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A simulation study of person-fit in the 
Rasch model 

Richard Artner1 

Abstract 

The validation of individual test scores in the Rasch model (1-PL model) is of primary importance, 
but the decision which person-fit index to choose is still not sufficiently answered. In this work, a 
simulation study was conducted in order to compare five well known person-fit indices in terms of 
specificity and sensitivity, under different testing conditions. Furthermore, this study analyzed the 
decrease in specificity of Andersen´s Likelihood-Ratio test in case of person-misfit, using the 
median of the raw score as an internal criterion, as well as the positive effect of removing suspi-
cious respondents with the index C*. The three non-parametric indices Ht, C* and U3 performed 
slightly better than the parametric indices OUTFIT and INFIT. All indices performed better with a 
higher number of respondents and a higher number of items. Ht, OUTFIT, and INFIT showed huge 
deviations between nominal and actual specificity levels. The simulation revealed that person-
misfit has a huge negative impact on the specificity of Andersen´s Likelihood-Ratio test. However, 
the removal of suspicious respondents with C* worked quite well and the nominal specificity can 
be almost respected if the specificity level of C* is set to 0.95. 
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Introduction 

Which index is best to analyze potential person-misfit (e.g. cheating, guessing, careless 
responding, distorting behavior, fatigue) in the item response theory? The answer is still 
not entirely clear despite the rich body of literature in this area. The two main issues 
regarding past research are the method of comparison between different indices and the 
way person-misfit was operationalized. This simulation study has the purpose to shed 
(some more) light on the detection skills of certain indices for person-misfit in the di-
chotomous Rasch model. It takes a close look at the influence of certain parameters (e.g. 
number of items2) and the differences between nominal and actual type-I-risks. 

How important is the detection of person-misfit if the Rasch homogeneity of certain 
items is tested? How strong is the support a person-fit index can offer in that case? Up to 
this point no study can answer this issue. 

The Rasch model 

The Rasch model (also known as one parametric logistic model) is the most prominent 
model in the item response theory (IRT). The basic assumption of IRT is that it is not 
possible to directly observe traits of interest. Therefore these traits are called latent. 
However, it is possible to infer from discrete responses of a person, particularly the an-
swers given on a test, the individual characteristic of the latent ability trait of interest. 
This work analyses person-fit in the context of the dichotomous Rasch model, where for 
each item a certain response (e.g. “The correct one”) is quantified with 1 and all other 
possible responses are quantified with 03. In this dichotomous Rasch model the response 
each person (respondent) gives to each individual item is a Bernoulli random variable (1 
= correct response, 0 = incorrect response). Equation (1) shows the well-known probabil-
ity function of this model which depends on the latent ability trait and the item difficulty 
parameter. 
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Xni is the response (hereinafter also referred to as “answers”) that respondent n gives to 
item i, ξn the latent ability trait of respondent n, and σI the item difficulty parameter of 
item i. 

                                                                                                                         
2
 In this work real life concepts like objects and phenomena (e.g. respondent, test, item, cheating) are 

used as a placeholder for the underlying statistical and mathematical operationalization of the certain real 
life concept which ultimately is just a certain sequence of binary code. The context should always make it 
clear if a word is used in the common sense or in the specific meaning it has in this simulation study. 
3
 In real life it does occur that no response is given to a certain item and therefore a third possible value 

beside zero and one, indicating a missing response, is of need (e.g. -99). However, missing values cannot 
occur in this simulation study. 
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The probability that respondent n answers item i correctly can be computed by setting xni 
to 1 in (1) and is equal to 1 minus the probability that respondent n answers item i incor-
rectly, which in turn can be computed by setting xni to 0. Note that the probability is 
smaller than 0.5 if the exponent of the exponential function is smaller than 0 and that 
centralizing (i.e. adding or subtracting a constant such that the expected value of the 
parameter becomes 0.) both parameters facilitates their interpretation. 

The Rasch model has important assumptions/properties. If all items measure the mani-
festation of the same latent trait (=person parameter) and if the probability of a correct 
response only depends on the latent trait beside the item difficulty (=item parameter), we 
know that the Rasch model holds and vice versa. That means that two respondents with 
the same latent trait have the same probability for a correct response on each item. This 
property is often called unidimensionality. Furthermore, we have the so-called local 
stochastic independence for items and respondents. The former is an independence of the 
answers a respondent gives on two items if conditioned on the person parameter and the 
item parameters. The latter is an independence of the answers of two respondents on a 
certain item if conditioned on the item parameter as well as on the two person parame-
ters. It is well known that in case of local stochastic independence the raw score rn (the 
number of correct responses of respondent n) is a sufficient statistic for the person pa-
rameter, and that pi (The number of respondents with correct responses on item i) is a 
sufficient statistic for the item difficulty parameter4. Therefore, two respondents have the 
same person parameter estimate if they both answered k out of I items correctly, even 
though they answered different items correctly.  

A very important property of a test where the Rasch model holds is the so-called specific 
objectivity. This property says that the ranking order of the items is the same for each 
possible population subgroup when ranked according to their difficulty (e.g. item j is 
harder than item k for every respondent even though both are easy for someone with a 
high person parameter and both are hard for someone with a low person parameter.) 
Moreover, the relative difference in difficulty between two items is the same in each 
possible population subgroup. If specific objectivity does not hold for an item, we have a 
so-called differential item functioning (DIF), that is to say, a different relative difficulty 
of the item in two subgroups. If no DIF exists for any of the items, a comparison of the 
person parameter estimations of two respondents is valid, even though they solved dif-
ferent items or even worked on different items. They must not even answer the same 
number of items. Furthermore, the difficulty parameters of different items can be com-
pared, even though they were estimated in a different sample, hence, with different re-
spondents answering them. The estimation of difficulty and person parameters is there-
fore sample-independent. A more detailed analysis and proofs of these properties can be 
found in Fischer´s work (Fischer, 1974). 

The Rasch model is suited for a test with I items if equation (1) holds for each and every 
item, which can only be the case if the respondents try their best to solve each item. The 

                                                                                                                         
4
 A statistic is sufficient in respect to a certain parameter if it contains all important information for a 

parameter estimation. 
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goodness-of-fit for individual items is generally called item fit. To test whether the items 
of a test conform the Rasch model or not, Andersen´s Likelihood-Ratio (LR) test for two 
or more groups is often used (Andersen, 1973). Andersen´s LR test works in the follow-
ing way: The sample is split into groups according to an external criterion (e.g. gender) 
or an internal criterion (e.g. the raw score of each person), and it is investigated how 
much the Likelihood of the data can be enlarged if different item difficulty parameters in 
the subgroups are allowed. If the assumption of specific objectivity is violated, this im-
provement will be higher as in the case of no DIF. A more technical and detailed descrip-
tion of Andersen´s LR test is omitted in this work and can, for example, be found in 
Andersen´s paper (Andersen, 1973). 

Person-fit 

If the behavior of a respondent violates the assumption, that only the latent variable of 
interest systematically influences the probability of correct responses to the items, we 
speak of person-misfit. Types of person-misfit, are among others, cheating, distorting, 
inattentive behavior and careless behavior. In order to quantify, specify and measure the 
type and magnitude of person-misfit, the Guttman scale, named after the Israeli mathe-
matician Louis Guttman, is of great help (Mokken, 1971).  

Instead of a continuous probabilistic model, let us now consider a simple deterministic 
approach: A respondent answers an item correctly if his person parameter is greater or 
equal to a certain value, and answers it incorrectly if it is smaller. If this deterministic 
model holds in a test with I items, it is certain that a respondent with a raw score of k 
answered the k easiest items correct and the I-k hardest items wrong. Let us now - with-
out any loss of generality - rank the items according to their difficulty parameters, with 
the first item being the easiest. Given a raw score of k, the perfect Guttman scale then 
corresponds to a correct response to the items 1 to k and an incorrect response to the 
items k+1 to I. If a pool of I items follows the perfect Guttman scale and we know that a 
respondent answered item k wrong, we can therefore conclude that he or she also an-
swered all items k+i wrong with i being an integer between 1 and I-k. 

For a four item test we have 2^4=16 possible response vectors: 

0 0 0 0*, 0 0 0 1°, 0 0 1 0, 0 0 1 1°, 0 1 0 0, 0 1 0 1, 0 1 1 0, 0 1 1 1°,   
1 0 0 0*, 1 0 0 1, 1 0 1 0, 1 0 1 1, 1 1 0 0*, 1 1 0 1, 1 1 1 0*, 1 1 1 1* 

Five of these 16 vectors (labeled with *) follow the perfect Guttman scale. Another three 
(labeled with °) follow the reversed Guttman scale. 

In the case of the Rasch model, we obviously cannot expect the response vectors a re-
spondent to always correspond with the perfect Guttman scale. That being said, given a 
raw score of k, the perfect Guttman scale is the most likely response vector. Let us, for 
example, take a Rasch conform test consisting of ten items, all being different in difficul-
ty, and a respondent with a raw score of 6. 
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Here are six possible response vectors: 

V1 = 1 1 1 1 1 1 0 0 0 0* V2 = 1 1 1 1 1 0 1 0 0 0 V3 = 1 1 1 1 0 0 1 1 0 0  
V4 = 1 1 1 0 1 0 1 0 1 0 V5 = 1 0 0 1 1 1 0 0 1 1 V6 = 0 0 0 0 1 1 1 1 1 1° 

With the help of equation (1) and the local stochastic independence property, it is easy to 
verify that: P(V1) > P(V2) > P(V3) > P(V4) > P(V5) > P(V6), with P standing for prob-
ability. 

