-

bilities), the latter failed to detect such differences at all (𝑑 = .00). But taking the items’ 

content into account characteristic differences appear: The TIMSS items focus primarily 

on Calculation, while OECD items require the skills considered here to an equal extent 

(cf. Else-Quest, Hyde, & Linn, 2010). Based on the results of our study, it is little sur-

prising that TIMSS found no gender differences in mathematics, because of testing pri-

marily the skill we found of equal difficulty for boys and girls. However, the magnitude 

of the differences between groups and the interactions between skills needs further inves-

tigation, since no measures of standard error of these estimates were presented. Calculat-

ing standard errors for CDMs applied to data based on complex sample designs is an 

ongoing research topic. One pertinent approach is the application of jackknife methods 

for computing the standard errors (Johnson et al., 2013).  

Moreover, the skill based approach of CDMs allows for a deeper understanding of the 

Austrian school type differences: an analysis of variance showed that the school type 

differences can be explained to an large extent by the differences in the possession of the 

content skills. Whereas all differences in the possession of the operational skills approx-

imately have the size of the mean difference in skill possession between the two school 

types, in the Content skills strong advantages for the academic school type could be 

identified in Variables (𝛼6). Particularly with regard to both school types being bound to 
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the same curriculum, the empirical findings about the school type differences open the 

expected and demanded possibility for  a deeper analysis of learning cultures in the dif-

ferent Austrian school types (cf. also Eder & Mayr, 2001). 

The present article has shown some approaches for handling typical problems which 

occur when applying CDMs to large scale data. However, we have to acknowledge that 

the results of the multiple group DINA models for the educational standards test may be 

limited in their explanatory power because they depend on the characteristics of the item 

pool. For example items requesting Interpretation (𝛼3) in Statistics (𝛼7) only require to 

“read” diagrams and thus are easier than interpreting dependencies among variables 

(𝛼3𝛼6).  

We are aware that in our modelling approach, no uncertainty in item allocation to skill 

dimensions (i.e. in the Q-matrix) is assumed. However, especially in retrofitting CDMs 

to existing data, different experts may propose different Q-matrices. The uncertainty in 

the Q-matrix entries can be accommodated by specifying appropriate prior distributions 

for these entries (DeCarlo, 2012) and may be evaluated by mixture cognitive diagnosis 

models (de la Torre & Douglas, 2008; Huo & de la Torre, 2014).  

Furthermore, it should be empirically tested if the 16-dimensional skill representation 

(two facets of four dimensions of operational skills and four dimensions of content skills) 

proposed in this article may be reduced to a lower dimensional and hence more parsimo-

nious CDM. A possible alternative is the higher order DINA model (de la Torre & 

Douglas, 2004), which includes eight (four operational plus four content skills) dichoto-

mous skills loading on a higher order continuous ability. Combining both variants and 

proceeding like in two-tier models (Cai, 2010), one could sum up the two skill facets as 

two groups of operational and content skills. In such an approach, each of the content 

skills is assumed to be uncorrelated with each of the operational skills.  

Finally, the proposed multiple group CDM could also be seen as a model-based classifi-

cation approach. By pursuing this direction, the classification into mastered and non-

mastered skills depends on the estimated guessing and slipping probabilities, which are 

interpreted as classification error probabilities. These classification errors could also be 

(implicitly) fixed in classification models based on cluster analysis (Chiu, Douglas, & Li, 

2009) by specifying appropriate optimization functions. Consequently, the mastery of 

skills can be defined in a more formative and normative way and does not involve the 

CDM’s inherent assumption of local independence; see also the “deterministic” classifi-

cation approach of Chiu and Douglas (2013). 
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