Without any loss of generality it, therefore, can be concluded that in the Rasch model, 
“strong” deviations from the perfect Guttman scale are unlikely. If we want to test if the 
Rasch model holds, we can therefore look at the response vectors of the respondents and 
compare them to the perfect Guttman scale. The greater the difference, the unliklier the 
results. Strong deviations from the perfect Guttman scale are labeled as a model underfit, 
very small deviations are labeled as a model overfit. If the term person-misfit appears in 
some scientific work, the researcher(s) most likely address a model underfit. However, in 
this work overfit and underfit are both seen as a potential model misfit and the context 
should always make it clear if the former or the latter is addressed.  

C* and U3 (non-parametric) 

C* and U3 are Guttman error based non-parametric person-fit indices. Non-parametric 
means that no model parameters are estimated (in our case: item difficulty and person 
parameter). The modified caution index (C*) was developed by Harnisch and Linn 
(Harnisch and Linn, 1981) by modifying Sato´s caution index (Sato, 1975) in order to 
limit the possible index values to real numbers on the interval [0, 1]. U3 was developed 
by Van der Flier (Flier, 1982). C* and U3 belong to the family of group-based person-fit 
statistics (Meijer & Sijtsma, 2001). All indices in this family satisfy the general equation 
(2), for some non-negative weight wi. To measure the magnitude of deviation from the 
perfect Guttman scale the items must be sorted ascending according to their difficulty. In 
the case of C* and U3 the items are ordered according to their proportion-correct score 
(pi/N) with pi being the number of respondents which answered item i correctly and N 
being the number of respondents. It is easy to see that the numerator cannot be bigger 
than the denominator in (2) if the weights (wi) are a monotonic increasing function of 
pi/N. C* uses pi/N as the weight (equation (3)). U3 uses a more complicated weight 
which includes the natural logarithm (equation (4)). 

 
,1 1

1 1

*
 

n

n

n

r I

i n i ii i
n r I

i ii i I r

w X w
General

w w
= =

= = − +

−
=

−
 
 

 (2) 

 
,1 1*

1 1

*
 

n

n

n

r Ii i
n ii i

n
r Ii i
i i I r

p p
X

N NC
p p

N N

= =

= = − +

−
=

−

 

 
 (3) 



R. Artner 536

 

,1 1

1 1

ln *ln
1 1

3  

ln ln
1 1

n

n

n

i i
r I

n ii i
i i

n
i i

r I

i i I r
i i

p p

N NX
p p

N NU
p p

N N
p p

N N

= =

= = − +

   
   

−   
   − −   
   =
   
   

−   
   − −   
   

 

 

 (4) 

C* and U3 are sensitive to Guttman errors because the numerator in (3) as well as in (4) 
gets smaller each time an easier item i is answered wrong instead of a more difficult item 
j (pi > pj, hence, wi > wj). Both indices take values between 0 and 1. 0, in case of the 
perfect Guttman scale, and 1, in case of the reversed Guttman scale. The higher the value 
of C* and U3, the stronger the model underfit. The proportion-correct score for item i 
(pi/N) acts as an estimator for the probability that a random person from the population 
(for which the Rasch model holds) gives a correct response on item i. If person-misfit in 
the sample of N respondents systematically distort the estimate pi/N (e.g. all N respond-
ents cheat on a difficult item k and the estimate of pk/N is one) detecting person-misfit 
gets harder or even becomes impossible. One way to address this problem, particularly in 
cases where N is small compared to the population size, is to replace the proportion-
correct scores with other estimators (e.g. the proportion-correct scores from another 
(bigger) sample from the past). In particular, the proportion-correct score is not adequate 
if some respondents did not answer some of the items as, for instance, in adaptive test 
settings. 

Ht (non-parametric) 

Ht, another non-parametric person-fit index, was proposed by Sijtsma (1986). Just like 
C* and U3 this index is sensitive to Guttman errors. Let us once again rank respondents 
(increasingly) according to their raw score rn. Equation (5) then gives the index value for 
person n, with rn,m being the sum of all items where person n and person m both an-
swered correctly. 
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Ht can take values between minus infinity and 1, although negative values can only be 
obtained by an absurdly high level of person underfit since the denominator is always 
non-negative and the numerator is the sum of the sample covariances of the responses 
person n (fixed) and person m (m ≠ n) give on a random item of the test. The higher the 
value of Ht, the stronger the model overfit. The value 1 is only reached if person n an-
swered all items correctly that at least one person with a lower raw score has answered 
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correctly, and all items incorrectly that at least one person with a higher raw score an-
swered incorrectly. Since Ht evaluates person-fit by comparing the response vectors of 
the respondents, a high proportion of person-misfit in the sample is expected to be prob-
lematic and in contrast to C* and U3 it is not possible to modify this index to become 
more “sample-independent”. 

OUTFIT and INFIT (parametric) 

OUTFIT and INFIT are parametric indices, since they involve an estimation of the item 
difficulty parameters and the person ability parameters. Both indices are based on the dif-
ferences between the observed and the expected responses, the so-called residuals. Equa-
tion (6) shows how the standardized residual for respondent n and item i is computed. 
Based on these residuals Wright and Masters proposed the OUTFIT mean squared error 
(equation (7)) as well as the INFIT mean squared error (equation (8)) (Wright & Masters, 
1990). The former is the average of the sum of the squared residuals (i. e. unweighted), 
while the latter weights the sum of the squared residuals by the variance of the response. 
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The index values from the equations (7) and (8) can be standardized with the Wilson-
Hilferty transformation. After transformation, OUTFIT and INFIT are asymptotically 
Student t-distributed with infinite degrees of freedom (i.e. standard normal distributed), 
if the Rasch model holds. A detailed description of this transformation as well as the 
computation of the expected values and the variances are given in Wright and Masters 
work (Wright & Masters, 1990). 

High (positive) values of OUTFIT and INFIT correspond to a model underfit, low (nega-
tive) values correspond to a model overfit. 

Method 

Simulation design 

For the simulation, R was chosen as the programming language (R Core Team, 2014). 
Four non-basic R packages were used in this simulation: PerFit (Tendeiro, 2015), eRm 
(Mair, Hatzinger & Maier, 2015), pROC (Robin et. al., 2011) and Truncated normal 
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distribution (Trautmann et al., 2014). The complete R code including all non-basic func-
tions, the simulation design, the code for the analysis (tables and graphs) and the exact 
execution of the simulation are available from the author upon request. Furthermore, 
exact reproducibility was established since binary matrices were generated and stored in 
a first step, and loaded and analyzed later on. 

The item difficulty parameters were chosen non-randomly and are equally spaced over 
the interval [-2.5, 2.5] in order to model a non-adaptive performance test with increasing 
item difficulty. For 25 items this corresponds to the following difficulties (rounded to 
three digits): [-2.500, -2.292, -2.083, -1.875, -1.667, -1.458, -1.250, -1.042, -0.083, -
0.625, -0.417, -0.208, 0, 0.208, 0.417, 0.625, 0.083, 1.042, 1.250, 1.458, 1.667, 1.875, 
2.083, 2.292, 2.500]. 

The latent ability of respondents was chosen randomly according to a truncated normal 
distribution over the interval [-3, 3] with a mean of 0 and a standard deviation of 1.5. 

Four parameters were varied to produce different scenarios. The number of items (I) was 
either 25 or 50, the number of respondents (N) was either 100 or 500 and the proportion 
of respondents who responded aberrantly (NAR) was either 0.05 or 0.3. Furthermore 
eight different types of aberrant response behaviors were generated. The primary focus in 
developing those types of person-misfit was to model real-life misfit as realistically as 
possible. Guessing, Cheating 1, Cheating 2, Careless produce a model underfit. Dis-
torting 1 and Distorting 2 produce a model overfit. Fatigue 1 and Fatigue 2 produce 
small model deviations which are neither exclusively an overfit nor an underfit. There-
fore they cannot be detected with Guttman error sensitive indices.  

Aberrant response scenarios were generated in the following way: In a first step, for each 
respondent and each item the probability of a correct response was computed according 
to equation (1) by plugging in the corresponding person ability and item difficulty. In a 
second step, respondents were chosen randomly (not necessarily with equal probability) 
and the respective probability of a correct response to a certain item was altered accord-
ing to certain rules specified for each type of aberrant response. More technically: The 
selection procedure followed a random sample without replacement with the size as a 
product of the number of respondents and the portion of aberrant response (e.g. 
500*0.3=150) as well as certain ability depending weights for the respondents. In the 
final step, response vectors were generated with the realization of [number of items] 
independent Bernoulli distributed random variables with the probability of a respondent 
giving a correct response generated in the first two steps. 

Types of person-misfit 

Guessing: There is no reason to suspect that the ability of a person has a high impact on 
whether he or she guesses, in case of an item where the answer is not known by him or 
her, or not. For this reason, respondents were randomly chosen with equal probability. 
The probabilities for responding correctly were altered in a way that models a multiple 
choice test which has exactly five wrong and one right answer to each item, thus, proba-
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bilities less than 1/6 were replaced by 1/6. Therefore, even respondents with a low ability 
parameter had a one in six chance to answer the most difficult items right. 

Cheating 1: If a person has a low ability he or she has in general more to gain from 
cheating as someone with a higher ability. Hence, in this scenario, the lower the ability 
of a respondent, the higher the probability of getting chosen as a cheater. More specifi-
cally, the probability of getting chosen decreased in a linear fashion from the respondent 
with the lowest ability to the respondent with the highest ability. In case of N=100, the 
respondent with the lowest ability parameter was chosen with a probability of 
100/(101*100/2), the respondent with the second lowest ability parameter was chosen 
with a probability of 99/(101*100/2), and the respondent with the highest ability parame-
ter was chosen with a probability of 1/(101*100/2). In case of N=500, the respective 
probabilities were 500/(501*500/2), 499/(501*500/2) and 1/(501*500/2). 

In past studies, cheating behavior was often modeled by a deterministic imputation of 
correct responses to some items (e.g. Karabatsos, 2003). Since the act of cheating (e.g. 
looking stuff up in the internet, copying from the seatmate) seldom guarantees to pro-
duce the right answer to an item, a probabilistic model was chosen. For each cheating 
respondent and each item, probabilities were generated according to a truncated normal 
distribution on the interval [0.6, 1] with a mean of 0.8 and a standard deviation of 0.1. 
Whenever these probabilities were greater than their respective probabilities computed 
according to the Rasch model, the latter were replaced by the former. This procedure of 
choosing the maximum of those two probabilities is necessary to realistically model real 
life cheating behavior since we can assume that no one cheats on items for which he or 
she knows the answer. 

Cheating 2: This scenario differed from Cheating 1 only in the parameters of the trun-
cated normal distribution. The interval was [0.8, 1], the mean 0.9 and the standard devia-
tion 0.1. The act of cheating therefore increased the probability of a correct response 
even stronger as in Cheating 1.  

Careless: The Rasch model has the underlying assumption that a person tries his or her 
best to perform as well as possible on the test and, therefore, careless behavior is to be 
counted as person-misfit. Sloppy calculations on a power achievement test for math 
skills, for instance, lead to an underestimation of the latent math trait of interest. Just like 
in Guessing there is good reason to assume that careless behavior is fairly independent of 
the latent ability5. Hence, respondents were chosen randomly with equal probability. The 
probabilities for correctly responding to the items were then reduced by 20% (i.e. each 
probability was multiplied by 0.8). 

Distorting 1: If someone actively tries to distort the estimation of the latent ability 
downward without drawing suspicions, he or she most likely gives correct answers to the 
easiest items and intentionally wrong answers to items with medium difficulty. Here, 
difficulty is meant as a subjective measure for that particular person. Mathematically, 

                                                                                                                         
5
 If the latent ability trait of interest happens to be “accuracy”, “preciseness”, “exactness” or of that sort 

this assumption is obviously violated.  
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this subjective estimation of an item’s difficulty is the difference between the latent trait 
of the person and the item difficulty parameter.  

Since respondents with a high ability have more room to distort the estimation of their 
ability downwards, the probability of getting chosen was modeled in an increasing linear 
fashion from the person with the lowest ability to the person with the highest ability. In 
case of N=100 the respondent with the lowest ability parameter was chosen with a prob-
ability of 1/(101*100/2), the respondent with the second lowest ability parameter was 
chosen with a probability of 2/(101*100/2) and the respondent with the highest ability 
parameter was chosen with a probability of 100/(101*100/2). 

For each distorting respondent, the probability of a correct response to an item was 
changed to 0 if the difference of the respondent’s ability and the item difficulty was 
lower than 1.1. This models a person who actively answers all items wrong, where his or 
her probability of correctly responding is lower than 75%6. The response vectors of those 
respondents tend towards the perfect Guttman scale since the easiest items are answered 
correctly with a high probability, medium and hard items are answered wrong with (al-
most) certainty (Remark: In case of a multiple choice test, a person may not be able to 
answer a difficult item wrong with certainty if he or she does not know the answer to it.). 
In any case, it is safe to assume that the probability of a correct response is lower than 
predicted according to the Rasch model if the person tries to answer the item wrong. This 
aberrant response behavior therefore produces a model overfit. 

Distorting 2: The only difference to Distorting 1 was that the cut off value for the differ-
ence of the respondent’s ability and the item difficulty was 1.74 instead of 1.1. This 
mimics a person who actively answers all items wrong, where his or her probability of 
correctly responding is lower as 85%7. The magnitude of distortion is therefore stronger 
as in Distorting 1. 

Fatigue 1: Everyone can experience fatigue and no relation between ability and the 
probability as well as the magnitude of fatigue is assumed in this scenario. Therefore, 
every respondent had the same probability to get chosen as someone experiencing fa-
tigue. For each of these [N*NAR] respondents it was randomly chosen at which item 
fatigue set in. The start of the fatigue was not before 50% and not after 80% of the items 
were completed. All items which fulfilled these requirement had equal probabilities of 
getting selected as the starting point of fatigue (e.g. For I=25 that meant that the items 
12, 13, 14, 15, 16, 17, 18, 19, 20 all had a 1/9 probability of getting selected as the start-
ing point).  

In this scenario, a sudden performance loss due to fatigue was modeled. The magnitude 
of the performance loss was a 30% decrease of the probability of a correct response, and 
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it stayed constant from the starting point (item) to the end of the test. That means that the 
probabilities computed under the Rasch model were multiplied by 0.7. 

Fatigue 2: The selection of respondents experiencing fatigue and the starting point of the 
fatigue were chosen in exactly the same way as in Fatigue 1. Their difference lies in the 
effect of fatigue on the performance. Instead of a sudden strong performance loss of 30% 
which stays constant until the end of the test, a smooth decrease of performance was 
modeled. The progression of fatigue was modeled in a linear fashion. At the starting item 
the performance loss was 10%, and at the last item it was 50%. For I=25 that meant that 
the decrease of the probability of solving items 12, 13, 14, 15, 16, 17, 18, 19, 20 was 10, 
15, 20, 25, 30, 35, 40, 45, 50 percent respectively, if the twelfth item was chosen as a 
starting point. 

Methods of comparison 

Which test is better (in a statistical sense)? This question is, in general, not trivial to 
answer. The classical Neyman-Pearson test concept searches for the most powerful test 
for a chosen specificity.  

Example 1: If test A detects on average 87% of the cases for which the null hypothesis 
(H0) is wrong (sensitivity = 0.87) and test B only 82% (sensitivity = 0.82), with a 5% 
probability of wrongfully rejecting H0 (type-I-risk) for both tests, than test A is to be 
favored over test B if the specificity is chosen to be 0.95. The question whether test A or 
test B is “better”, gets tricky if we further assume that test A has a sensitivity of 0.71 and 
test B a sensitivity of 0.76 if the type-I-risk happens to be 0.01. If the specificity is cho-
sen to be 0.99, test B is to be favored over test A since it is better at detecting cases in 
which H0 is wrong.  

Example 2: Assume that test A always has a higher sensitivity than test B for any given 
level of specificity. In this case, the receiver operator characteristic (ROC) curve of test 
A always lies above the ROC curve of test B. The ROC curve is a simple two dimen-
sional plot with the specificity on the abscissa and the sensitivity on the ordinate which 
has its origins in signal detection theory (Petersen, Birdsall, & Fox, 1954). The ROC 
curve obviously is a non-decreasing function which always lies above the 45 degree line 
(otherwise the test is worse than random guessing!).  

In our first example test A and test B have intersecting ROC curves. One good criterion 
to assess whether test A or test B performs better overall is to compare the areas under 
their respective ROC curves. The area under the ROC curve is often called AUC (Han-
ley, & McNeil, 1982) and it has been shown that it is a linear transformation of the GINI 
index (Hand, & Till, 2001). Furthermore, the AUC of a test is also equivalent to the 
Wilcoxon rank-sum statistic as well as the Mann-Whitney test statistic and can be inter-
preted as the probability that the test will rank a randomly chosen instance where H0 is 
incorrect higher as a randomly chosen instance in which H0 is correct (Hanley, & 
McNeil, 1982).  
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Is it fair to conclude that test A is better than test B in the second example since its ROC 
lies completely above the ROC curve of B, under the additional assumption that both 
tests are equally hard to conduct? Sadly no, because one additional property of test A is 
needed, namely the knowledge of the corresponding critical values for each value of 
specificity. If it is unknown which critical value leads to which specificity and which 
sensitivity, the test is hard to implement, since it is tough to classify results obtained with 
a certain critical value. Specificity and sensitivity are always inverse correlated and de-
pending on the situation their importance varies. Because of this possible scenario, the 
method of comparison of the five indices was twofold: 

– The main criterion was the area under the ROC curve (a value between 0.5 and 1).  

– Additionally, the specificity and sensitivity for critical values obtained in a pre-
simulation with no aberrant responses satisfying a specificity of 0.95 and 0.99 were 
computed. This enabled the estimation of the differences between the actual and the 
nominal specificity values for our indices. 

Description of all executed simulations  

To answer the questions of interest regarding the performance of the five person-fit indi-
ces and the influence of person-misfit on Andersen´s LR test a sequential simulation 
design was implemented. That means that results obtained in a simulation affect or de-
termine the setup of subsequent simulations. The complete analysis breaks down into 
three different simulations (Table 1, Table 2 and Table 3). In Simulation A the 0.01, 
0.05, 0.95, and 0.99 quantiles were estimated for each test and for each combination of 
the number of items and the number of respondents. These estimations were used as 
critical values in Simulation B. For Ht, C* and U3 the theoretical distribution of the 
index under H0 (The Rasch model is correct for each person and each item) is not known 
and, therefore, the estimation of critical values with Simulation A (Table 1) a necessity.  
 
 

   Table 1: 
Simulation A - Computation of critical values for the five person-fit indices 

 
N 100 500 

I 50 25 50 25 

Test 

Ht 
• 1000 iterations 
• At each iteration the empirical quantiles (0.01, 0.05, 

0.95, and 0.99) were taken. 
• Afterwards those values were averaged over the 1000 

iterations in order to be used as critical values in 
Simulation B. 

C* 

U3 

OUTFIT 

INFIT 
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OUTFIT and INFIT asymptotically follow a standard normal distribution but the sample 
sizes in this simulation (100 and 500 respondents) are far from infinite, and using asymp-
totic quantiles can therefore lead to strong deviations from the expected specificity. 
Hence, empirically derived critical values were used for OUTFIT and INFIT too. This 
way of computing specificities and sensitivities is what Rupp calls “best method with 
highest precision” in his review paper (Rupp, 2013). 

In Simulation B (Table 2) for each scenario and each test the following was computed: 

– The area under the ROC curve  

– The sensitivity and specificity for the respective critical values which should corre-
spond to a specificity of 0.05 obtained via Simulation A. 

– The sensitivity and specificity for the respective critical values which should corre-
spond to a specificity of 0.01 obtained via Simulation A. 

– Critical values (once again the empirical quantiles were taken) and the sensitivity 
which correspond to a specificity of 0.05 in the Simulation B. 

– Critical values (once again the empirical quantiles were taken) and the sensitivity 
which correspond to a specificity of 0.01 in the Simulation B. 

 
 

Table 2: 
Simulation B - Computation of the area under the ROC curve, specificities, sensitivities, 

critical values, and Andersen´s Likelihood-Ratio test in some cases 

 

N 100 500 

I 50 25 50 25 

NAR 5% 30% 5% 30% 5% 30% 5% 30% 

T
yp

e 
of

 m
is

fi
t 

Careless 
• 2000 iterations 
• Estimation of the area under the ROC curve 

for each test (Ht, C*, U3, OUTFIT, INFIT). 
• Computation of specificity and sensitivity 

for the respective critical values obtained in 
the first simulation for each test. 

• Computation of the sensitivity and critical 
values for two levels of specificity (0.95 and 
0.99) for each test. 

The same 
procedure as 
in the framed 
box. 
Additionally 
the p-value of 
Andersen´s 
LR test with 
a median split 
of the raw 
score was 
computed. 

Cheating 1 

Cheating 2 

Guessing 

Distorting 1 The same procedure as in the framed box, although this time the 
direction of the five one-sided tests was reversed and the 
respective critical values from Simulation A were used. Distorting 2 
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In the case of Distorting 1 and Distorting 2, the direction of the five (one-sided) tests was 
reversed since they tend to produce a model overfit instead of a model underfit. There-
fore, not the same critical values from Simulation A were used. In the case of C*, for 
instance, the higher the value of C*, the stronger the underfit of that person. Hence, in 
order to obtain a specificity of 0.95, the 0.95 quantile of C* was used as the critical value 
in case of an aberrant response that produces underfit and the 0.05 quantile in case of 
overfit. In the case of underfit, H0 was rejected if the C* value of a person happened to 
be higher than the respective critical value. In the case of overfit, H0 was rejected if the 
C* value happened to be lower than the respective critical value.  

In addition, Andersen´s LR test was computed for four scenarios (Careless, Cheating 1, 
Cheating 2, and Guessing with I=25, N=500, and NAR=0.3). In each iteration the respec-
tive sample of N respondents was divided into two groups according to a median (the 
50% quantile) split of the raw score. The p-value of Andersen´s LR test (for two groups) 
was then computed and stored.  

In Simulation C (Table 3), the specificity of Andersen´s LR test (criterion: median split 
of the raw score) before and after the removal of suspicious respondents was investigated 
in eight scenarios, namely Careless, Cheating 1, Cheating 2, and Guessing with I=25, 
N=500 and either NAR=0.3 or NAR=0.05. The result section will show why C* was the 
index of choice in this simulation. Additionally, the influence of the two non-detectable 
scenarios Fatigue 1 and Fatigue 2 on the specificity of Andersen´s LR test with I=25, 
N=500 and NAR=0.3 was investigated. 

 

Table 3: 
Simulation C - Specificity of Andersen´s Likelihood-Ratio test before and after the removal of 

suspicious respondents 

 N 500 

I 25 

NAR 5% 30% 

T
yp

e 
of

 m
is

fi
t 

Careless • 2000 iterations 
• Step 1: The p-value of Andersen´s LR test with two groups 

generated by the median split of the raw score was computed. 
Thereby all 500 respondents were used. 

• Step 2: Computation of the C* index for each person and 
removal of suspicious respondents (specificity = 0.95). The 
number of removed respondents was saved. 

• Step 3: Step 1 is repeated for all respondents who were not 
removed in Step 2. 

Cheating 1 

Cheating 2 

Guessing 

Fatigue 1 • 800 iterations 
• The p-value of Andersen´s LR test with two groups 

generated by the median split of the raw score was computed. 
Thereby all 500 respondents were used. Fatigue 2 
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Results 

Simulation A – Critical values 

The estimated quantiles in each cell (Table 4) are the unweighted average, the so-called 
sample mean, of 1000 empirical quantiles for the respective test in the four different 
scenarios. These averages were rounded to three digits and taken as the critical values for 
the respective scenarios und specificities in Simulation B.  

The estimations of C* and U3 differ in the third comma digit at max. The quantiles for 
OUTFIT and INFIT, on the other hand, differ quite strongly from each other. Further-
more, they are far from symmetric and a symmetric distribution (e.g. a Student  
t-distribution) would be a poor fit. For instance, the 1% quantile for OUTFIT (N=100, 
I=25) is -1.833, the 99% quantile is 2.529.) The distributions of OUTFIT and INFIT 
seem to deviate quite strongly from their asymptotic distribution (standard normal). 

 
 

Table 4: 
Estimated quantiles (0.01, 0.05, 0.95 and 0.99) for the five indices in four different scenarios 

  Person-fit index 

N I Quantile  Ht C* U3 OUTFIT INFIT 

         

100 25 99%  0.723 0.458 0.454 2.529 2.217 

  95%  0.648 0.319 0.318 1.601 1.442 

  5%  0.236 0.028 0.029 -1.317 -1.690 

  1%  0.042 0.003 0.003 -1.833 -2.382 

100 50 99%  0.651 0.359 0.358 2.520 2.237 

  95%  0.577 0.277 0.276 1.627 1.453 

  5%  0.287 0.069 0.070 -1.391 -1.627 

  1%  0.179 0.034 0.036 -2.034 -2.426 

500 25 99%  0.702 0.419 0.419 2.338 2.075 

  95%  0.643 0.319 0.319 1.579 1.416 

  5%  0.244 0.032 0.034 -1.323 -1.654 

  1%  0.109 0.002 0.002 -1.826 -2.305 

500 50 99%  0.631 0.340 0.342 2.315 2.095 

  95%  0.572 0.278 0.278 1.586 1.428 

  5%  0.292 0.073 0.074 -1.392 -1.591 

  1%  0.213 0.041 0.044 -1.963 -2.276 
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Simulation B - Area under the ROC curve 

Table 5 and 6 show that the performance differences between the five indices are quite 
small. In case of NAR=0.05, Ht, C* and U3 are best in case of underfit, C* and U3 in case 
of overfit (Table 5). In case of NAR=0.3, Ht is best in case of underfit, C* and U3 in case of 
overfit (Table 6). C* and U3 perform very much alike. In case of NAR=0.3, C* performs 
slightly better than U3 in case of underfit and slightly worse in case of overfit. Guessing 
and Careless are the hardest to detect for all five indices. No confidence interval estima-
tions are given, since they are very small and every substantial difference in performance 
(e.g. a 0.02 point difference) can be considered as statistically significant with a type-I-risk 
of 1%. As will be shown in the next section, it is not necessary to take too close at the 
performance differences of the five indices due to severe deviations between the nominal 
and the actual specificity values in the case of Ht, OUTFIT and INFIT. 

Person-misfit can be detected better if the test has 50 instead of 25 items and with 500 
instead of 100 respondents (Table 5 & 6). There seems to be no interaction between the 
influence of the number of items and the number of respondents. The effect of the num-
ber of items is rather large (about 5-7% increase in area), the effect of the number of 
respondents quite small (less than 1% increase in area). The influence of the number of 
items and the number of respondents is pretty much the same for all five tests.  

The influence of the number of aberrant responding respondents does depend on the 
index. In case of underfit, for instance, the performance increases with NAR for INFIT 
and Ht, decreases for U3, and does not change for OUTFIT as well as C* (Table 5 & 6). 

Simulation B - Specificity of the indices 

Table 7 shows the actual specificity for each scenario with NAR=0.3 and each index, if 
the respective critical values for a specificity of 0.95 from Simulation A are taken. The 
values for C* and U3 lie close to 0.95 in each and every of the 48 scenarios. On the other 
hand, the values for Ht, OUTFIT and INFIT strongly deviate from 0.95 in many scenari-
os. Medium sized deviations are marked with one plus sign, strong deviations with two8. 
Ht tends to produce more type-I-errors, since its specificity values are mainly smaller as 
0.95. The deviations are the strongest in the scenarios Cheating 1, Cheating 2, Dis-
torting 1 and Distorting 2. In case of Cheating 1 with N=500 and I=50, Ht only has a 
specificity of 74.81% which corresponds to a 403.8% increase of the type-I-risk. 

In contrast to Ht, OUTFIT and INFIT produce less type-I-errors as expected, since its 
specificity values are always higher than 0.95. The sensitivity values of these two indices 
are therefore decreased. Just like in the case of Ht, the deviations are strongest in the 
scenarios Cheating 1, Cheating 2, Distorting 1 and Distorting 2 with specificity levels 
mostly higher than 0.98 and sometimes even higher than 0.995.  

                                                                                                                         
8
 The magnitude of deviation is measured in the relative deviation from the nominal type-I-risk (0.05 in 

this case). Hence, specificity values of 0.9 and 0.975 are considered equally strong deviations since the 
former corresponds to a 100% increase, and the later to a 100% decrease of the type-I-risk. 
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Table 5: 
Area under the ROC curve for all scenarios with NAR=0.05 and all five tests 

  Person-fit index 

Type of 
aberrant 
response 

N I 
 

Ht C* U3 OUTFIT INFIT 

         

Guessing 100 25  0.6127 0.6096 0.6060 0.6121 0.5951 

 100 50  0.6424 0.6374 0.6335 0.6474 0.6253 

 500 25  0.6098 0.6066 0.6038 0.6125 0.5938 

 500 50  0.6414 0.6356 0.6317 0.6495 0.6228 

Cheating 1 100 25  0.9302 0.9327 0.9341 0.9133 0.8977 

 100 50  0.9786 0.9797 0.9800 0.9525 0.9486 

 500 25  0.9347 0.9362 0.9376 0.9160 0.9002 

 500 50  0.9812 0.9820 0.9822 0.9580 0.9507 

Cheating 2 100 25  0.8931 0.9004 0.9066 0.9074 0.8216 

 100 50  0.9549 0.9610 0.9638 0.9366 0.8504 

 500 25  0.8936 0.8991 0.9054 0.9055 0.8233 

 500 50  0.9567 0.9609 0.9635 0.9391 0.8489 

Careless 100 25  0.6675 0.6670 0.6670 0.6671 0.6777 

 100 50  0.7267 0.7280 0.7293 0.7233 0.7402 

 500 25  0.6762 0.6755 0.6759 0.6758 0.6856 

 500 50  0.7309 0.7311 0.7319 0.7261 0.7444 

Average in case of underfit:  0.8019 0.8027 0.8033 0.7964 0.7704 

         

Distorting 1 100 25  0.9270 0.9415 0.9414 0.8734 0.9238 

 100 50  0.9764 0.9867 0.9873 0.9357 0.9647 

 500 25  0.9350 0.9487 0.9495 0.8817 0.9285 

 500 50  0.9804 0.9888 0.9904 0.9423 0.9681 

Distorting 2 100 25  0.9563 0.9692 0.9671 0.8581 0.9183 

 100 50  0.9893 0.9963 0.9953 0.9248 0.9506 

 500 25  0.9634 0.9748 0.9742 0.8676 0.9236 

 500 50  0.9917 0.9972 0.9974 0.9311 0.9530 

Average in case of overfit:  0.9649 0.9754 0.9753 0.9018 0.9413 
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Table 6: 
Area under the ROC curve for all scenarios with NAR=0.3 and all five tests 

  Person-fit index 

Type of 
aberrant 
response 

N I 
 

Ht C* U3 OUTFIT INFIT 

         

Guessing 100 25  0.6067 0.6010 0.5968 0.6045 0.5877 

 100 50  0.6405 0.6312 0.6252 0.6425 0.6172 

 500 25  0.6111 0.6048 0.6007 0.6097 0.5910 

 500 50  0.6439 0.6337 0.6280 0.6462 0.6198 

Cheating 1 100 25  0.9550 0.9351 0.9136 0.9260 0.9257 

 100 50  0.9885 0.9796 0.9656 0.9647 0.9691 

 500 25  0.9583 0.9373 0.9173 0.9296 0.9298 

 500 50  0.9905 0.9821 0.9702 0.9700 0.9729 

Cheating 2 100 25  0.9417 0.9026 0.8717 0.9182 0.8783 

 100 50  0.9843 0.9661 0.9428 0.9532 0.9176 

 500 25  0.9472 0.9061 0.8780 0.9198 0.8828 

 500 50  0.9860 0.9667 0.9473 0.9575 0.9224 

Careless 100 25  0.6869 0.6741 0.6644 0.6727 0.6790 

 100 50  0.7455 0.7288 0.7146 0.7198 0.7354 

 500 25  0.6911 0.6775 0.6678 0.6766 0.6828 

 500 50  0.7487 0.7307 0.7171 0.7239 0.7384 

Average in case of underfit:  0.8204 0.8036 0.7888 0.8022 0.7906 

         

Distorting 1 100 25  0.9234 0.9392 0.9442 0.8656 0.9366 

 100 50  0.9743 0.9849 0.9881 0.9340 0.9794 

 500 25  0.9288 0.9444 0.9503 0.8752 0.9411 

 500 50  0.9780 0.9871 0.9908 0.9417 0.9817 

Distorting 2 100 25  0.9513 0.9640 0.9677 0.8504 0.9408 

 100 50  0.9869 0.9942 0.9961 0.9268 0.9753 

 500 25  0.9581 0.9694 0.9735 0.8650 0.9451 

 500 50  0.9899 0.9955 0.9975 0.9366 0.9772 

Average in case of overfit: 0.9613 0.9723 0.9760 0.8994 0.9596 
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Table 7:  
Actual specificity values for each test and all scenarios with NAR=0.3, if the respective critical 

values from Simulation A, that correspond to a specificity of 0.95, are used. One plus sign 
indicates that the actual type-I-risk deviates by more than 20% from 0.05, two plus signs 

indicate a deviation by more than 100% 

  Person-fit index 

Type of 
aberrant 
response 

N I Ht C* U3 OUTFIT INFIT 

         

Guessing 100 25  0.9477 0.9549 0.9555 0.9665+ 0.9683+ 

 100 50  0.9392 0.9539 0.9542 0.9696+ 0.9720+ 

 500 25  0.9450 0.9516 0.9514 0.9646+ 0.9665+ 

 500 50  0.9376+ 0.9507 0.9505 0.9688+ 0.9705+ 

Cheating 1 100 25  0.8817++ 0.9530 0.9557 0.9915++ 0.9946++ 

 100 50  0.7609++ 0.9526 0.9558 0.9955++ 0.9978++ 

 500 25  0.8749++ 0.9489 0.9518 0.9924++ 0.9945++ 

 500 50  0.7481++ 0.9486 0.9520 0.9965++ 0.9976++ 

Cheating 2 100 25  0.9112+ 0.9530 0.9569 0.9854++ 0.9888++ 

 100 50  0.8498++ 0.9525 0.9567 0.9908++ 0.9935++ 

 500 25  0.9067+ 0.9482 0.9524 0.9860++ 0.9888++ 

 500 50  0.9376+ 0.9507 0.9505 0.9688+ 0.9705+ 

Careless 100 25  0.9410 0.9539 0.9535 0.9731+ 0.9762++ 

 100 50  0.9274+ 0.9549 0.9545 0.9793++ 0.9807++ 

 500 25  0.9384 0.9508 0.9503 0.9718+ 0.9745+ 

 500 50  0.9245+ 0.9510 0.9499 0.9775++ 0.9797++ 

Average in case of underfit:  0.8982 0.9518 0.9532 0.9799 0.9822 

         

Distorting 1 100 25  0.8290++ 0.9497 0.9521 0.9892++ 0.9764++ 

 100 50  0.8115++ 0.9479 0.9505 0.9927++ 0.9873++ 

 500 25  0.8240++ 0.9482 0.9500 0.9867++ 0.9753++ 

 500 50  0.8044++ 0.9458 0.9512 0.9916++ 0.9860++ 

Distorting 2 100 25  0.8298++ 0.9483 0.9514 0.9885++ 0.9749+ 

 100 50  0.8143++ 0.9432 0.9498 0.9921++ 0.9853++ 

 500 25  0.8258++ 0.9472 0.9506 0.9864++ 0.9741+ 

 500 50  0.8063++ 0.9410 0.9517 0.9911++ 0.9848++ 

Average in case of overfit:  0.8181 0.9464 0.9509 0.9898 0.9805 
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The actual specificity values in case of NAR=0.05 as well as all scenarios where the re-
spective critical values for a specificity of 0.99 from Simulation A are taken can be 
found in the appendix of this work (Table 9, 10 & 11). In case of a nominal specificity of 
0.99 Ht, OUTFIT and INFIT once again do not satisfy the nominal type-I-risk. Ht pro-
duces too many type-I-errors, particularly in case of NAR=0.3. Once again some devia-
tions are shockingly high with specificities as low as 92.96% in the case of Distorting 1 
with N=500, I=25 and NAR=0.3. OUTFIT and INFIT produce less type-I-errors, since 
their specificity values are always higher than 0.99. Just like in the case of Ht, the devia-
tions are strongest in the scenarios Cheating 1, Cheating 2, Distorting 1 and Distorting 2, 
and in case of NAR=0.3 with specificity levels mostly higher than 0.997 and sometimes 
even higher than 0.999. 

The values for C* and U3 lie close to 0.99 (Appendix: Table 10 & 11), although the 
precision is somewhat lower than in Table 5. They are a bit too high in underfit scenarios 
with 100 respondents. In order to check if these small deviations can be linked to the 
precision of the critical values estimated in Simulation A, the actual critical values are 
compared with the confidence interval for the respected estimation in Simulation A 
(Appendix: Table 12). In only two out of 16 scenarios, the critical values from Simula-
tion B for C* as well as for U3 lie within the respective 95% confidence interval. Inter-
estingly, specificity values for C* and U3 seem to be independent of the type and the 
amount of aberrant response (Appendix: Table 10 & 11). The appendix additionally 
contains the estimated critical values for all scenarios and all indices (Appendix: Table 
13 & 14). The values are systematically influenced by the type of aberrant response and 
the value of NAR in case of Ht, OUTFIT and INFIT. 

Simulation B - Specificity of Andersen´s LR test in case of underfit 

Graph 1 shows the distribution of p-values for Andersen´s LR test with two groups gen-
erated by a median split of the raw score in case of Guessing, Cheating 1, Cheating 2 and 
Careless. Since the data was generated in a way which models a test with 25 items where 
the Rasch model holds but with 30% aberrant responses, we do not want to reject H0. 
Ideally, the p-values of Andersen´s LR test would be equally distributed over the interval 
[0, 1] as in the case of Rasch model conform data without aberrant response (A detailed 
analysis of the specificity of Andersen´s LR test was conducted by Futschek (2014)). 
The stronger the deviation of the actual p-value distribution from the uniform distribu-
tion on the interval [0, 1], the stronger the influence of the particular type of aberrant 
response. The distributions of p-values are extremely right skewed in the case of Guess-
ing and Careless, and the p-value is essentially zero with probability one in the case of 
Cheating 1 and Cheating 2 (Graph 1). 

These are unpleasant results, since we clearly cannot decide whether items are Rasch 
model conform in the case of respondents that produce a model underfit by showing 
certain aberrant responses (e.g. cheating). If we allow the probability of the type-I-error 
of Andersen´s LR test to be 0.05, the actual specificity values (Number of p-values 
greater than 0.05 divided by number of all p-values) are only 51.4%, 0%, 0% and 
84.05% for Guessing, Cheating 1, Cheating 2 and Careless.  
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Graph 1:  

P-value distribution of Andersen´s Likelihood-Ratio test (criterion: median split of the raw 
score) in case of underfit 

 

Fortunately, those four types of aberrant responses can be detected fairly well with the 
index C* (Tables 5 & 6). Simulation C therefore analyzed the potential support of C*, if 
Rasch model conformity is to be tested with Andersen´s LR test in the case of aberrant 
responses. Suspicious respondents, with the specificity of C* being set to 0.95, were 
removed and Andersen´s LR test was computed for the remaining respondents. Because 
of the strong influence of the aberrant responses on the distribution of the p-values of 
Andersen´s LR in case of NAR=30%, Simulation C also analyzed Guessing, Cheating 1, 
Cheating 2 and Careless in case of NAR=5%. 

Simulation C - Specificity of Andersen´s LR test before and after removal of 
flagged respondents in case of underfit 

Table 8 shows the probability of rejecting the null hypotheses with Andersen´s LR for all 
underfit scenarios with N=500 and I=25. The values in case NAR=0.3 are essentially 
equal to the results in Simulation B (The difference is 0.003 for Guessing, 0 for Cheat-
ing 1 and 2 and 0.0025 for Careless). The type-I-risk is strongly elevated even in the 
case of NAR=0.05 and Cheating 1 and 2. The removal of suspicious respondents with the 
index C* works fairly well, since the probability of a type-I-error is reduced in each and 
every scenario. One important thing to note is that - after the removal of suspicious re-
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spondents - the type-I-risks of Andersen´s LR test are closest to 0.05 for Cheat-
ing 1 and 2 with NAR=0.3, even though these scenarios are the most problematic ones if 
all 500 respondents are used. This makes perfect sense, since the area under the ROC 
curve is highest in case of Cheating 1 and 2, and therefore most respondents producing 
aberrant responses were removed9. 

Guessing is the hardest to detect (Graph 3) and, therefore, fewer respondents as in Cheat-
ing 1 and 2 and Careless were removed. In the case of 30% respondents with Guessing 
behavior, we still have a 166% (0.133/0.05=2.66) increased type-I-risk after the removal 
of suspicious respondents. In order to obtain a type-I-risk of 0.05 the specificity level of 
C* has to be lowered which of course has a downside in case of a true H0. 

 
 

Table 8: 
Elevated type-I-risk of Andersen´s Likelihood-Ratio test (criterion: median split of the raw 

score) in case of N=500 and I=25 before and after the removal of suspicious respondents with 
C* and the respective critical values from Simulation A corresponding to a specificity of 0.95 

NAR 
Type of 
aberrant 
response 

 
Andersen´s LR 

test with all 
respondents 

Andersen´s LR 
test without 
suspicious 

respondents 

Average number 
of respondents 

who were 
removed 

      

5% Guessing  0.062 0.052 26.674 

 Cheating 1  0.300 0.058 42.962 

 Cheating 2  0.128 0.053 40.819 

 Careless  0.062 0.054 28.242 

30% Guessing  0.489 0.133 39.102 

 Cheating 1  1.000 0.050 136.411 

 Cheating 2  1.000 0.040 125.632 

 Careless  0.162 0.081 46.838 
 

 

 

 

                                                                                                                         
9
 The average number of respondents who were removed is a product of the actual specificity for a cho-

sen level of specificity and the associated sensitivity for a certain scenario. For instance, the sensitivity for 
C* in case of Cheating 1 and NAR=0.3 is 0.7967, the actual specificity (Table 5) 0.9489 for the critical 
value from Simulation A corresponding to a specificity of 0.95. Therefore, 0.7967*500*0.3 + (1-
0.9489)*500*0.7 =137.39 respondents are expected to be removed, which is not far from the actual value: 
136.411 
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Simulation C - Specificity of Andersen´s LR test in case of fatigue 1 and 2. 

If people experience fatigue at some point in the test the estimation of their latent ability 
trait will certainly be too low. The estimation of the Rasch model conformity of the 
items, however, seems to be unaffected of respondents experiencing fatigue (Graph 2). 
The distribution of p-values does look uniformly distributed over the interval [0, 1]. Even 
in the two cases of 30% aberrant response, no deviation from uniformity can be spotted. 
If we allow the type-I-risk of Andersen´s LR test to be 0.05, the actual specificity values 
are 94.88%, 96.5%, 94.88% and 94.38% for Fatigue 1 (NAR=5%), Fatigue 2 (NAR=5%), 
Fatigue 1 (NAR=30%) and Fatigue 2 (NAR=30%). It can therefore be concluded, that the 
type-I-risk is unaffected by this sort of aberrant response. 

 

 
Graph 2: 

P-value distribution of Andersen´s Likelihood-Ratio test (criterion: median split of the raw 
score) in case of fatigue for NAR=0.05 as well as NAR=0.3 

Discussion 

The simulated scenarios in this study have a high degree of “realism” and closely model 
real life phenomena (e.g. cheating). Guessing was treated as a person-misfit since there is 
only one item parameter, namely the item difficulty. Some logistic models include a 
guessing parameter, particularly the three parameter (3-PL) and the difficulty plus guess-
ing (D+G) parametric logistic models (Birnbaum, 1968; Kubinger & Draxler, 2007). 
Within these models guessing behavior would not be seen as a person-misfit, and they 
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are particularly adequate in case of a “1 out of X” multiple choice format. The downside 
is the loss of the specific objectivity property.  

The way Guessing and Careless were modeled in this simulation is similar to most simu-
lation studies. For a comparison take a look at Rupp´s (2013) review paper in which 
almost all simulation studies regarding person-fit up to this point are summarized and 
categorized. Rupp writes that: “However, despite the relatively large array of labels for 
aberrant responding, there are really only two types of statistical score effects that are 
effectively created, which are (1) spuriously low scores (i.e. when respondents provide a 
lower score than would be expected based on the chosen model) and (2) spuriously high 
scores (i.e. when respondents provide a higher score than would be expected based on 
the chosen model).” Although one can easily think of a behavior where the probability 
for a correct answer rises for some items and decreases for some other items in such a 
way that the expected number of correct responses corresponds to the expected number 
given the latent person parameter and the item difficulties, this categorization seems to 
be a good way not to confuse a certain modeled behavior with its real life counterpart. 
Guessing, Cheating 1, Cheating 2, Fatigue 1 and Fatigue 2 create spuriously high scores 
while Careless, Distorting 1 and Distorting 2 create spuriously low scores.  

Cheating 1 and 2 were modeled somewhat different from other simulation studies, but 
the biggest difference can be found in Distorting 1 and Distorting 2. Karabatsos (2003) 
modeled creative examines by choosing the person parameter from a uniform distribu-
tion over the interval [0.5, 2] and imputing incorrect responses for the 18% easiest items. 
Such a behavior is obviously easy to detect, but the author of this work wonders why 
such a behavior should occur in real life. Tendeiro and Meijer (2014) modeled spuriously 
low scores by choosing respondents with a person parameter higher than 0.5 and enough 
correct answers and changing a certain number of randomly chosen correct responses 
into incorrect ones with a probability of 80%. Once again, it is hard to imagine how such 
a behavior should arise in real life. If someone wants to distort the estimation of his 
person parameter downwards in a smart way, he will most likely answer medium (rela-
tive to his parameter) and difficult items wrong and easy items correct in order to avoid 
suspicion. This distorting behavior produces a model overfit instead of an underfit and 
that may be the reason why such a behavior has not been modeled before. 

The findings of this study do differ quite substantially from other simulation studies. On 
average, Ht had the largest area under the ROC curve, but C* and U3 only performed 
marginally worse. However, the type-I-risk of Ht depends on the type and the prevalence 
of aberrant response behavior and in many cases it differs by more than 100% from the 
nominal type-I-risk. Karabatsos (2003) as well as Zhang and Walker (2008) compared 
the area under the ROC curve of different indices, but they did not analyze the depend-
ence of the critical values on the type of misfit and the percentage of respondents show-
ing aberrant behavior. In Karabatsos study Ht performed best with the advantage over 
U3 and C* being bigger as in this study. Dimitrov and Smith (2006), clearly influenced 
by the work of Karabatsos (2003), also compared Ht with some parametric person-fit 
indices by estimating the area under the ROC curve. They list the critical values of Ht in 
different scenarios (number of items, type of aberrant response) corresponding to speci-
ficity values of 0.95 and 0.99 in the tables 3 and 4 of their work. However, they do not 
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discuss the fact that these critical values depend strongly on the type of aberrant response 
in the case of Ht. One can only wonder if they view their tables as a useful tool to choose 
the right critical value for a chosen nominal specificity. It is not possible to know how 
many people in a sample show aberrant response as well as the type of misfit and there-
fore such a table cannot be used in practice. St-Onge and colleagues (2011) compared the 
sensitivities of two parametric person-fit indices with U3 and Ht for certain specificity 
values, namely 0.9, 0.95, and 0.99. They used 100 repetitions for each scenario. In each 
scenario, which depended among others on the number of items and the type of response, 
1000 respondents were simulated and the cut off values for the indices were the respec-
tive 1, 5 and 10% empirical quantiles of all respondents who did respond model con-
form. Sadly, the dependence of the empirical quantiles on the type of misfit and the 
number of persons with aberrant response behavior was neither examined nor discussed. 
One work that compared nominal and empirical type-I-error rates for Ht was the simula-
tion study from Tendeiro and Meijer (2014). It reports that the actual type-I-risk for Ht, 
averaged across all experimental conditions, was 6% for a nominal value of 5% which is 
nowhere near the magnitude of elevated type-I-risk found in this simulation. Tendeiro 
and Meijer derived the critical values for a nominal specificity of 0.95 by simulating 
scores of 10000 respondents without aberrant behavior. This may be problematic, since 
they later simulated 100 datasets with 1000 respondents (some of them responding aber-
rant) for each scenario in order to compare the sensitivities of the indices. Taking a quan-
tile in a dataset with 10000 respondents is not the same as averaging the quantiles of 100 
datasets containing 1000 respondents.10  

The removal of suspicious respondents with the index C* and the respective critical 
values corresponding to a specificity of 0.95 led to a strong increase of the actual speci-
ficity of Andersen´s LR test, particularly in the case of Cheating 1 and 2. A lower speci-
ficity level of C* would result in an even lower type-I-risk of Andersen´s LR test, since 
additional people with a high number of Guttman errors would be removed11. However, 
when it comes to testing the Rasch model type-II-errors, that is failing to detect a DIF for 
some item, are of concern as well. Lowering the nominal specificity of C* results in a 
decreased sensitivity of Andersen´s LR test. This simulation study clearly shows the 
need to remove respondents with suspicious behavior from the sample and it recom-
mends the use of the index C*. In order to answer the question of the “optimal” specifici-
ty level for C*, when using the index as a “screening device” offering support for Ander-
sen´s LR test, further research investigating both types of errors, is of need. 

 

 

 

 

                                                                                                                         
10

 In this simulation we saw that sensitivities were higher for N=500 than for N=100. 
11

 If deviations from the perfect Guttman scale come from the aberrant response behavior or from chance 
does not matter for Andersen´s LR test 
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Appendix 

Table 9:  
Actual specificity values for each test and all scenarios with NAR=0.05, if the respective 

critical values from Simulation A, that correspond to a specificity of 0.95, are used. A plus 
sign indicates that the actual type-I-risk deviates by more than 20% from 0.05 

  Person fit index 

Type of 
aberrant 
response 

N I 
 

Ht C* U3 OUTFIT INFIT 

         

Guessing 100 25  0.9530 0.9547 0.9553 0.9563 0.9563 

 100 50  0.9504 0.9548 0.9551 0.9577 0.9571 

 500 25  0.9499 0.9512 0.9512 0.9534 0.9541 

 500 50  0.9486 0.9509 0.9508 0.9541 0.9547 

Cheating 1 100 25  0.9483 0.9551 0.9554 0.9645+ 0.9669+ 

 100 50  0.9418 0.9551 0.9554 0.9679+ 0.9695+ 

 500 25  0.9452 0.9510 0.9509 0.9622+ 0.9641+ 

 500 50  0.9395 0.9510 0.9509 0.9663+ 0.9683+ 

Cheating 2 100 25  0.9512 0.9554 0.9555 0.9608+ 0.9616+ 

 100 50  0.9468 0.9550 0.9552 0.9639+ 0.9647+ 

 500 25  0.9475 0.9511 0.9511 0.9584 0.9600+ 

 500 50  0.9438 0.9509 0.9509 0.9612+ 0.9624+ 

Careless 100 25  0.9516 0.9548 0.9550 0.9572 0.9585 

 100 50  0.9500 0.9550 0.9557 0.9603+ 0.9602+ 

 500 25  0.9493 0.9513 0.9515 0.9547 0.9561 

 500 50  0.9473 0.9511 0.9512 0.9564 0.9576 

Average in case of underfit:  0.9478 0.9530 0.9532 0.9597 0.9608 

         

Distorting 1 100 25  0.9348+ 0.9533 0.9530 0.9626+ 0.9595 

 100 50  0.9355+ 0.9521 0.9524 0.9644+ 0.9623+ 

 500 25  0.9333+ 0.9503 0.9499 0.9584 0.9557 

 500 50  0.9336+ 0.9490 0.9515 0.9618+ 0.9592 

Distorting 2 100 25  0.9353+ 0.9531 0.9531 0.9626+ 0.9594 

 100 50  0.9355+ 0.9514 0.9518 0.9644+ 0.9616+ 

 500 25  0.9350+ 0.9509 0.9500 0.9577 0.9550 

 500 50  0.9346+ 0.9489 0.9508 0.9610+ 0.9584 

Average in case of overfit:  0.9347 0.9511 0.9516 0.9616 0.9589 
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Table 10: 
Actual specificity values for each test and all scenarios with NAR=0.3, if the respective critical 

values from Simulation A, that correspond to a specificity of 0.99, are used. One plus sign 
indicates that the actual type-I-risk deviates by more than 20% from 0.05, two plus signs 

indicate a deviation by more than 100% 

 Person fit index 

Type of 
aberrant 
response 

N I Ht C* U3 OUTFIT INFIT 

        

Guessing 100 25 0.9957+ 0.9957+ 0.9955+ 0.9966+ 0.9968+ 

 100 50 0.9942 0.9951+ 0.9948 0.9965+ 0.9969+ 

 500 25 0.9908 0.9913 0.9911 0.9948 0.9946 

 500 50 0.9889 0.9909 0.9908 0.9955+ 0.9954+ 

Cheating 1 100 25 0.9944 0.9953+ 0.9953+ 0.9995++ 0.9997++ 

 100 50 0.9776++ 0.9944 0.9947 0.9997++ 0.9999++ 

 500 25 0.9853 0.9906 0.9910 0.9995++ 0.9995++ 

 500 50 0.9522++ 0.9900 0.9910 0.9998++ 0.9998++ 

Cheating 2 100 25 0.9947 0.9952+ 0.9955+ 0.9988++ 0.9993++ 

 100 50 0.9848+ 0.9944 0.9947 0.9991++ 0.9996++ 

 500 25 0.9869 0.9902 0.9911 0.9987++ 0.9987++ 

 500 50 0.9699++ 0.9897 0.9910 0.9993++ 0.9993++ 

Careless 100 25 0.9956+ 0.9956+ 0.9953+ 0.9974+ 0.9979++ 

 100 50 0.9935 0.9952+ 0.9947 0.9980++ 0.9983++ 

 500 25 0.9903 0.9911 0.9908 0.9963+ 0.9963+ 

 500 50 0.9872 0.9910 0.9908 0.9972+ 0.9972+ 

Average in case of underfit: 0.9864 0.9929 0.9930 0.9979 0.9981 

        

Distorting 1 100 25 0.9494++ 0.9854 0.9855 0.9994++ 0.9971+ 

 100 50 0.9520++ 0.9916 0.9933 0.9995++ 0.9987++ 

 500 25 0.9296++ 0.9879 0.9880 0.9991++ 0.9956+ 

 500 50 0.9334++ 0.9884 0.9905 0.9990++ 0.9979++ 

Distorting 2 100 25 0.9504++ 0.9849+ 0.9851 0.9994++ 0.9969+ 

 100 50 0.9531++ 0.9908 0.9934 0.9996++ 0.9986++ 

 500 25 0.9322++ 0.9878 0.9879 0.9991++ 0.9955+ 

 500 50 0.9343++ 0.9875 0.9907 0.9990++ 0.9977++ 

Average in case of overfit: 0.9418 0.9880 0.9893 0.9993 0.9973 
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Table 11:  
Actual specificity values for each test and all scenarios with NAR=0.05, if the respective 

critical values from Simulation A, that correspond to a specificity of 0.99, are used. One plus 
sign indicates that the actual type-I-risk deviates by more than 20% from 0.05, two plus signs 

indicate a deviation by more than 100% 

 Person fit index 

Type of 
aberrant 
response 

N I Ht C* U3 OUTFIT INFIT 

        

Guessing 100 25 0.9957+ 0.9956+ 0.9955+ 0.9942 0.9947 

 100 50 0.9948 0.9950+ 0.9947 0.9940 0.9945 

 500 25 0.9912 0.9912 0.9911 0.9917 0.9916 

 500 50 0.9905 0.9911 0.9911 0.9919 0.9917 

Cheating 1 100 25 0.9953+ 0.9954+ 0.9952+ 0.9960+ 0.9961+ 

 100 50 0.9943 0.9952+ 0.9950+ 0.9965+ 0.9966+ 

 500 25 0.9908 0.9912 0.9911 0.9941 0.9939 

 500 50 0.9892 0.9911 0.9912 0.9948 0.9949 

Cheating 2 100 25 0.9956+ 0.9956+ 0.9954+ 0.9954+ 0.9954+ 

 100 50 0.9949 0.9954+ 0.9950+ 0.9957+ 0.9960+ 

 500 25 0.9908 0.9912 0.9910 0.9934 0.9930 

 500 50 0.9899 0.9912 0.9913 0.9938 0.9936 

Careless 100 25 0.9955+ 0.9953+ 0.9951+ 0.9944 0.9949 

 100 50 0.9948 0.9951+ 0.9950+ 0.9950+ 0.9952+ 

 500 25 0.9912 0.9913 0.9912 0.9922 0.9921 

 500 50 0.9905 0.9911 0.9913 0.9925 0.9923 

Average in case of underfit: 0.9928 0.9933 0.9913 0.9941 0.9942 

        

Distorting 1 100 25 0.9891 0.9856 0.9857 0.9947 0.9941 

 100 50 0.9907 0.9933 0.9940 0.9959+ 0.9955+ 

 500 25 0.9863 0.9879 0.9880 0.9927 0.9916 

 500 50 0.9865 0.9903 0.9907 0.9931 0.9925 

Distorting 2 100 25 0.9895 0.9859 0.9860 0.9945 0.9939 

 100 50 0.9906 0.9930 0.9935 0.9955+ 0.9951+ 

 500 25 0.9867 0.9879 0.9880 0.9928 0.9914 

 500 50 0.9867 0.9903 0.9906 0.9931 0.9924 

Average in case of overfit: 0.9883 0.9893 0.9896 0.9940 0.9933 

. 
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Table 12:  
Critical values for C* and U3 indices and each underfit scenario with N=100, which lead to a   

specificity of 0.99. An asterisk indicates that the value lies outside the 95% confidence 
interval estimated in Simulation A 

I 
Type of 
aberrant 
response 

NAR U3 C* 

      

25 Guessing 5 %  0.444* 0.449* 

  30 %  0.426* 0.428* 

 Cheating 1 5 %  0.446* 0.450* 

  30 %  0.424* 0.430* 

 Cheating 2 5 %  0.446* 0.449* 

  30 %  0.427* 0.435* 

 Careless 5 %  0.448 0.453 

  30 %  0.427* 0.427* 

The 95% confidence intervals for the critical 
values from Simulation A in case of I=25, 
N=100 and a nominal specificity of 0.99 

 
[0.448, 0.460] [0.451, 0.646] 

 

50 Guessing 5 %  0.357 0.357 

  30 %  0.343* 0.343* 

 Cheating 1 5 %  0.354* 0.354* 

  30 %  0.345* 0.347* 

 Cheating 2 5 %  0.354* 0.354* 

  30 %  0.347* 0.350* 

 Careless 5 %  0.448* 0.453* 

  30 %  0.345* 0.343* 

The 95% confidence intervals for the critical 
values from Simulation A in case of I=50, 
N=100 and a nominal specificity of 0.99 

 
[0.355, 0.362] [0.355 0.362] 

. 
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Table 13: 
Comparison of the critical values for each of the five indices and each scenario with NAR=0.3, 

which lead to a specificity of 0.95, with the respective critical values from Simulation A 

  Person fit index 

N I 
Type of 
aberrant 
response 

Ht C* U3 OUTFIT INFIT 

         
100 25 Guessing  0.2241 0.3211 0.3199 1.4631 1.3078 

 25 Cheating 1  0.1717 0.3244 0.3199 0.9051 0.7219 
 25 Cheating 2  0.1876 0.3241 0.3180 1.1004 0.9239 
 25 Careless  0.2147 0.3230 0.3221 1.3618 1.2036 
Simulation A (100 , 25)  0.2360 0.3190 0.3180 1.6010 1.4420 

 50 Guessing  0.2726 0.2792 0.2784 1.4443 1.2725 
 50 Cheating 1  0.2072 0.2805 0.2769 0.7050 0.5211 
 50 Cheating 2  0.2280 0.2808 0.2762 0.9675 0.7798 
 50 Careless  0.2650 0.2787 0.2784 1.2910 1.1301 
Simulation A (100 , 50)  0.2870 0.2770 0.2760 1.6270 1.4530 

500 25 Guessing  0.2355 0.3187 0.3186 1.4163 1.2529 
 25 Cheating 1  0.1823 0.3216 0.3183 0.8314 0.6593 
 25 Cheating 2  0.1986 0.3226 0.3177 1.0361 0.8618 
 25 Careless  0.2269 0.3198 0.3203 1.3126 1.1465 
Simulation A (500 , 25)  0.2440 0.3190 0.3190 1.5790 1.4160 

 50 Guessing  0.2805 0.2783 0.2785 1.3752 1.2138 
 50 Cheating 1  0.2144 0.2800 0.2774 0.6164 0.4486 
 50 Cheating 2  0.2350 0.2814 0.2772 0.8828 0.7051 
 50 Careless  0.2718 0.2783 0.2790 1.2381 1.0701 
Simulation A (500 , 50)  0.2920 0.2780 0.2780 1.5860 1.4280 

100 25 Distorting 1  0.7254 0.0259 0.0276 -0.9012 -1.3942 
  Distorting 2  0.7243 0.0252 0.0272 -0.9149 -1.4151 
Simulation A (100 , 25)  0.6480 0.0280 0.0290 -1.3170 -1.6900 

 50 Distorting 1  0.6529 0.0656 0.0681 -0.8315 -1.1020 
  Distorting 2  0.6512 0.0633 0.0678 -0.8520 -1.1427 
Simulation A (100 , 50)  0.5770 0.0690 0.0700 -1.3910 -1.6270 

500 25 Distorting 1  0.7188 0.0307 0.0335 -0.8993 -1.3271 
  Distorting 2  0.7164 0.0304 0.0339 -0.9181 -1.3486 
Simulation A (500 , 25)  0.6430 0.0320 0.0340 -1.3230 -1.6540 

 50 Distorting 1  0.6451 0.0705 0.0741 -0.8122 -1.0317 
  Distorting 2  0.6441 0.0683 0.0743 -0.8313 -1.0640 
Simulation A (500 , 50)  0.5720 0.0730 0.0740 -1.3920 -1.5910 
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Table 14:  
Comparison of the critical values for each of the five indices and each scenario with 

NAR=0.05, which lead to a specificity of 0.95, with the respective critical values from 
Simulation A 

 Person fit index 

N I 
Type of 
aberrant 
response 

Ht C* U3 OUTFIT INFIT 

        
100 25 Guessing 0.2342 0.3192 0.3176 1.5791 1.4282 

 25 Cheating 1 0.2273 0.3188 0.3175 1.4699 1.3111 
 25 Cheating 2 0.2314 0.3185 0.3171 1.5242 1.3677 
 25 Careless 0.2329 0.3190 0.3181 1.5703 1.4082 

Simulation A (100 , 25) 0.2360 0.3190 0.3180 0.2360 0.3190 
 50 Guessing 0.2845 0.2769 0.2756 1.5911 1.4341 
 50 Cheating 1 0.2765 0.2767 0.2756 1.4539 1.2833 
 50 Cheating 2 0.2808 0.2766 0.2758 1.5192 1.3453 
 50 Careless 0.2834 0.2766 0.2756 1.5606 1.3969 

Simulation A (100 , 50) 0.2870 0.2770 0.2760 0.2870 0.2770 
500 25 Guessing 0.2427 0.3187 0.3186 1.5487 1.3864 

 25 Cheating 1 0.2360 0.3189 0.3187 1.4444 1.2802 
 25 Cheating 2 0.2391 0.3188 0.3188 1.4918 1.3255 
 25 Careless 0.2419 0.3185 0.3183 1.5353 1.3671 

Simulation A (500 , 25) 0.2440 0.3190 0.3190 0.2440 0.3190 
 50 Guessing 0.2900 0.2781 0.2781 1.5525 1.3915 
 50 Cheating 1 0.2823 0.2779 0.2781 1.4090 1.2456 
 50 Cheating 2 0.2858 0.2780 0.2780 1.4719 1.3129 
 50 Careless 0.2888 0.2780 0.2779 1.5272 1.3630 

Simulation A (500 , 50) 0.2920 0.2780 0.2780 0.2920 0.2780 
100 25 Distorting 1 0.6603 0.0281 0.0289 -1.2502 -1.6392 

  Distorting 2 0.6605 0.0282 0.0290 -1.2480 -1.6402 
Simulation A (100 , 25) 0.6480 0.0280 0.0290 0.6480 0.0280 

 50 Distorting 1 0.5890 0.0684 0.0696 -1.3005 -1.5412 
  Distorting 2 0.5893 0.0680 0.0692 -1.3021 -1.5513 

Simulation A (100 , 50) 0.5770 0.0690 0.0700 0.5770 0.0690 
500 25 Distorting 1 0.6557 0.0318 0.0336 -1.2632 -1.6059 

  Distorting 2 0.6547 0.0321 0.0336 -1.2678 -1.6118 
Simulation A (500 , 25) 0.6430 0.0320 0.0340 0.6430 0.0320 

 50 Distorting 1 0.5838 0.0722 0.0744 -1.2981 -1.5046 
  Distorting 2 0.5831 0.0722 0.0741 -1.3051 -1.5121 

Simulation A (500 , 50) 0.5720 0.0730 0.0740 0.5720 0.0730 
 


